Block GLT Sequences: Matrix Functions and Engineering Application

Main Article Content

Carlo Garoni
Stefano Serra-Capizzano

Abstract

The theory of block generalized locally Toeplitz (GLT) sequences is a powerful apparatus for computing the spectral distribution of block-structured matrices arising from the discretization of differential problems, with a special reference to systems of differential equations (DEs) and to the higher-order finite element or discontinuous Galerkin approximation of both scalar and vectorial DEs. In the present paper, the theory of block GLT sequences is extended by proving that $\{f(A_n)\}_n$ is a block GLT sequence as long as $f$ is continuous and $\{A_n\}_n$ is a block GLT sequence formed by Hermitian matrices. It is also provided a relevant application of this result to the computation of the distribution of the numerical eigenvalues obtained from the higher-order isogeometric Galerkin discretization of second-order variable-coefficient differential eigenvalue problems (a topic of interest not only in numerical analysis but also in engineering).

Article Details

Section
Article