# Using variants of zero forcing to bound the inertia set of a graph

## Main Article Content

## Abstract

Zero forcing is a combinatorial game played on a graph with a goal of changing the color of every vertex at minimal cost. This leads to a parameter known as the zero forcing number that can be used to give an upper bound for the maximum nullity of a matrix associated with the graph. A variation on the zero forcing game is introduced that can be used to give an upper bound for the maximum nullity of such a matrix when it is constrained to have exactly q negative eigenvalues. This constrains the possible inertias that a matrix associated with a graph can achieve and gives a method to construct lower bounds on the inertia set of a graph (which is the set of all possible pairs (p,q) where p is the number of positive eigenvalues and q is the number of negative eigenvalues).