Inverse eigenvalue and related problems for hollow matrices described by graphs

Main Article Content

F. Scott Dahlgren
https://orcid.org/0000-0003-1790-2804
Zachary Gershkoff
Leslie Hogben
https://orcid.org/0000-0003-1673-3789
Sara Motlaghian
Derek Young
https://orcid.org/0000-0002-0463-0937

Abstract

A hollow matrix described by a graph $G$ is a real symmetric matrix having all diagonal entries equal to zero and with the off-diagonal entries governed by the adjacencies in $G$. For a given graph $G$, the determination of all possible spectra of matrices associated with $G$ is the hollow inverse eigenvalue problem for $G$. Solutions to the hollow inverse eigenvalue problems for paths and complete bipartite graphs are presented. Results for related subproblems such as possible ordered multiplicity lists, maximum multiplicity of an eigenvalue, and minimum number of distinct eigenvalues are presented for additional families of graphs.

Article Details

Section
Article

Most read articles by the same author(s)

1 2 3 > >>