A projective approach to nonnegative matrix factorization

Main Article Content

Patrick Groetzner

Abstract

In data science and machine learning, the method of nonnegative matrix factorization (NMF) is a powerful tool that enjoys great popularity. Depending on the concrete application, there exist several subclasses each of which performs a NMF under certain constraints. Consider a given square matrix $A$. The symmetric NMF aims for a nonnegative low-rank approximation $A\approx XX^T$ to $A$, where $X$ is entrywise nonnegative and of given order. Considering a rectangular input matrix $A$, the general NMF again aims for a nonnegative low-rank approximation to $A$ which is now of the type $A\approx XY$ for entrywise nonnegative matrices $X,Y$ of given order. In this paper, we introduce a new heuristic method to tackle the exact nonnegative matrix factorization problem (of type $A=XY$), based on projection approaches to solve a certain feasibility problem.

Article Details

Section
Article