• Main Navigation
  • Main Content
  • Sidebar
  • Register
  • Login
The Electronic Journal of Linear Algebra–a publication of the International Linear Algebra Society
  • Login
  • Current
  • Archives
  • Search
  • Announcements
  • About the Journal
  • Submissions
  • Editorial Team
  • Contact
  1. Home
  2. Archives
  3. Vol. 23 (2012)
  4. Article

Singular points of the ternary polynomials associated with 4-by-4 matrices

Article Sidebar

PDF
Published: Jan 1, 2012
DOI: https://doi.org/10.13001/1081-3810.1554

Main Article Content

Mao-ting Chien
Hiroshi Nakazato

Article Details

Issue
Vol. 23 (2012)
Section
Article

Most read articles by the same author(s)

  • Mao-Ting Chien, Hiroshi Nakazato, Symmetry of cyclic weighted shift matrices with pivot-reversible weights , The Electronic Journal of Linear Algebra: Vol. 36 (2020)
  • Mao-Ting Chien, Hiroshi Nakazato, Determinantal representations of elliptic curves via Weierstrass elliptic functions , The Electronic Journal of Linear Algebra: Vol. 34 (2018)
  • Batzorig Undrakh, Hiroshi Nakazato, Adiyasuren Vandanjav, Mao-Ting Chien, The numerical radius of a weighted shift operator , The Electronic Journal of Linear Algebra: Vol. 30 (2015)
  • Hiroshi Nakazato, Natália Bebiano, João da Providência, A note on the convexity of the indefinite joint numerical range , The Electronic Journal of Linear Algebra: Vol. 27 (2014)
  • Hiroshi Nakazato, Natalia Bebiano, Joao da Providencia, The numerical range of linear operators on the 2-dimensional Krein space , The Electronic Journal of Linear Algebra: Vol. 22 (2011)
  • Mao-Ting Chien, Michael Neumann, Positive definiteness of tridiagonal matrices via the numerical range , The Electronic Journal of Linear Algebra: Vol. 3 (1998)
  • Mao-Ting Chien, Hiroshi Nakazato, The q-numerical range of 3 by 3 tridiagonal matrices , The Electronic Journal of Linear Algebra: Vol. 20 (2010)
  • Mao-Ting Chien, Hiroshi Nakazato, The numerical radius of a weighted shift operator with geometric weights , The Electronic Journal of Linear Algebra: Vol. 18 (2009)

Information

  • For Readers
  • For Authors
  • For Librarians

Make a Submission

Make a Submission

Electronic Journal of Linear Algebra

A publication of the International Linear Algebra Society.

Contact ELA

More information about the publishing system, Platform and Workflow by OJS/PKP.