m-commuting maps on triangular and strictly triangular infinite matrices

Main Article Content

Roksana Słowik
Driss Aiat Hadj Ahmed


Let $N_\infty(F)$ be the ring of infinite strictly upper triangular matrices with entries in an infinite field. The description of the commuting maps defined on $N_\infty(F)$, i.e. the maps $f\colon N_\infty(F)\rightarrow N_\infty(F)$ such that $[f(X),X]=0$ for every $X\in N_\infty(F)$, is presented. With the use of this result, the form of $m$-commuting maps defined on $T_\infty(F)$ -- the ring of infinite upper triangular matrices, i.e. the maps $f\colon T_\infty(F)\rightarrow T_\infty(F)$ such that $[f(X),X^m]=0$ for every $X\in T_\infty(F)$, is found.

Article Details