Vol. 35 (2012)
Yellowstone Ecosystem Report

Low Neutral Genetic Diversity in an Isolated Greater Sage Grouse (Centrocercus Urophasianus) Population in Northwest Wyoming

Sarah Schulwitz
University of North Texas
Jeff A. Johnson
University of North Texas
Bryan Bedrosian
Craighead Beringia South

Published 2012-01-01

Abstract

Habitat loss is well recognized as an immediate threat to biodiversity. Depending on the dispersal capabilities of the species, increased habitat fragmentation often results in reduced functional connectivity and gene flow followed by population decline and a higher likelihood of eventual extinction. Knowledge of the degree of connectivity between populations is therefore crucial for better management of small populations in a changing landscape. A small population of greater sage-grouse (Centrocercus urophasianus) exists in northwest Wyoming within the Jackson Hole valley, including Grand Teton National Park and the National Elk Refuge. To what degree the Jackson population is isolated is not known as natural dispersal barriers in the form of mountains and anthropogenic habitat fragmentation may limit the populationâs connectivity to adjacent populations. Using 16 microsatellite loci and 300 greater sage-grouse samples collected throughout Wyoming and southeast Montana, significant population differentiation was found to exist among populations. Results indicated that the Jackson population was isolated relative to the other sampled populations, including Pinedale, its closest neighboring large population to the south. The one exception was a small population immediately to the east of Jackson, in which asymmetric dispersal from Jackson into Gros Ventre was detected. Both Jackson and Gros Ventre populations exhibited significantly reduced levels of neutral genetic diversity relative to other sampled populations. More work is warranted to determine the timing at which Jackson and Gros Ventre populations had become isolated and whether it was primarily due to recent habitat fragmentation or more historic processes. Due to its small population size, continual monitoring of the population is recommended with the goal of at least maintaining current population size and, if possible, increasing suitable habitat and population size to levels recorded in the past.