Vol. 26 (2002)
Yellowstone Np Report

Status, Appropriate Sampling Scheme, and Movement in the Tiger Salamander (Ambystoma tigrinum) in Yellowstone National Park

Charles R. Peterson
Idaho State University
Stephen F. Spear
Idaho State University

Published 2002-01-01

Abstract

Due to the current trend of amphibian declines (Wake 1998, Alford and Richards 1999, Semlitsch 2000), the monitoring and study of amphibian populations has become increasingly necessary. To properly do such studies, we must consider several issues. Some of these include the detectability of the species at a site, current status of the population, and the spatial scale for sampling of a population. Determining the detectability of a species is important to consider because some amphibian species may have different difficulties of detection. Therefore, if a species is difficult to observe, it may occupy a greater number of sites than a survey indicates (MacKenzie et al. 2002). The appropriate spatial scale is also important for monitoring studies. For example, in a pond breeding amphibian, do one or two breeding ponds with the appropriate terrestrial habitat constitute the correct sampling area for a population, or does a population utilize multiple ponds within a larger terrestrial area? If the sampling scale is not appropriate, then any conclusions made may be inaccurate (Wiens 1989). In addition, understanding the terrestrial habitat use of pond breeding amphibians is important for both monitoring and conservation reasons. Many pond-breeding amphibians use the ponds for breeding and then utilize terrestrial zones around the pond for the rest of the year. The total area that is encompassed by these terrestrial zones is known as the terrestrial "buffer zone" or core habitat area for that population (Semlitsch 1998). To identify these core habitat areas, we must know not only the distance that the amphibians physically move from the breeding pond, but also the type of habitat that they will use. For example, short, steep slopes or rivers can serve as a barrier to amphibian movement (Laan and Verboom 1990, Storfer 1999), even if they are within the movement range of a population. Understanding individual movement may also give insights into the spatial population structure of the species. If we can identify the average distance of movement, we can then extrapolate if a breeding pond is likely to have an isolated subpopulation based on its distance from other ponds.