On the eigenvalues of matrices with common Gershgorin regions

Main Article Content

Anna Davis
Paul Zachlin


This paper is a study of the eigenvalues of a complex square matrix with one variable nondiagonal entry expressed in polar form. Changing the angle of the variable entry while leaving the radius fixed generates an algebraic curve; as does the process of fixing an angle and varying the radius. The authors refer to these two curves as eigenvalue orbits and eigenvalue trajectories, respectively. Eigenvalue orbits and trajectories are orthogonal families of curves, and eigenvalue orbits are sets of eigenvalues from matrices with identical Gershgorin regions. Algebraic and geometric properties of both types of curves are examined. Features such as poles, singularities, and foci are discussed.

Article Details