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+ ABSTRACT

Hydrothermal  fluids in  Yellowstone
National Park have widely varying chemical
composition. Heat and volatile flux from the
hydrothermal system can be estimated by monitoring
the composition and volume of emitted hydrothermal
fluid, but the source of solutes in hydrothermal fluid
is often nebulous and the geochemical processes that
affect the nuclides are poorly understood.

Measurements of ?’Rn and **’Rn activity in
hydrothermal fluids and of CO, flux from fumaroles
and hot springs were carried out in Yellowstone
National Park during the summer of 2010. We
observed a weak relationship between (*’Rn/**’Rn)
and CO, flux, which indicates that CO, acts as a
carrier gas to bring radon to the surface, but the radon
is sourced from aquifer rocks rather than magma. If
radon reaching the surface were sourced from magma
below Yellowstone, there would be a stronger
correlation between (*’Rn/*?Rn) and CO, flux.

Measurements  of “*Ra, *’Ra, “°Ra, “*Ra,
and major solute chemistry in hot spring waters
support the hypothesis that the time scale of solute
transport from the deep hydrothermal reservoir is
long compared to the half lives of “°Rn and *?Rn,
which are useful for processes operating on the time
scale of 5 minutes to 20 days. Radium isotope
activities in hot springs indicate that the solute
transport time varies significantly from region to
region, indicating that circulation in some areas
operates on the time scale of ?*Ra/***Ra (20-55 days)
and circulation in other areas operates on the time
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scale of “®Ra/*®Ra (25-1600 years). The radium
isotope composition of hot spring water is also

influenced by differences in regional aquifer rocks
and geochemical processes such as sorption and
mineral precipitation. In summary, geochemical and
hydrothermal processes in Yellowstone operate on
many different time scales and in diverse geologic

conditions, but radionuclide activities possess
excellent potential to study these complex
phenomena.

+ INTRODUCTION

Geothermal monitoring in Yellowstone
National Park (YNP) is important for volcanic hazard
assessment and forecasting of potential activity. Yet
fundamental questions regarding the source of
nuclides in geothermal waters and the time scale of
water-rock interaction in  the  Yellowstone
hydrothermal system remain unresolved. Lacking
information on the time scale of subsurface
hydrothermal fluid circulation, there exists an
indeterminate lag time between observed changes in
the geochemistry or activity of hydrothermal features
at the surface and changes in hydrothermal and
volcanic processes at depth.  Additionally, the
chemistry of the Yellowstone system can serve as a
rough natural analogue for mid-ocean ridge
hydrothermal systems where direct geochemical
sampling from would be difficult or cost prohibitive.
Understanding hydrothermal processes in

Yellowstone is important because hydrothermal
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processes are associated worldwide with epithermal
ore deposits of gold, copper, lead, zinc, and other
economically valuable minerals.

To constrain the time scale of processes in
the active and dynamic Yellowstone hydrothermal
system requires the use of chronometers capable of
measuring current to recent processes. One such
chronometer is the uranium-thorium series of
radioisotopes (Figure 1). Radon and radium isotopes
are particularly well suited to the study of current to
recent processes in Yellowstone, because of the wide
range in the time scale of their half-lives and their
different behavior in solution.
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half-life of each isotope is given under the symbol.
Isotopes measured in this study are shown in red.

Studies of radium isotopes in YNP have
previously  explored regional differences in
hydrothermal geochemistry (Clark and Turekian,
1990; Sturchio et al., 1993), the time scale of water-
rock interactions in thermal aquifers (Clark and
Turekian, 1990), the aquifer properties controlling
isotopic composition and ratios (Sturchio et al., 1989;
Sturchio et al., 1993), and near surface groundwater
flow velocities (Sturchio et al., 1993). Some
reconnaissance data on radon in thermal areas has
been collected (Jaworowski et al. 1996). However, to
date the spatial and temporal distribution of Rn in
areas of thermal activity has not been studied in
detail. Neither has any study of its sister isotope
220Rn (thoron) been carried out.

The purpose of this study is to measure
radon, radium, chloride, and CO, in water samples
from hot springs and in soil gas. The isotopic ratios
of radon and radium will be used in conjunction with
measurements of magmatic volatiles (chlorine and
CO,) to estimate the relative contribution of the
magmatic source vs. non-magmatic sources, i.e., soil
and aquifer rocks. The measured activities of radium

Figure 1. The decay series of “**U, “*“Th, and “*U. The

and radon, based on their half-lives, will be used to
assess relative time scales of hydrothermal
circulation in different areas.

STUDY AREA

The Yellowstone Plateau volcanic field is the
world’s largest and most concentrated area of
continental hydrothermal activity (Figure 2). Over
the past 2.2 million years, the region has experienced
three explosive caldera forming eruptions, the most
recent of which expelled >1000 km?® of rhyolitic
magma about 640,000 years ago (Christiansen,
2001). Two active resurgent domes exist inside the
caldera boundary. Heat flux from the magma system
below this still active volcanic field is maintained by
the circulation of hydrothermal fluid overlying the
magma chamber. Heat and volatile flux from the
hydrothermal system can be estimated by monitoring
the composition and volume of emitted hydrothermal
fluid.

There are three principal types of
hydrothermal fluid in  Yellowstone, classified
according to their pH and major anion composition;
neutral-chloride,  acid-sulfate, and  calcium-
bicarbonate sulfate (Fournier, 1989). Neutral-
chloride fluids generally surface at lower elevations
(Lowenstern and Hurwitz, 2008), and they are
commonly associated with areas of major geyser
activity (e.g., Old Faithful). Neutral chloride fluids
contain high concentrations of chloride, alkalis, and
silica, but low concentrations of sulfate and alkaline
earths. Acid-sulfate fluids generally surface at higher
elevations, and are commonly associated with
mudpots and fumarolic activity. These fluids form
when geothermal steam (containing H,S) condenses
into shallow, oxygenated meteoric water. The H,S is
oxidized to sulfate, lowering the pH of the solution
and producing a sulfate-rich fluid. Calcium-
bicarbonate-sulfate  type  waters have high
concentrations of Ca?, HCOj3, and SO,%. These
waters generally have high TDS compared to other
Yellowstone waters. They are generated by
dissolution of sedimentary rocks (notably limestone
and CaSO, minerals) at depth, typically at lower
temperatures compared with other hydrothermal
fluids in Yellowstone. Calcium-bicarbonate-sulfate
waters precipitate travertine at the surface. Such
waters may occur in many areas in Yellowstone, but
they are most common in the area of Mammoth Hot
Springs.

Surficial ~ hydrothermal  discharge in
Yellowstone occurs primarily from areas within or
around the 640,000 year old caldera. There is a
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major area of activity in the valley of the Firehole
River, including the Upper, Lower, Midway, and
Lone Star Geyser Basins. The Firehole River carves
its path between rhyolite lava flows and also lies near
the ring-fracture zone of a resurgent dome. Another
major area of activity is Norris Geyser Basin, which
lies just outside the caldera rim at the intersection of
two fault zones. A concentration of earthquake
activity extends west from Norris to Hebgen Lake
(site of a 7.5 magnitude earthquake in 1959), and an
alignment of normal faults and fractures termed the
Norris-Mammoth Corridor extends north from Norris
to Mammoth Hot Springs. The Norris-Mammoth
Corridor is also a locus of hydrothermal activity.
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Figure 2. Yellowstone National Park’s surficial geography
and major areas of hydrothermal activity. Modified from
Lowenstern and Hurwitz (2008).

Radiogenic nuclides in Yellowstone’s
hydrothermal fluids may be sourced from decay of
uranium and thorium in magma, aquifer rocks, or
soils. Secular equilibrium is likely to exist in the
magma reservoir between “*U and ?*Ra, and
between #*Th and **Ra. U, Th, Ra, and/or Rn
escape from the magma dissolved in gases and
brines, and proceed to interact with aquifer rocks on
the way to the surface. Quaternary volcanic rocks
overlying the magma chamber range from ~600,000
to ~70,000 years in age and commonly display
disequilibrium in the upper portion of the U and Th
decay chains (Vasquez and Reid, 2002). Mesozoic
sedimentary rocks are the principle aquifers north of
the caldera. These rocks generally contain little 2Th
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(Clark and Turekian, 1990; Sturchio et al., 1993). On
the east side of Yellowstone, the rocks of the ~50 Ma
Absaroka Volcanic Supergroup are present.

The locations sampled in this study were
thermal springs (Appendix Table 1), rivers (Appendix
Table 2), fumaroles (Appendix Table 3), and areas of
bedrock exposure for collection of rock samples
(Appendix Table 4). Sites were selected based on
three criteria: 1) Water-chemistry type and
geographic location. Sites were selected to represent
neutral-chloride,  acid-sulfate, and  calcium-
bicarbonate-sulfate water types, and to provide
comparison between different major thermal areas;
(2) Ease of access. Sample sites needed to be
accessible by a day hike, but remote enough to avoid
crowds of park visitors; (3) anticipated geochemistry.
An effort was made to sample some springs for
which previous data on radionuclides exists. Water
samples were collected and gas measurements made
in the field between May 24™ 2010 and September
24"™, 2010.

Measurements of CO, efflux and radon
activity in gas were made at each locality. Some
springs were sampled several times to determine the
seasonal variability in radionuclide activity. In total,
25 gas measurements were taken, and 23 springs
were sampled. Due to equipment failure or other
logistical difficulty, it was not always possible to
measure all parameters at each site.

+ METHODS
Radon

Radon-222 and °Rn were measured in the
field with the Durridge RAD7, RAD AQUA, and
RAD H,O (http://www.durridge.com). The
instruments were calibrated by Durridge prior to the
field season. The RAD7 is a portable, battery
powered radon-in-air monitor, which uses a solid-
state alpha detector to convert alpha radiation to an
electrical signal. Based on the energy of the signal,
the detector discriminates between the decays of the
different daughter products. The RAD H,O is an
attachment that bubbles gas through a small sample
of water and intakes the gas into the RAD7 for
detection of radon. Because of the time delay in
collecting a sample and setting up the sampling
apparatus, it is usually impossible to measure “°Rn
with the RAD H,O. The RAD AQUA is a continuous
radon-in-water monitor. Water passes continuously
through the exchanger in the RAD AQUA, and air
flows in a closed loop through the exchanger and
through the RAD7. This allows radon in water to
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come into equilibrium with the radon in the air, and
the RAD AQUA (detection limit below 1 pCi/L), but
the RAD H,O requires only a 250 mL water sample,
whereas the RAD AQUA requires continuous flow.
The most appropriate method for analysis of radon
and thoron in water was chosen on a site-to-site basis.
Generally, the RAD AQUA was used if possible, due
to its lower detection limit, higher degree of accuracy;,
and its ability to detect *°Rn.

Radium

Radium activities in water were measured
following the method of Moore and Arnold (1996)
and Moore (2008). Radium-228, *°Ra, ***Ra, and
2%Ra were pre-concentrated on manganese fibers in
the field. Ten to 21 L of water were pumped from the
source through a plastic column filled with acrylic
fibers impregnated with manganese oxide. The water
was collected in a reservoir so a volume
measurement could be made, and then returned to the
channel. The activity of ?’Ra and ?*Ra on the Mn
fibers was measured within 3 days in a field
laboratory with a radium delayed coincidence counter
(or RaDeCC™). The RaDeCC is a large Lucas Cell,
which uses a pump and helium carrier gas to
distribute built-up ?°Rn and ?°Rn throughout an air
loop. The loop is sealed for 5 minutes to allow
daughter ingrowth, and counted for approximately
three hours with delayed coincidence counting
software. The system was calibrated with a standard
solution of *®Ra. The RaDeCC method has very low
error (£10%), and an analytical detection limit of
approximately 0.0005 dpm/L (Moore, 2008).

The activity of ®Ra on the Mn fibers was
determined subsequently by repeated counts on the
RaDeCC to monitor the ingrowth curve of its great-
granddaughter,  ?*Ra.  Radium-224  quickly
establishes secular equilibrium with its parent ?Th,
which is in transient equilibrium with *®Ra. The
Bateman Equation is fit to the data and used to
extrapolate to the initial activity of *’Ra (Figure 3).
For this analysis, each Mn fiber sample was counted
at least 3 times over a period of approximately 6 six
months. For comparison, six selected samples were
shipped to Woods Hole Oceanographic Institution
where the activity of “®Ra was also determined by
gamma counting of its direct daughter, “Ac.

The activity of ?°Ra on the Mn fibers was
measured by counting with a RAD7 (Kim et al.,
2001; Dimova et al., 2007). The Mn fibers were
sealed in a column for >20 days to allow ingrowth of
22Rn, and the column was then attached to a
recirculating closed-air loop connected to the RAD?7.

Each sample was counted for at least 3 hours, and
only the last 2 hours of counting data was used to
calculate “°Ra activity. The RAD7 counts the decays
of #%po, the direct daughter of “Rn, which
establishes secular equilibrium with *?Rn after about
15 minutes. The RAD7 was calibrated with a **Ra
standard solution.

Data
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Figure 3. Example of ?®Th ingrowth data obtained by
measuring 2?Ra on the RaDeCC, and the equations fit to
estimate the initial activity of ?®Ra. Data shown is for the
sample from Beryl Spring on 9/22/2010.

CO, Flux Measurements

Carbon dioxide effluxes in soil and fumarole
emissions were measured using the accumulation
chamber method (Chiodini et al., 1998). A
cylindrical chamber with an open bottom was placed
on the ground surface and the rate of increase in the
CO, concentration inside the chamber is measured.
The chamber mixes the gas with an internal fan and
is connected with a portable non-dispersive infrared
spectrophotometer. The change in concentration over
the time of the measurement is proportional to the
CO, efflux.

CO; flux from the surface of hot springs was
measured by a modified version of the accumulation
chamber method. In this case the cylindrical
chamber was a 1-liter HDPE bottle attached to an
extension pole used to place the bottle near the center
of the spring while the operator controlled it safely
from the edge. An outlet tube at the top of the bottle
was connected to the portable detector, while a return
tube was run from the detector outlet to the side of
the bottle near the base (just above the water surface
when sampling). This system suffers from the
drawback that there is no internal fan to ensure
mixing, but the placement of the outlet and return
tubes on the bottle attempts to promote the most
mixing possible.
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Other Geochemical Parameters

On-site  geochemical and environmental
parameters were measured with a YSI Professional
Plus multi-meter (http://www.ysi.com/). The multi-
meter was configured to measure pressure,
temperature, dissolved oxygen, pH, oxidation-
reduction potential, and specific conductance. The
meter was calibrated prior the start of fieldwork and
approximately every two weeks throughout the field
season.

From each spring sampled, two 50-mL water
samples were collected for chemical analysis. The
water was collected from its source with a 60-mL
HDPE syringe and filtered through a 0.45-pum syringe
filter into 60-mL LDPE bottles. One sample was
acidified with 1% v/v of ultra-high purity nitric acid
for analysis of cations. No chemical preservative was
added to the second sample, which was used to
determine anion concentrations. The samples were
stored on ice or in a refrigerator and were analyzed at
the US Geological Survey trace metal laboratory in
Boulder, Colorado. Concentrations of Br, Cl, F, and
SO, were measured by ion chromatography and
cations were measured by inductively coupled
plasma-optical emission spectrometry using the
methods described in Ball et al. (2010). Alkalinity
was determined by titration with H,SO, to the HCO;
endpoint (Barringer and Johnsson, 1996). In the case
where our research group was collaborating in the
field with the USGS-Boulder research group and
sampling the same springs, we used their chemical
data. The methods used by the by the USGS-Boulder
group are detailed in Ball et al. (2010).

Data on helium isotopes in gas emissions
was provided by Jacob Lowenstern (Bergfeld et al, in
press). In some cases, radionuclide activities
measured at several discrete locations were averaged
together to give a single value for comparison to the
helium isotope data set.

+ PRELIMINARY RESULTS
Spring Chemistry

Geochemical and environmental parameters
measured on-site are summarized in Appendix Table
5. Basic water chemistry of thermal springs
determined by laboratory analysis is summarized in
Appendix Table 6. Charge balances were calculated
using WATEQ4F by the USGS trace metal lab in
Boulder, CO. Charge was balanced within +/- 5% for
all samples except Soda Butte 5/30 and Narrow
Gauge Terrace 9/24, where anion charge appeared
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anomalously low. The pH of the sampled springs
ranged from 2.36 to 9.28. Chloride ranged from 55
to 792 mg/L, [SO,*] ranged from 15 to 607 mgl/L,
(**Ra) ranged from 0.0001 to 3.13 dpm/L, (***Ra)
ranged from 0.0053 to 21.47 dpm/L, (***Ra) ranged
from 0.037 to 1.39 dpm/L, and (***Ra) ranged from
0.05 to 20.9 dpm/L.

The springs sampled divide into three major
groups based on location and water-type. Springs
from Norris Geyser Basin and nearby Beryl Spring
have highly variable pH and chloride concentration
but are generally high in sulfate and low in fluoride.
Generally these springs are best classified as acid-
sulfate water type. Springs from the Lower Geyser
Basin and nearby Rabbit Creek Hot Springs can be
classified as neutral-chloride type waters. They are
generally alkaline, high in chloride and fluoride, and
low in sulfate. The springs from Mammoth Hot
Springs are calcium-bicarbonate-sulfate water type.
They are neutral to alkaline with high concentrations
of sulfate, bicarbonate, and alkali earths.

The most significant correlations in the
chemistry of spring water were between radium and
pH (Spearman’s Correlation, p = -0.609(21), p (two-
tailed) <.01), radium and ORP (Spearman’s
Correlation, p = 0.712(21), p (two-tailed) < .01),
radium and DO (Spearman’s Correlation, p =
0.714(13), p (two-tailed) < .01), radium and barium
(Spearman’s Correlation, p = 0.621(21), p (two-
tailed) <.01), and radium and calcium (Spearman’s
Correlation, p = 0.849(21), p (two-tailed) < .01).
Important observations included that radium activity
in springs was positively correlated with many major
dissolved ions including Br, SO,, Cl, B, Ba, Ca, Fe,
K, Li, Mg, Mn, Mo, and Sr, and was also controlled
by the Eh and pH of the spring water.

Radon

Measurements of radon isotopes in gas
emissions from fumaroles and CO, fluxes determined
by the accumulation chamber method are given in
Appendix Table 7. Radon activities measured in
thermal springs are given in Appendix Table 8.
Relevant activity ratios and CO, fluxes determined
by the modified accumulation chamber method are
listed in Appendix Table 9. Combining all gas and
water measurements, radon activities ranged from 0.1
to 1173 pCi/L, thoron activities ranged from 0.2 to
300 pCi/L, and CO, fluxes ranged from 1.92 to 3909
gm?d™.

Radon activity in spring water showed a
weak inverse relationship with spring temperature
(not statistically significant). Radon activity was
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positively correlated with CO, flux, Figure A4F,
Spearman’s Correlation, p = 0.364(42), p (two-tailed)
<.05), while Thoron activity increased with CO, flux
up to about 100 g m-2 d-1 and decreased with
increasing CO? flux thereafter (Figure 4E).
(**Rn/**Rn) and CO? flux from springs and gas
vents showed a weak inverse correlation (Figure 5,
Spearman’s Correlation, p = -0.344[40], p [two-

(*®Rn/*?Rn) from gas vents was 2.4, while mean
(*®Rn/**Rn) from springs was 0.69.

In a limited dataset, neither radon, thoron,
nor (*°Rn/*?Rn) showed any relationship with
(*He/*He) values reported for thermal features by the
USGS (Figure 6). Neither did thoron, radon, nor
(*®Rn/*?Rn) show any relationship with chloride in

tailed] <.05). In general, gas vents had higher spring water (Figure 7).
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Figure 4. Data on 22Rn and #°Rn in hydrothermal fluids in Yellowstone. (*°Rn) appears to increase with CO, flux to about 100
g m2d?, then decrease with higher CO, fluxes (E). (**>Rn) shows a weak positive correlation for all values of CO, flux (F).
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Radium

Radium activities measured in thermal
springs are given in Appendix Table 8. Relevant
activity ratios are listed in Appendix Table 9.
Radium concentration in springs was positively
correlated with many major dissolved ions including
Br, SOy, Cl, B, Ba, Ca, Fe, K, Li, Mg, Mn, Mo, and
Sr, and was also significantly correlated wtih the Eh,
Spearman’s Correlation, p = 0.712(21), p (two-tailed)
<.01) and pH, Spearman’s Correlation, p = -
0.609(21), p (two-tailed) < .01) of the spring water.
Radium activity was inversely correlated with
fluoride concentration. ((Spearman’s Correlation, p =
-0.644(20), p (two-tailed) < .01)).
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Radium-223 ranged from 0.00008 to 3.13
dpm/L, **Ra ranged from 0.0053 to 21.47 dpm/L,
2Ra ranged from 0.037 to 1.39 dpm/L, and ***Ra
ranged from 0.05 to 20.9 dpm/L. In general, *®Ra is
present in the greatest activity in thermal springs in
Yellowstone, followed by ?’Ra, *°Ra, and finally
*Ra. No radium isotope showed a significant
correlation with CO, flux, (*He/*He), or chloride, but
all radium isotopes were significantly correlated with
barium concentration in spring water (Figure 8).
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Figure 8. All radium isotopes (and total radium) showed a

significant positive correlation with barium concentration
in spring water.

28Ra and #'Ra

(***Ra/**®Ra) ranged from 6.86 to 298.47.
(***Ra/***Ra) showed a weak inverse correlation with
CO, flux (not statistically significant, Figure 9A).
This correlation was strong for the neutral-chloride
springs of the Lower Geyser Basin and Rabbit Creek
Hot Springs, but the other springs showed no
relationship between (**Ra/*”Ra) and CO, flux.
(**Ra/**Ra) showed no relationship with [CI] or
(*He/*He) (Figures 10A, 11).

2%Ra and *’Ra

(**Ra/*®Ra) ranged from 0.076 to 4.26.
(***Ra/**®Ra) was often greater than 1 for the springs
from Norris Geyser Basin and Mammoth Hot Springs
(mean = 1.60), but was usually less than 1 for the
Lower Geyser Basin and Rabbit Creek Hot Springs
(mean = 0.37). (**Ra/®Ra) showed no significant
relationship with CO, flux, [CIT, or (*He/*He)
(Figures 9B, 10B, 11).
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Figure 9. (®*Ra/*®Ra) in thermal spring water was
negatively correlated with CO, flux (A), while
(***Ra/*®Ra) and (**Ra/**°Ra) showed no relationship with
CO; flux (B,C). The correlation between (***Ra/**Ra) and
CO, flux (A) was strong for the springs of the the Lower
Geyser Basin and Rabbit Creek Hot Springs, while
(***Ra/*®Ra) from springs in other areas did not show a
strong relationship with CO, flux.
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Figure 10. There were no significant relationships between
(***Ra/’®Ra) and [CI] (A), or (**Ra/**®Ra) and [CI] (B).
The acid-sulfate springs in the Norris Geyser Basin and
Beryl Spring showed a negative correlation between
(**®Ra/**Ra) and [CI], but springs from other areas showed
no relationship between (*®Ra/?**Ra) and [CI] (C).

26Ra and ’Ra

(*®*Ra/**°Ra) ranged from 0.46 to 122.82.
(***Ra/*Ra) was often greater than 10 for the springs
from Norris Geyser Basin and Mammoth Hot Springs
(mean = 39.92), but was usually less than 10 for the
Lower Geyser Basin and Rabbit Creek Hot Springs
(mean = 5.58). (*®*Ra/**°Ra) was inversely correlated
with [CI7] for the acid-sulfate springs of the Norris
Geyser Basin and Beryl Spring (Pearson’s
Correlation, r = -0.717(9), p (two-tailed) <.05 but
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the other springs showed no relationship between
(*®*Ra/*Ra) and [CIT. (*®Ra/**Ra) showed no
significant relationship with CO, flux (Figure 9C). A
small dataset (5 data points) suggests that
(*®Ra/**Ra) may have been inversely correlated with
(*He/*He), although the sample size was too small to
be statistically significant (Figure 11).
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Figure 11. In a very small dataset, (**Ra/®Ra) and
(224/°®Ra) showed no relationship to (°He/*He).
(%*®Ra/**°Ra) showed a negative correlation with (*He/*He)
(not statistically significant, due to small n). (*He/*He) data
from Bergfeld et al., in press.

2Ra and ?’Rn

(***Ra/**Rn) ranged from 0.00003 to 0.78
(excluding Narrow Gauge Terrace, which had an
outlier value of 4.68). (***Ra/**’Rn) was inversely
correlated with [Ba®"/CI'] ((Spearman’s Correlation, p
=0.535(18), p (two-tailed) < .05)).

+ DISCUSSION
Radon and CO,

There is a weak inverse relationship between
(*®Rn/*’Rn) and CO, flux from thermal features
(Figure 5). This is driven by a positive link between
(**Rn) and CO, flux (Figure 4F) and an apparent
inverse correlation between (*°Rn) and CO, flux
values above 100 g m™ d* (Figure 4E). Although this
correlation may be of some use in assessing the local
depth of sourcing for hydrothermal fluids in different
areas of Yellowstone, (**Rn) and (*?Rn) will be
strongly affected by variations in the ®U and #*Th
content of local aquifer rocks. Simple flow velocity
calculations show that if ??Rn is sourced from
magma 6 km below the surface (a likely depth from
Lowenstern and Hurwitz, 2008), “??Rn would need to
move vertically at a velocity of 13 meters per hour to
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reach the surface before decaying to undetectable
levels (5 half lives, 19.25 days). This figure is an
order of magnitude higher that estimated near surface
flow velocities in Yellowstone (Sturchio et al., 1993).
Thus it is unlikely that any ??Rn venting at the
surface is sourced from magma in Yellowstone, and
the utility of the radon isotope system for
understanding magmatic processes is limited. This
conclusion is supported by the observation that
(**Rn), (**Rn), and (*°Rn/®Rn) show no
relationship with (He/*He) isotope ratios (Figure 6).
If (*°Rn/**Rn) was strongly influenced by magmatic
processes, one would expect an inverse correlation
between between (*Rn/??Rn), which should be low
in areas of intense magmatic degassing, and
(*He/*He), which is higher in areas with a direct
connection to the mantle.

If we accept that the inverse correlation
between (*°Rn/*’Rn) and CO, flux is related to the
age of the hydrothermal fluid, and hence its depth of
sourcing, then the relative depths of sourcing can be
assessed by examination of Figure 5. Areas of
relatively deep fluid sourcing plot in the lower right
of the figure, areas of relatively shallow fluid
sourcing plot in the upper left, and areas of
intermediate source depth plot in the center. By this
analysis, Beryl Spring, Boiling River, and Lone Star
Geyser Basin are areas where hydrothermal fluid
sourcing is relatively deep. Rabbit Creek Hot
Springs is an area where hydrothermal fluid sourcing
is relatively shallow. Amphitheater Springs has an
intermediate source depth. The Lower and Norris
Geyser Basins show a wide range of depths including
some areas with a shallow signature and some with a
deep signature. This analysis should be interpreted
with caution due to local heterogeneity and variations
in gas flow velocity. It should also be noted that none
of the interpretations made above holds when
examining the relationship between (*’Rn/*?Rn) and
(*He/*He) in Figure 6B.

Generally, (*°Rn/*?Rn) in fumarolic gas
was slightly greater (mean = 2.4) than (*°Rn/**Rn)
dissolved in spring water (mean = 0.69, Figure 5C).
In the context of the two-component mixing model,
the radon in the gas has a younger isotopic signature
than the radon dissolved in water. Based on field
observations of fluid discharge velocity, it is possible
that the gaseous fluids discharging from fumaroles
move at greater velocity than the liquid fluids
discharging from springs and this accounts for the
observed  difference in  isotopic  signature.
Alternatively, it is also possible that the method used
for sampling the short-lived (*’Rn) in spring water
consistently underestimates the activity due to rapid

decay between the sampling point and the detector.
If such a sampling bias exists, there may be no
consistent  difference between (*°Rn/*’Rn) in
hydrothermal waters and gases.

?Ra, ?’Rn, and Recoil Supply Efficiency

Krishnaswami et al. (1982) proposed that
the activity of ??Rn in groundwater could be used to
estimate the recoil supply of other nuclides. Because
radon is a noble gas and chemically inert, the steady-
state activity (achieved after ~20 days) of radon in
the aquifer will be equal to its recoil supply rate. The
recoil supply rate of other nuclides can then be
related to radon’s supply rate:

Fi=e*F*Qi/Q,

where,
F. is the recoil supply rate of radon (atoms min™ I'Y)
Fiis the recoil supply rate of nuclide i (atoms min* I'%)
Q, is the production rate of radon in aquifer solids
(atoms min™ I'Y)
Qi is the production rate of nuclide i in aquifer solids
(atoms min™ I
¢ is the recoil supply efficiency of nuclide i relative to
radon (dimensionless)

The term (Qi/Q;) is approximated by the
(*®Ra/*®Ra) activity ratio in aquifer rocks.
Assuming secular equilibrium in Yellowstone’s
aquifer rocks, this is equal to the (***Th/**®U) ratio,
which in Yellowstone’s tuffs and rhyolites is
generally greater than 1 and less than 2 (Clark and
Turekian, 1990, Sturchio et al., 1993). An average
value of 1.3 is used for these calculations.

Krishnaswami et al. (1982) proposed that
the value of ¢ is determined by the position of the to
the nuclide within the decay chain and the adsorptive
properties of its parent. Kadko and Butterfield
(1998) used ***Ra and #?Rn to estimate recoil supply
efficiencies of radium isotopes at the Juan de Fuca
Ridge hydrothermal system, and found that the **Ra
supply rate is 20% of what it would be expected to be
based on “’Rn (effectively, €=0.2). In an aquifer,
2*Ra is produced by alpha decay of *Th (T, = 1.91
yr), which is insoluble under most conditions.
Assuming there is little ?®Th in solution, the *’Ra
activity in solution is likely to be equal to its recoil
supply rate.

Activities of ??Rn and %*Ra in hot spring
water from Yellowstone National Park do not show a
positive correlation as would be expected if £ and
(Qi/Qy) were uniform throughout the aquifer (Figure
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12). This is most likely because there is significant
variance in the (**Ra/**Ra) ratio in the aquifer solids
(Sturchio et al. 1993). Nevertheless, nearly all the
samples collected in this study lie above the expected
curve if £=0.897 as calculated by Krishnaswami et al.
(1982) for Connecticut groundwater. The average
(**Ra/*?Rn) ratio for all samples collected is 0.39,
implying that €=0.3. However, one value of the
(**Ra/*Rn) ratio from Narrow Gauge Terrace is
anomalously large (5.5, all other values <1.07). This
is probably because the spring geometry at Narrow
Gauge makes it impossible to sample the wvent
directly. A side pool was sampled that had likely
degassed radon to the atmosphere while retaining its
radium. Excluding this value from the average gives
(**Ra/*?Rn) = 0.1226, which gives £=0.09. A range
of & values from 0.3 to 0.09 is comparable to the
value of 0.2 observed by Kadko and Butterfield
(1998) at the Juan de Fuca Ridge.
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Figure 12. Activities of *?Rn and ?**Ra in hot spring water.
Curves are plotted showing the expected relationship
between *Rn recoil supply and #*Ra recoil supply
assuming a (*®*Ra/??°Ra) value of 1.3 in the aquifer rocks.
The lower curve is what would be expected if £€=0.897 as
calculated by Krishnaswami et al. (1982). The higher
curve is if €=0.2 as found by Kadko and Butterfield (1998).
€=2 produces a line in better agreement with the best fit
line, which is constrained to intercept the origin.

+ CONCLUSIONS

The relationship between (*°Rn/**’Rn) and
CO2 flux is statistically significant, but it is not
strong, nor is it confirmed by any other isotope
system, nor any other proxy of magmatic
components, such as chloride concentration or
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(*He/*He) ratios.  Our interpretation is that gas
transport time from magma to surface in Yellowstone
is greater than 20 days, such that no (*Rn) or (**Rn)
venting to the surface is sourced directly from
magma.

Gas vents, on average, are enriched in short
lived (*°Rn) relative to spring water which is more
enriched in the longer lived (*Rn). This could
possibly be due to greater fluid discharge velocity in
gas vents relative to springs.

Neutral chloride springs in the Lower
Geyser Basin and Rabbit Creek Hot Springs have
isotopically old water that is enriched in the longer
lived isotopes of radium, compared the to springs of
Norris Geyser Basin and Mammoth Hot Springs
which show relative enrichment of the shorter-lived
radium isotopes.

Mineral (barite, in particular) precipitation
may be a strong control on the amount of radium in
solution in any given spring, as evidenced by strong
correlations between the activity of all radium
isotopes and [Ba2+] in spring water, and a correlation
between (***Ra/*Rn) and [Ba®*/CI]. This removal
of ?’Ra by precipitation (or other process such as
sorption) results in a very low recoil supply
efficiency for *’Ra (and presumably all other radium
isotopes) relative to ’Rn. A reasonable efficiency is
about 20%.
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