Computing Kemeny's constant for a barbell graph

Main Article Content

Jane Breen
Steve Butler
Nicklas Day
Colt DeArmond
Kate Lorenzen
Haoyang Qian
Jacob Riesen


In a graph theory setting, Kemeny’s constant is a graph parameter which measures a weighted average of the mean first passage times in a random walk on the vertices of the graph. In one sense, Kemeny’s constant is a measure of how well the graph is ‘connected’. An explicit computation for this parameter is given for graphs of order n consisting of two large cliques joined by an arbitrary number of parallel paths of equal length, as well as for two cliques joined by two paths of different length. In each case, Kemeny’s constant is shown to be O(n3), which is the largest possible order of Kemeny’s constant for a graph on n vertices. The approach used is based on interesting techniques in spectral graph theory and includes a generalization of using twin subgraphs to find the spectrum of a graph.

Article Details


Most read articles by the same author(s)