Structure-preserving Diagonalization of Matrices in Indefinite Inner Product Spaces

Main Article Content

Philip Saltenberger

Abstract

In this work, some results on the structure-preserving diagonalization of selfadjoint and skewadjoint matrices in indefinite inner product spaces are presented. In particular, necessary and sufficient conditions on the symplectic diagonalizability of (skew)-Hamiltonian matrices and the perplectic diagonalizability of per(skew)-Hermitian matrices are provided. Assuming the structured matrix at hand is additionally normal, it is shown that any symplectic or perplectic diagonalization can always be constructed to be unitary. As a consequence of this fact, the existence of a unitary, structure-preserving diagonalization is equivalent to the existence of a specially structured additive decomposition of such matrices. The implications of this decomposition are illustrated by several examples.

Article Details

Section
Article