# Positive and Z-operators on Closed Convex Cones

## Main Article Content

## Abstract

Let $K$ be a closed convex cone with dual $\dual{K}$ in a finite-dimensional real Hilbert space. A \emph{positive operator} on $K$ is a linear operator $L$ such that $L\of{K} \subseteq K$. Positive operators generalize the nonnegative matrices and are essential to the Perron-Frobenius theory. It is said that $L$ is a \emph{\textbf{Z}-operator} on $K$ if % \begin{equation*} \ip{L\of{x}}{s} \le 0 \;\text{ for all } \pair{x}{s} \in \cartprod{K}{\dual{K}} \text{ such that } \ip{x}{s} = 0. \end{equation*} % The \textbf{Z}-operators are generalizations of \textbf{Z}-matrices (whose off-diagonal elements are nonpositive) and they arise in dynamical systems, economics, game theory, and elsewhere. In this paper, the positive and \textbf{Z}-operators are connected. This extends the work of Schneider, Vidyasagar, and Tam on proper cones, and reveals some interesting similarities between the two families.