Skew compressions of positive definite operators and matrices

Main Article Content

Matteo Polettini
Albrecht Böttcher

Abstract

The paper is devoted to results connecting the eigenvalues and singular values of operators composed by $P^\ast G P$ with those composed in the same way by $QG^{−1}Q^\ast$. Here $P +Q = I$ are skew complementary projections on a finite-dimensional Hilbert space and $G$ is a positive definite linear operator on this space. Also discussed are graph theoretic interpretations of one of the results.

Article Details

Section
Article