Two inverse eigenproblems for symmetric doubly arrow matrices

Main Article Content

Hubert Pickmann
Juan Egaña
Ricardo L. Soto


In this paper, the problem of constructing a real symmetric doubly arrow matrix A from two special kinds of spectral information is considered. The first kind is the minimal and maximal eigenvalues of all leading principal submatrices of A, and the second kind is one eigenvalue of each leading principal submatrix of A together with one eigenpair of A. Sufficient conditions for both eigenproblems to have a solution and sufficient conditions for both eigenproblems have a nonnegative solution are given in this paper. The results are constructive in the sense that they generate algorithmic procedures to compute the solution matrix.

Article Details


Most read articles by the same author(s)