Vol. 37 (2014)
Research Project Ecology

Water Flow and Beaver Habitat in Grand Teton National Park: Adaptation to Climate Change

William J. Gribb
University of Wyoming
Henry J. Harlow
University of Wyoming

Published 2014-01-01


Beavers are a keystone species in Grand Teton National Park and are critical to the aquatic and terrestrial landscape. Modifications to their habitat by climate change impact multiple species. This study is designed to examine the current distribution and habitat of beavers in Grand Teton National Park and analyze the alterations to this distribution and habitat based on climate change. Field and aerial surveys were completed to determine the distribution of beaver colonies in Grand Teton National Park. Beaver habitat was constructed by integrating field surveys of vegetation, soils and hydrologic characteristics with satellite imagery classification. A model of climate change was utilized in an effort to distinguish potentially different rates of temperature and precipitation change into the 21st century. The results of the climate model were then integrated into a watershed assessment model to determine stream flow in the Snake River basin. The decreasing flow rates are critical to beaver habitat for cottonwoods and willow species and beaver settlement and movement and will limit their movement. In addition, the Snake River below Jackson Lake Dam is regulated for irrigation into Idaho and the decreasing flows on the Snake River below the Jackson Lake Dam will also impact water availability for beaver habitats. Decreases in precipitation availability will increase irrigation demand causing changes in the Snake River flow patterns. Management conflicts exist between preserving and maintaining beaver habitat in the national park and meeting the irrigation