Vol. 38 (2015)
Research Project Ecology

Spatio-Temporal Ecological and Evolutionary Dynamics in Natural Butterfly Populations (2015 Field Season)

Zachariah Gompert
Utah State University
Lauren Lucas
Utah State University

Published 2015-01-01

Abstract

The study of evolution in natural populations has advanced our understanding of the origin and maintenance of biological diversity. For example, long term studies of wild populations indicate that natural selection can cause rapid and dramatic changes in traits, but that in some cases these evolutionary changes are quickly reversed when periodic variation in weather patterns or the biotic environment cause the optimal trait value to change (e.g., Reznick et al. 1997, Grant and Grant 2002). In fact, spatial and temporal variation in the strength and nature of natural selection could explain the high levels of genetic variation found in many natural populations (Gillespie 1994, Siepielski et al. 2009). Long term studies of evolution in the wild could also be informative for biodiversity conservation and resource management, because, for example, data on short term evolutionary responses to annual fluctuations in temperature or rainfall could be used to predict longer term evolution in response to directional climate change. Most previous research on evolution in the wild has considered one or a few observable traits or genes (e.g., Kapan 2001, Grant and Grant 2002, Barrett et al. 2008). We believe that more general conclusions regarding the rate and causes of evolutionary change in the wild and selectionâs contribution to the maintenance of genetic variation could be obtained by studying genome-wide molecular evolution in a suite of natural populations. Thus, in 2012 we began a long term study of genome-wide molecular evolution in a series of natural butterfly populations in the Greater Yellowstone Area (GYA). This study will allow us to quantify the contribution of environment-dependent natural selection to evolution in these butterfly populations and determine whether selection consistently favors the same alleles across space and through time.