On the Block Structure and Frobenius Normal Form of Powers of Matrices

Main Article Content

Mashael M Al Baidani
Judi J McDonald

Abstract

The Frobenius normal form of a matrix is an important tool in analyzing its properties. When a matrix is powered up, the Frobenius normal form of the original matrix and that of its powers need not be the same. In this article, conditions on a matrix $A$ and the power $q$ are provided so that for any invertible matrix $S$, if $S^{-1}A^qS$ is block upper triangular, then so is $S^{-1}AS$ when partitioned conformably. The result is established for general matrices over any field. It is also observed that the contributions of the index of cyclicity to the spectral properties of a matrix hold over any field. The article concludes by applying the block upper triangular powers result to the cone Frobenius normal form of powers of a eventually cone nonnegative matrix.

Article Details

Section
Article

Most read articles by the same author(s)