Real equivalence of complex matrix pencils and complex projections of real Segre varieties

Main Article Content

Adam Coffman


Quadratically parametrized maps from a product of real projective spaces to a complex projective space are constructed as the composition of the Segre embedding with a projection. A classification theorem relates equivalence classes of projections to equivalence classes of complex matrix pencils. One low-dimensional case is a family of maps whose images are ruled surfaces in the complex projective plane, some of which exhibit hyperbolic CR singularities. Another case is a set of maps whose images in complex projective 4-space are projections of the real Segre threefold.

Article Details