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Abstract Funding has enabled the design and implementation of a preliminary landslide inventory including roughly 500
deposits throughout GTNP. The three most common mass movement deposits were related to debris flows, translational
earth slides and translational rock slides. More than 10% of the features were field-verified during campaigns mapping
along the Teton Fault and in areas across varying lithology and relief including Steamboat Mountain, Paintbrush Canyon,
Cascade Canyon, Two Ocean Lake, Open Canyon and lower Granite Canyon. Features were mapped according to
protocols established by the Oregon Department of Geology and Mineral Industries (DOGAMI) and supported by the
USGS. The Story Map remains under development, awaiting revised mapping and feedback from GTNP staff.

Introduction

Mass movements are most frequent in regions
with high relief, recent deglaciation (Geertsema and
Chiarle, 2013), seismic shaking (Jibson, 2013) and
extreme precipitation (Dikau, 2013). This describes
Grand Teton National Park (GTNP) and the Greater
Yellowstone Ecosystem (GYE) quite well. As such,
it is no surprise that mass movements are a known
concern in GTNP (Bilderback, 2019) and have re-
quired recent management action (e.g. Germann,
2018). In an effort to support future decision-making
and encourage further research into mass move-
ments, we aim to produce a park-wide landslide in-
ventory.

Landslide inventories are descriptive datasets that
catalog the position and character of all mass move-
ments within a given domain (Galli et al., 2008;
Guzzetti et al., 2012). They span from highly local
studies, such as a product generated for Yosemite
Valley (Wieczorek et al., 1999), to expansive state-

wide efforts to catalog all known features, such as
the effort in the state of Wyoming (Larsen and Wit-
tke, 2013). Landslide inventories serve as the founda-
tional dataset for all future investigations into charac-
terizing hazards and assessing the risks they pose to
people and infrastructure. These sentiments are sup-
ported by National Park Service protocol documents
focused on monitoring slope movements (Wieczorek
and Snyder, 2009) and specific reports on addressing
local hazard and risk (e.g. in Yosemite. Stock et al.,
2014).

At the initiation of this project, no park-wide landslide
inventory exists for GTNP. A previous investigation
was limited to 5 canyons of GTNP and only utilized
aerial photo mapping and field observation (Marston
et al., 2011; Butler, 2013), techniques which have
been demonstrated to be inferior to LiDAR-based
analyses (Bunn et al., 2019). LiDAR-based landslide
mapping enables sub-meter resolution of the bare
ground topography, revealing the location of disturbed
ground, headscarps and depositional lobes – even
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under dense tree cover (Wills and McCrink, 2002;
McKean and Roering, 2004). Given the recent acqui-
sition of LiDAR for the entire park (Woolpert, 2014)
and the know concerns regarding mass movements,
it is vital to add a landslide inventory to the park’s
management toolset while also enabling future re-
search into hazards and risk.

Web-based map portals have become commonplace
(e.g. Google Maps, Municipal Parcel Maps) and en-
able the public, agencies, industry and researchers
broad access to imagery, topography, infrastructure
and geospatial data (Tsou, 2004). These maps also
enable public participation in the decision-making
process by increasing access to geospatial informa-
tion (Kingston, 2007). In recent years, these portals
have become sophisticated enough to weave a narra-
tive element into the presentation of that data. These
‘Story Maps’ (ESRI, 2019) merge video, photogra-
phy, text and maps to convey complicated ideas to
the public and to present data that can be indepen-
dently explored by the viewer. A well-designed Story
Map exists for GTNP (NPS, 2019). We aim to de-
velop a similar educational portal focused on land-
slides within the park (e.g. City of Seattle, 2019; Ge-
ological Survey of Washington, 2019).

Methods

We mapped landslides initially using park-wide Li-
DAR data in ArcGIS Pro, following the protocols de-
fined in Burns and Madin (2009). Preliminary desig-
nations, polygons and lines were revised by a sec-
ond reviewer. Paper maps were generated for select
areas and visited on foot to verify the extent and char-
acter of ∼10% of the failures. This field-validation sel-
dom led to wholesale removal of features. Instead the
typical outcome of field validation was either shape
refinement or addition of previously undetected (often
small) mass movements. The story map is still in de-
velopment, awaiting the finalized map and guidance
from GTNP.

Preliminary results

Roughly 500 large scale mass movement deposits
were identified from the combination of LiDAR remote

sensing and in-field observation. At present, there is
still work to be done in refining the extent and charac-
ter of these features. Consider these results prelimi-
nary.

Mapped features are typically greater than 10 meters
in width, though field verification helped identify fea-
tures that were down to 3-5 meters in width. The three
most common mass movement deposits were related
to debris flows, translational earth slides and trans-
lational rock slides. Mass movement initiation points
(for debris flows), scarps, flow paths and scarp flanks
were also added to the geodatabase.

In the high-relief, crystaline center of the Teton
Range, mass movements were dominated by de-
bris flows, rockfall and rock topples. Numerous rock
glaciers were identified though not explicitly attributed
as mass movements, though their form is similar to
that of earthflow features.

In the lower relief range flanks where layers of either
sedimentary or volcanic rock are found, the dominant
mass movement types were translational slides of ei-
ther rock or earth. These slides are typically down-dip
and high volume. Smaller rockfalls and topples were
found on anti-dip slopes, often creating debris flow
deposits.

In the areas of glacial deposits (far northeastern end
of the park), rotational slumps and earthflows were
frequently observed. These features may be occur-
ring in either glacial till or in volcanic rocks sculpted
by glacial ice.

Conclusions

Lithology and relief appear to be the strongest con-
trols on mass movement type and density. Mass
movements do not appear to be of a uniform matu-
rity (as a proxy for age), suggesting that they are not
all the consequence of a single seismic event or post-
glacial debutress-ing. Instead, it appears that feature
initiation is well distributed in time and many features
have been reactivated, many of which are active to-
day.
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Future work

We still need to complete a final revision of landslide
attributes, polygons and lines which relies on meet-
ing with the GTNP staff. This meeting will also help
us define the scope of the proposed Story Map. At
this time we are uncomfortable sharing preliminary
landslide polygons as figures in this report until they
are better vetted within our team and by NPS staff.
A new graduate student has joined the ISU team,
Joshua Lingbloom who will augment and finalize this
project as part of his MS Geology thesis. This should
be complete by the Summer of 2022.
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