The Energy Change of the Complete Multipartite Graph

Main Article Content

Haiying Shan
Changxiang He
Zhensheng Yu


The energy of a graph is defined as the sum of the absolute values of all eigenvalues of the graph. Akbari et al. [S. Akbari, E. Ghorbani, and M. Oboudi. Edge addition, singular values, and energy of graphs and matrices. {\em Linear Algebra Appl.}, 430:2192--2199, 2009.] proved that for a complete multipartite graph $K_{t_1 ,\ldots,t_k}$, if $t_i\geq 2 \ (i=1,\ldots,k)$, then deleting any edge will increase the energy. A natural question is how the energy changes when $\min\{t_1 ,\ldots,t_k\}=1$. In this paper, a new method to study the energy of graph is explored. As an application of this new method, the above natural question is answered and it is completely determined how the energy of a complete multipartite graph changes when one edge is removed.

Article Details