REMOTE SENSING OF VEGETATION RECOVERY IN GRASSLANDS AFTER THE 1988 FIRES IN YELLOWSTONE NATIONAL PARK

EVELYN MERRILL & DEPARTMENT OF ZOOLOGY AND PHYSIOLOGY

RONALD MARRS DEPARTMENT OF GEOLOGY UNIVERSITY OF WYOMING LARAMIE

INTRODUCTION

Traditional methods for measurement of vegetative characteristics can be time-consuming and labor-intensive, especially across large areas. Yet such estimates are necessary to investigate the effects of large scale disturbances on ecosystem components Because foliage of plants and processes. differentially absorbs and reflects energy within the electromagnetic spectrum, one alternative for monitoring vegetation is to use remotely sensed spectral data (Tueller 1989). Spectral indices developed from field radiometric and Landsat data have been used successfully to quantify green leaf area, biomass, and total yields in relatively homogeneous fields for agronomic uses (Shibayama and Akiyama 1989), but have met with variable success in wildland situations (Pearson et al. 1976). Interference from soils (Hardinsky et al. 1984, Huete et al. 1985), weathered litter (Huete and Jackson 1987), and senesced vegetation (Sellers 1985) have diminished the relationship between green vegetation characteristics and various vegetation indices.

In 1987, we found that a linear combination of Landsat Multi-spectral Scanner (MSS) band 7 and the ratio of MSS bands 6 to 4 explained 63% of the variation in green herbaceous phytomass (GHP) in sagebrush-grasslands on ungulate summer range in the northeastern portion of Yellowstone National Park (Merrill et al. 1993). The extensive fires that occurred in the Park in the summer of 1988 provided an opportunity to determine whether remote sensing could be used to estimate green phytomass in burned areas and to monitor grassland vegetation recovery in the Park after the fires. Remote sensing has previously been used to follow succession of seral stages in pine forests (Jakubauskas et al. 1990) after burning and to monitor plant cover in tundra (Hall et al. 1980) after wildfires.

The objectives of our study were to (1) develop a model for predicting GHP in sagebrushgrassland communities using 1989 and 1990 Landsat TM spectral information and field data on GHP, (2) validate the model by comparing predictions made from it to actual field data collected in 1991, and if successful, (3) compare initial vegetation recovery in burned areas relative to unburned sagebrushgrassland. We chose to use thematic mapper (TM) data rather than MSS data to increase the band options for developing a predictive model.

STUDY AREA

The study was conducted in the northeast portion of Yellowstone National Park with major focus on the upper Lamar, Cache and Calfee River drainages and the Mirror Plateau. General descriptions of physiogamy and soils are given by Despain (1990). Elevations range from 1,500 to 3,300 m. Climate of the Park is characterized by long, cold winters and short dry summers, but climatic patterns within the Park vary considerably (Farnes 1975 in Houston 1982). Mean annual precipitation in Cooke City, located to the northeast of the Park is 67.0 cm (26.8 in) and mean daily temperature in January and July is -10.3° C (13.5° F) and 13.9° C (57.1° F), respectively.

Descriptions of vegetation communities in the park have been given by Despain (1990). Our work focused on the non-forested plant communities within the study area. These included sagebrush Artemisia tridentata communities which have an understory of bluebunch wheatgrass Agropyron spicatum in dry areas, and Idaho fescue Festuca idahoensis on the more mesic sites. Silver sagebrush Artemisia cana with an Idaho fescue co-dominant is found on areas associated with high water table such as stream banks and seeps. High elevation grasslands are dominated by Idaho fescue/tufted hairgrass Deschampsia cespitosa and tufted hairgrass/sedge At intermediate elevations, Idaho Carex spp. fescue/wheatgrass Agropyron spicatum and A. caninum communities are encountered with the latter dominating in the more mesic sites.

Elk Cervus elaphus, mule deer Odocoileus hemionus, bison Bison bison, moose Alces alces, bighorn sheep Ovis canadensis, and pronghorn Antilocapra americana are the major ungulates in this area (Houston 1982).

METHODS

VEGETATION SAMPLING

Vegetation data were collected in the field from July 25 to August 10 in 1989, July 30 to August 11 in 1990, and July 30 to August 11 in 1991 across two ungulate summer ranges (Norris-Cache/Calfee ridge complex and Mirror Plateau). Each site encompassed at least 0.81 hectares (9 TM pixels) of relatively homogeneous vegetation. At each site, elevation, aspect (degrees), and average slope (%) of the plot were recorded using 1:24,000 topographic maps and the site mapped. Grassland habitat types followed Yellowstone National Park habitat mapping (Despain 1990).

We qualitatively assessed the intensity of burning in the field at each site according to the

following categories: (1) very hot: \geq 80 % of the ground cover and litter consumed; presence of shrubs noted only by trunk stubs; usually heavy ash layer, (2) moderate burn: < 80 % but usually > 35 % of the ground cover and litter consumed; few live shrubs but standing dead shrubs present, (3) light burn: < 35% ground cover and litter consumed; many live shrubs remaining, (4) no burn.

A double sampling approach was used to estimate biomass of green forbs, green grasses, and standing dead herbaceous vegetation at each site (Eberhardt and Simmons 1987). Percent cover of graminoids, forbs, bareground, rock, moss, lichens, and wood were visually estimated and average heights of plant types (forbs, graminoids, standing herbaceous phytomass) were measured in 30 microplots (0.01 m²). An index of plant volume was calculated (canopy cover x plant height) for each of the 30 microplots. Ten of the microplots at each site were clipped to ground level. Vegetation was separated into green graminoids, green forbs, and standing dead herbaceous material. A criterion of \geq 25% "green" was used to differentiate green from senescent (standing dead) plants. Biomass samples were dried at 70° C for 48 hours and weighed to the nearest 0.1 gm. The ratio of dry plant biomass to plant volume in clipped microplots at a site was used to estimate dry plant biomass in the 20 microplots which were not clipped.

Differences in mean standing dead, green forb, green graminoid, and total (green plus standing dead) biomass at sites that were sampled in all 3 years were tested using a Wilcoxon matched-pairs signed-ranks test. Differences in plant biomass between 3 burn categories (unburned, lightly burned, moderately to severely burned) were tested within years using Kruskal-Wallis one-way analysis of variance, and between two burn categories (unburned to lightly burned, moderately to severely burned) using a Mann-Whitney U test.

LANDSAT DATA ACQUISITION AND PREPROCESSING

We used TM data from Landsat satellite 5 to quantify spectral characteristics of our study area. TM imagery for 2 August 1989, 13 August 1990, 31 July 1990 of the study area were acquired from EOSAT by the National Park Service. Due to mechanical problems with the receiving station in

2

Golden California, EOSAT was unable to provide us with data from our projected 6 August 1990 satellite overpass. The closest date to our field sampling (July 30 - August 11) for which imagery was available was 13 August 1990. Data from this overpass was less than ideal because the date of the overpass was outside our sampling window and there were considerable clouds in the scene. As a result, we were unable to obtain spectral values for 6 field plots sampled in 1990.

Digital data were transferred from 9-track computer tape to the Micro-computer Image Processing System (MIPS) for data processing. Data from each scene were georeferenced to 1:24,000 USGS topographic using 8 control points. Environmental conditions that differed among years at the time of the satellites overpasses, such as sun angle and atmospheric conditions, were standardized to 1989 conditions in the following manner. First, we located 6 control sites of 9 TM pixels each in the 3 images, including bright landscape elements (Wahb hot springs and Lamar trail thermal area) and dark landscape elements (Trout and Soda Butte Lakes; rock faces of Abiathar and Thunderer peaks). Second, we recorded the spectral values of the 9 pixels for each spectral band at each site and calculated the average for the site. Third, we estimated the parameters of a linear relationship between average spectral values of each band in 1989 to the other 2 years (Appendix I). Finally, we used the relationships derived from the control points for each band to adjust reflectance values of all pixels in 1990 and 1991 to 1989.

RELATIÓNSHIP BETWEEN GREEN PHYTOMASS AND SPECTRAL VALUES

Values for each of the 6 TM bands were recorded for 9 pixels (0.81 ha) encompassing each field site and averaged to represent the spectral value of the site. Linear combinations of the TM values, as well as published vegetation indices (Jackson 1983), were related to field estimates of biomass at field sites using least squares linear regression. Three indices were based on ratios of the red and near infrared (NIR) TM bands: the ratio vegetation index (RVI = NIR/red), the normalized difference index (NDVI = (NIR-red)/(NIR+red) and the transformed vegetation index (TVI= SQRT(ND + 0.05) (Huete and Jackson 1987). The soil brightness index (SBI), the perpendicular vegetation index (PVI), and the green vegetation index (GVI) were derived using the Graham-Schmidt orthogonalization process (Jackson 1983) in the MIPS software. Jackson (1983) showed that these indices minimize soil background variations while improving green vegetation signals.

We evaluated the relationship between the Landsat spectral values and the field estimates of biomass in two steps. First, the regressions between vegetative and spectral characteristics were evaluated based on their F value ($\underline{P} \leq 0.05$), the amount of variation in the dependant variable explained by the independent variables (r^2), and the standard error of the estimate. Second, 21 field sites were sampled in more than one year. We used data from only one year to develop relationships between spectral characteristics and green herbaceous biomass. The remaining data were used to "validate" estimates of phytomass predicted from spectral values and actual field data.

RESULTS

FIELD ESTIMATES OF PHYTOMASS

Vegetation was sampled at 62 individual field sites, with 21 sites resampled in all 3 years Plots were distributed about equally (Table 1). among Lamar Flat-Norris Mount, Cache-Calfee Ridge, and the Mirror Plateau. Graminoids consistently averaged about 50% of the total green herbaceous phytomass (GHP) in the 3 years of the study (Table 2). Biomass of green forbs, green graminoids, and total herbaceous biomass (green biomass plus standing dead) on the 21 sites sampled each year was higher in 1990 than in 1989 and 1991 (P < 0.05). The proportion of total herbaceous vegetation that was standing dead was lower in 1989 $(0.04 \pm 0.06, x \pm s.d.)$ than in 1990 (0.12 ± 0.11) and lower in 1990 than in 1991 (0.24 \pm 0.17) (P \leq 0.01).

There were no significant differences in biomass of green graminoids and forbs between unburned, lightly burned, and moderately to severely burned in any year, but sample sizes within each burn category were low (5 - 8 sites). When sites were combined into severely to moderately burned (n = 8) and lightly to unburned (n = 13), graminoid biomass was lower but not significantly lower on severely to

lot #	Year Sample	d	Lati	ude/Lo	ongitu	ide	Location	Burn ⁱ	Elev (m)	Asp (°)	Slp (°)	Habitat Type ²
.01	1989,	1991	44 5	38.6	110	08 32.7	Lower Norris	T3	7520	180	15	TFG
02	1989, 1990,	1991	44 5	51.7	110	09 03.5	Lower Norris	No	7740	179	17	TFG
03	1989, 1990,	1991	44 5	28.3	110	07 49.7	Middle Norris	T1	7800	252	15	TFG
04	1989, 1990,	1991	44 5	0 13.6	110	08 07.1	Middle Norris	T2	7520	302	9	TFG
.05	1989, 1990,	1991	44 4	9 16.0	110	08 35.0	Lower Cache	T2	7460	250	14	TFG
007	1989, 1990,	1991	44 4	20.2	110	08 25.2	Lower Cache	NO	7700	253	6	FN
.07	1989, 1990		44 4	3 21.0	110	05 49.2	Upper Cache	NO	8140	220	0	FN
00	1989 1990	1991	44 4	47 3	110	05 59 6	Upper Cache	TO NO	9940	230	1	TFG
10	1989, 1990,	1991	44 4	19.1	110	06 24 4	Upper Cache	No	7960	200	18	TFG
11	1989, 1990,	1991	44 4	06.9	110	06 40.0	Upper Cache	No	7850	200	10	TEC
12	1989		44 4	3 18.2	110	07 19.2	Upper Cache	No	7760	295	4	TEG
13	1989, 1990,	1991	44.4	45.9	110	07 40.9	Upper Cache	T3	7680	211	11	TFG
14	1989, 1990,	1991	44 5	L 05.0	110	11 03.1	Lamar Flat	T2	6640	0	0	TF
15	1989, 1990,	1991	44 5	59.7	110	11 12.3	Lamar Flat	No	6640	0	0	TFG
16	1989		44 5	L 05.0	110	11 03.1	Upper Lamar Flat	T2	6710	0	1	TF
121	1989, 1990,	1991	44 4	3 30.3	110	11 59.7	Opal Creek	T2	8800	127	8	FNG
22	1989, 1990,	1991	44 4	3 44.3	110	11 51.5	Opal Creek	T2	8740	95	15	FNG
.23	1989, 1990		44 4	3 26.1	110	11 53.5	Opal Creek	T3	8760	101	6	FNG
.24	1989, 1990,	1991	44 4	7 56.8	110	11 00.3	Above Opal Camp	No	8960	90	6	FNG
25	1989, 1990,	1991	44 4	28.0	110	11 22.0	Above Opal Camp	NO	8800	170	15	FNG
27	1989, 1990,	1991	44 4	10.1	110	10 33.4	Above opar camp	13	8760	355	4	FNG
28	1989, 1990,	1991	44 4	26.7	110	11 44 5	Onal Creek	No	8680	287	8	FNG
29	1989, 1990	2002	44 5	12.7	110	12 10.2	Specimen Ridge Trail	T2	7950	80	7	TFG
30	1989		44 4	3 25.3	110	13 35.8	Mirror Plateau	No	9120	192	20	FNG
31	1989		44 4	3 51.5	110	14 11.8	Mirror Plateau	No	9170	0	2	FNG
.32	1989		44 4	9 09.8	110	13 45.2	Top Specimen Ridge Tr	No	8840	150	20	FNG
.33	1989, 1990,	1991	44 5	27.7	110	09 46.2	Above Norris Hot Sp	T2	7000	239	7	TFG
.34	1989, 1990,	1991	44 5	18.9	110	09 19.5	Lower Norris	T1	7250	213	14	TFG
136	1989		44 5	57.8	110	09 51.4	West Of Norris Cliff	T2	7440	180	15	FA
137	1989		44 5	L 05.8	110	06 48.6	Upper Norris	No	8130	121	5	TFG
.38	1989,	1991	44 5	07.2	110	08 03.5	Pk Midway To Norris	No	8250	171	10	FNG
.39	1989, 1990,	1991	44 5	54.2	110	09 06.2	Top/Draw Mid-Norris	No	7860	276	6	TFG
.40	1989, 1990		44 5	57.8	110	09 30.7	Norris/Next To Cliff	No	7800	294	7	TFG
41	1990,	1991	44 5	54.3	110	09 57.0	Lower Norris	T2	7440	220	18	FA
42	1990,	1991	44 5	50.2	110	06 55.8	Upper Norris	No	8000	187	14	TFG
.43	1990,	1991	44 5	46.6	110	07 56.7	Midway to Norris	NO	7700	186	14	FNG
44	1990,	1991	44 5	33.6	110	10 15.0	Lower Norris	13	6760	261	6	FNG
45	1990		44 4	40.1	110	06 37.0	Upper Cache	NO	8140	211	12	FNG
47	1990		44 4	3 35 7	110	07 20 3	Upper Cache	NO	7720	296	12	DW
48	1990		44 4	56.1	110	07 37.3	Upper Cache	No	7800	55	2	FN
49	1990		44 4	38.3	110	06 57.5	Upper Cache	No	7920	240	82	TFG
51	1990		44 9	9 10.1	110	05 57.4	Upper Cache	No	7900	310	18	TFG
53	1990		44 4	15.0	110	06 02.2	Upper Cache	No	7920	0	0	TFG
55	1990		44 4	3 13.9	110	13 15.4	Above Opal Creek	No	9280	136	5	FN
.56	1990		44.4	3 28.6	110	13 59.2	Mirror Plateau	No	9040	208	28	FNG
.57	1990		44 4	3 53.1	110	14 11.3	Mirror Plateau	No	9200	12	10	FN
00		1991	44 4	51.4	110	11 51.4	Opal Creek	No	8840	200	12	FNG
01		1991	44 4	\$ 07.3	110	11 36.7	Mirror Plateau	NO	8920	260	3	FNG
02		1991	44 4	23.8	110	11 36.2	Mirror Plateau	NO	8820	130	5	FNG
03		1991	44 4	31.3	110	13 24.0	Specimen Bidge Trail	NO	9080	200	8	FNG
05		1991	44 4	08 7	110	14 09 1	Opal Creek	NO	9160	210	8	FNG
06		1991	44 4	23.2	110	13 19.0	Specimen Ridge Trail	No	8680	160	18	FNG
10		1991	44 5	43.1	110	10 09.7	Lamar Flat	No	6640	0	0	TF
11		1991	44 5	50.6	110	11 02.0	Lamar Flat	T3	6720	ő	ō	TF
12		1991	44 5	25.7	110	10 33.7	Lamar Flat	T2	6720	0	õ	TF
13		1991	44 4	3 40.1	110	07 34.1	Cache Calfee Ridge	No	7720	0	0	FNG
14		1991	44 4	9 08.5	110	07 49.7	Cache Calfee Ridge	No	7960	0	0	FA

²Despain (1990)

moderately burned sites. In contrast, forb biomass was higher in burned areas with a significant difference occurring in 1990 ($\underline{P} < 0.05$).

SPECTRAL INDICES AND VEGETATION CHARACTERISTICS

The normalized difference index (NDVI) was the spectral index most highly correlated with

Year	Plot	Plot Chara Burn Elev A	sp Slp CT	Percent Cover Bg Rock Lit Wood Moss	Phytoma Grass Fort	s (q/0.01 m ²) SDHP GHP THP	Landsat Spectral Dat TN1 TN2 TN3 TN4 TN5 T	a <u>Spectral Vegetation Indices</u> M7 NDVI RVI TVI GVI SBI PVI
1989	8901	T3 7520	180 15 TPG	30.1 1.3 9.1 3.5 3.7	2.30 5.70	0.00 8.00 8.00	69 29 32 75 101 49	0.40 2.34 1.59 35.0 145.4 3.7
1989	8902 8903	NO 7720 1 T1 7800 1	196 25 TPG 254 20 TFG	7.6 0.1 11.8 5.9 1.4 49.0 4.3 6.3 0.3 0.0	3.62 4.00 4.09 2.65	0.55 7.62 8.17 0.00 6.74 6.74	68 30 32 41 100 41 64 25 25 50 84 50	0.12 1.28 2.86 6.6 129.9 1.8
1989	8904	T2 7520 1 T2 7460 1	328 10 TPG 250 10 TPG	53.2 5.4 7.5 0.4 0.0 40.5 2.6 9.5 5.3 0.0	1.35 2.10	0.00 3.45 3.45	65 26 29 52 88 52 65 26 28 69 88 42	0.28 1.79 1.89 15.7 127.0 2.8
1989	8906	NO 7680	235 5 FN	2.4 14.7 72.3 0.0 4.5	0.34 0.20	0.18 0.54 0.72	83 35 45 57 121 65	0.12 1.27 2.92 10.5 166.2 1.7
1989	8908	NO 7940	230 1 TFG	0.5 0.0 26.3 0.0 0.7	0.18 0.52	0.13 0.70 0.83 0.21 18.62 18.83	74 32 43 58 100 55 63 27 29 90 93 37	0.15 1.35 2.60 14.1 148.4 1.8 0.51 3.10 1.41 51.8 139.8 5.3
1989	8909	T3, 8025 1	283 5 TFG 195 20 TFG	40.9 2.3 16.9 2.4 2.4 16.0 0.1 43.1 6.4 6.0	4.87 3.42 1.50 2.42	0.02 8.29 8.31 0.25 3.92 4.17	70 29 36 70 96 52 74 32 43 58 100 55	0.32 1.94 1.78 28.2 144.3 2.9
1989	8911	NO 7850 3	184 3 TFG	8.4 0.3 49.9 0.0 0.0	8.34 5.44	0.11 13.78 13.89	67 30 31 95 101 40	0.51 3.06 1.42 54.4 149.9 5.0
1989	8913	T3 7750 3	230 10 TFG	23.8 1.3 40.6 2.1 0.0	4.91 5.58	0.10 10.49 10.59	67 30 30 96 93 38	0.52 3.20 1.40 54.9 145.9 5.4
1989	8915	NO 7160 :	206 25 TPG	3.2 0.8 70.2 12.4 1.7	2.57 4.90	0.16 7.47 7.63	69 26 31 64 99 51 76 31 38 62 107 51	0.35 2.06 1.71 25.4 139.9 3.2 0.24 1.63 2.05 19.9 150.7 2.3
1989	8921	T2 8800 :	145 5 PHG	10.1 0.5 32.3 0.0 0.2	6.29 3.45	0.11 20.45 20.56	74 31 35 88 99 42 70 30 35 83 104 51	0.43 2.51 1.54 44.2 152.8 3.9 0.41 2.37 1.58 40.8 152.4 3.6
1989	8923	T2 8740 T4 8800	95 15 FMG 95 7 FMG	18.4 15.0 31.2 0.0 5.1 9.9 0.5 27.7 0.0 2.0	2.04 2.57 4.79	0.60 4.61 5.21 0.14 9.49 9.63	70 29 35 67 96 51 63 27 29 69 83 42	0.31 1.91 1.00 26.0 142.5 2.8 0.41 2.38 1.58 31.7 128.4 3.9
1989	8924	NO 8960 1	90 7 FNG	17.4 0.1 39.4 0.0 0.0 47.5 1.1 18.7 0.0 0.0	4.29 3.59	0.25 7.86 8.13	67 30 31 103 101 40 66 29 30 116 102 39	0.54 3.32 1.38 61.4 152.9 5.5
1989	8926	T3 8760 3 T4 8800	15 1 PMG	1.8 0.0 51.5 0.0 0.0 0.0 0.0 0.1 22.0 0.0 0.0	5.80 1.79	0.06 7.59 7.65	64 29 31 93 98 40	0.50 3.00 1.43 53.4 145.8 4.9
1989	8928	NO 8660 :	05 6 FNG	0.6 0.1 26.1 0.0 0.5	10.80 2.30	0.09 13.10 13.19	63 29 27 111 86 31	0.61 4.11 1.30 70.3 143.2 7.5
1989	8930	NO 9120 1	192 20 FNG	13.2 0.3 54.9 0.0 0.0	5.20 4.30	0.25 9.50 9.75	74 33 40 88 111 51	0.39 2.27 1.62 42.3 153.0 3.4 0.38 2.20 1.65 42.8 162.8 3.2
1989	8932	NO 8840 1	150 20 FNG	33.5 3.7 25.4 0.0 0.0	6.90 4.00	0.41 10.90 11.31	71 32 38 89 107 50 82 38 49 83 120 64	0.40 2.34 1.59 45.0 158.4 3.5 0.26 1.69 1.98 31.9 177.7 2.3
1989	8934	T1 7250	30 12 TPG	55.3 6.1 7.6 0.3 0.0	6.70 16.50 1.80 13.00	0.93 23.20 24.13 0.00 14.80 14.80	68 28 30 64 81 44 69 28 32 57 83 48	0.36 2.13 1.68 24.7 129.6 3.4 0.28 1.78 1.90 17.5 130.1 2 7
1989	8936 8937	T2 7440 1 NO 8130 1	180 15 FA	33.5 23.4 14.1 0.0 0.0 2.3 0.0 21.9 0.0 0.1	5.20 5.80	0.27 11.00 11.27	76 32 42 56 89 50	0.14 1.33 2.66 11.3 142.5 1.8
1989	8938	NO 8250 1	171 10 FNG	17.6 29.0 38.4 0.0 0.2	2.20 1.60	0.00 3.80 3.80	76 32 41 66 103 53	0.23 1.61 2.08 21.6 152.6 2.2
1989	8940	NO 7760	02 5 TPG	7.8 0.2 20.1 0.0 0.0	15.10 9.60	0.35 24.70 25.05	67 28 28 94 78 30	0.54 3.36 1.38 53.2 135.4 5.9
L990 L990	9002	NO 7740 1 T1 7800 1	179 17 TFG 252 15 TFG	8.0 2.0 13.0 37.0 0.0 45.0 4.0 3.0 1.0 0.0	2.20 1.50 1.90 10.70	0.60 3.70 4.30	74 30 44 65 105 49 67 27 39 55 77 37	0.19 1.48 2.29 32.4 145.2 2.0
1990	9004	T2 7520 1 T2 7460	302 9 TFG	10.0 1.0 9.0 4.0 5.0 45.0 1.0 16.0 1.0 0.0	13.30 5.10	1.30 18.40 19.70	68 29 39 56 86 44	0.18 1.44 2.37 24.4 127.6 2.0
1990	9006	NO 7700 :	253 6 FN	4.0 1.0 46.0 0.0 10.0	0.40 1.60	2.00 2.00 4.00	82 34 51 63 119 61	0.11 1.24 3.09 28.1 161,1 1.6
1990	9009	T3 8025	2 3 TFG	31.0 1.0 17.0 1.0 0.0	13.40 6.50	4.90 19.90 24.80	70 31 44 76 . 96 47	0.27 1.73 1.95 40.1 144.6 2.4
1990	9011	NO 7850	0 0 FN	2.0 0.0 8.0 0.0 0.0	2.50 5.30	1.60 7.80 8.80	67 29 36 82 83 34 65 29 36 99 87 31	0.39 2.28 1.62 46.4 133.2 3.4 0.47 2.75 1.48 61.9 140.1 4.2
1990	9013	T3 7680 1 T2 6640	0 0 TFG	39.0 1.0 7.0 1.0 0.0 1.0 0.0	4.70 7.00	0.40 11.70 12.10 0.00 23.60 23.60	68 28 33 85 76 31 74 31 47 58 105 53	0.44 2.58 1.52 48.3 129.7 4.0 0.10 1.23 3.10 25.3 145.2 1.6
L990	9015	NO 6640 T2 8800 :	0 0 TFG	0.0 0.0 23.0 11.0 7.0 15.0 6.0 18.0 0.0 3.0	11.20 2.80 7.30 3.70	0.04 14.00 14.04 2.50 11.00 13.50	73 32 45 70 100 44	0.22 1.56 2.16 34.8 145.3 2.1
L990	9022 9023	T2 8740 T4 8760	95 15 FNG 101 6 FN	21.0 5.0 7.0 2.0 0.0 13.0 1.0 15.0 0.0 0.0	8.90 6.20	0.70 15.10 15.80 2.70 21.50 24.20		
1990	9024	NO 8960	90 6 FNG	20.0 1.0 25.0 0.0 0.0 25.0 1.0 18.0 0.0 0.0	6.10 5.50	1.80 11.60 13.40		
1990	9026	T3 8760	153 4 FNG	4.0 0.0 24.0 0.0 0.0	14.40 2.60	2.00 17.00 19.00	59 22 27 57 50 17	0.36 2.11 1.69 25.8 95.8 3.5
1990	9028	NO 8680	287 8 FNG	6.0 0.0 10.0 0.0 0.0	23.70 3.80	1.10 27.50 28.60	63 29 34 114 92 33	0.54 3.35 1.38 76.5 146.6 5.3
1990	9033	T2 7000 :	239 7 TFG	29.0 2.0 12.0 1.0 12.0	2.70 15.30	4.30 18.00 22.30	70 30 44 66 92 45 68 29 33 64 85 39	0.20 1.50 2.25 31.3 138.2 2.0 0.32 1.94 1.78 33.0 126.4 2.9
1990	9034 9039	T1 7250 1	213 14 TFG 276 6 TFG	39.0 4.0 6.0 0.0 0.0 8.0 1.0 13.0 40.0 1.0	3.50 11.60 2.70 6.00	2.80 15.10 17.90 0.80 8.70 9.50	75 31 44 59 86 45 71 30 43 66 96 45	0.15 1.34 2.63 22.4 135.7 1.8 0.21 1.53 2.19 32.4 139.6 2.1
1990	9040 9041	NO 7800 1 T2 7440 1	294 7 TFG 220 18 FA	11.0 1.0 27.0 0.0 1.0 43.0 4.0 5.0 7.0 0.0	5.00 8.50 3.50 5.00	1.00 13.50 14.50 3.40 8.50 11.90	67 29 41 68 66 34 71 30 44 61 78 39	0.25 1.66 2.02 29.0 123.7 2.3
1990	9043	NO 7700 1 T3 6760	186 14 FNG	10.0 2.0 14.0 6.0 0.0	5.80 8.40	1.30 14.20 15.50	67 30 39 87 90 38 66 29 36 83 75 38	0.38 2.23 1.64 50.8 140.6 3.3
1990	9045	NO 8140	211 7 FNG	6.0 1.0 37.0 3.0 5.0	1.20 1.10	0.80 2.30 3.10	76 33 48 65 100 52	0.15 1.35 2.59 28.3 148.2 1.8
1990	9047	NO 7720	196 1 DW	2.0 0.0 10.0 0.0 3.0	13.10 4.30	1.70 17.40 19.10	74 32 46 70 113 58 66 28 35 87 80 47	0.21 1.52 2.21 37.0 154.0 2.0 0.43 2.49 1.55 50.2 135.4 3.8
1990	9048	NO 7800 NO 7920 3	55 2 FN 240 0 TFG	5.0 6.0 34.0 0.0 19.0 6.0 0.0 24.0 1.0 0.0	0.50 0.90 9.90 6.40	1.70 1.40 3.10 1.30 16.30 17.60	77 33 34 66 102 51 70 30 40 79 99 45	0.32 1.94 1.78 34.6 142.3 2.9 0.33 1.98 1.76 45.1 144.0 2.8
L990 L990	9051 9053	NO 7900 1 NO 7920	0 0 TFG	32.0 39.0 3.0 0.0 0.0 4.0 0.0 8.0 0.0 0.0	3.50 1.70	3.10 5.20 8.30	66 27 36 59 75 36 67 29 39 90 93 39	0.24 1.64 2.04 26.5 119.8 2.3
1990	9055	NO 9280 1	136 5 FN	14.0 5.0 23.0 0.0 8.0	5.00 2.70	1.40 7.70 9.10	72 32 44 86 104 47	0.32 1.95 1.77 49.4 153.0 2.7
1990	9057	NO 9200	12 10 FN	14.0 21.0 39.0 0.0 8.0	4.50 11.50	0.60 16.00 16.60	74 33 44 83 105 46	0.31 1.89 1.82 46.4 153.2 2.6
1991	9101 9102	T3 7520 1 NO 7740 1	41 12 TFG	14.6 7.0 22.8 4.7 0.0 13.4 2.9 11.8 29.2 0.4	1.40 4.50 1.60 5.20	1.50 5.90 7.40 0.60 6.80 7.40	70 30 43 67 102 49 70 29 40 68 89 42	0.22 1.56 2.15 42.7 133.0 2.1 0.26 1.70 1.98 40.2 127.3 2.4
1991	9103 9104	T1 7600 2 T2 7520 2	10 21 TPG	17.0 5.8 17.5 0.9 0.0 31.9 2.6 20.9 4.8 0.0	1.30 1.70 0.30 0.90	0.30 3.00 3.30 0.30 1.20 1.50	69 29 42 61 88 46 33 30 44 59 102 58	0.18 1.45 2.34 34.0 125.0 2.0 0.15 1.34 2.63 47.6 112.3 1.8
1991	9105	T2 7460 2	190 15 TPG	35.7 2.3 26.4 2.3 0.0	2.40 5.20	2.60 7.60 10.20	67 27 37 64 93 46 83 35 53 59 113 60	0.27 1.73 1.95 41.0 123.1 2.5 0.05 1.11 4.33 31.5 147.5 1.4
1991	9109	T3 8025	0 0 TFG	32.5 1.2 35.2 4.2 0.0	4.20 2.70	1.90 6.90 8.80	73 31 45 72 100 52	0.23 1.60 2.09 43.8 138.3 2.2
1991	9111	NO 7850	160 7 FN	12.3 0.1 42.9 0.0 0.0	4.80 3.10	0.90 7.90 8.80	68 30 39 89 104 47	0.39 2.28 1.62 62.3 140.2 3.3
1991	9114	T2 6640	0 0 TFG	21.1 0.4 40.6 2.4 0.0	1.60 3.00	5.10 4.60 9.70	79 33 50 60 119 65	0.09 1.20 3.32 37.1 145.7 1.5
1991	9115 9121	NO 6640 T2 8800	0 0 TFG 15 1 FNG	5.7 0.3 39.8 18.2 8.6 7.2 0.0 41.6 0.0 0.0	2.60 1.80 10.70 2.90	3.80 4.40 8.20 3.10 13.60 16.70	75 31 44 58 107 53 68 29 38 93 99 45	0.14 1.32 2.71 35.4 134.1 1.7 0.42 2.45 1.56 64.2 139.6 3.6
1991	9122 9124	T2 8740 NO 8960	95 15 FNG 83 10 FNG	25.8 5.8 33.7 0.0 0.6 17.1 0.5 25.0 0.0 0.0	2.90 6.40 4.80	0.80 9.30 10.10 4.10 9.70 13.80	69 30 41 75 94 49 71 31 42 86 99 45	0.29 1.83 1.86 46.9 133.2 2.6 0.35 2.10 1.70 57.5 141.8 3.0
1991	9125	NO 8800 1	170 10 PNG	21.5 0.9 15.2 0.0 0.0	5.70 3.60	2.40 9.30 11.70	62 28 32 114 90 35 62 27 31 111 86 12	0.56 3.56 1.35 81.4 139.1 5.9
1991	9127	T4 8800	15 1 PMG	8.7 0.0 25.7 0.0 0.0	11.10 2.60	2.00 13.70 15.70	62 28 32 113 86 31 63 28 31 113 86 31	0.56 3.53 1.36 79.3 137.1 5.8
1991	9133	T2 7000	239 7 TFG	20.1 9.4 24.7 0.6 0.0	1.60 8.10	1.20 9.70 10.90	68 27 38 61 90 47	0.23 1.61 2.09 36.9 122.2 2.3
1991	9134 9136	NO 8240	146 36 TPG	18.1 17.1 24.9 7.1 0.0 11.0 13.6 16.1 0.0 4.2	1.20 1.90 2.00 0.50	0.20 3.10 3.30 1.60 2.50 4.10	69 29 40 60 83 45 70 30 41 69 39 45	0.20 1.50 2.25 32.1 122.1 2.1 0.25 1.66 1.99 21.8 117.4 2.3
1991	9139 9140	NO 7860 3	276 6 TPG 28 10 TFG	5.0 1.0 13.6 25.7 0.0 8.0 0.4 28.1 0.0 0.0	2.60 3.00 3.20 1.00	1.80 5.60 7.40 2.20 4.20 6.40	58 21 28 37 53 27 92 41 59 63 92 56	0.14 1.32 2.70 13.8 86.5 1.9 0.03 1.07 5.53 20.6 154.0 1.3
1991	9141 9143	T2 7040 :	220 18 FA 186 14 FM	29.9 8.0 21.1 6.7 0.0 9.1 3.1 20.0 7.9 0.0	4.30 1.90 2.20 6.60	2.30 6.20 8.50	61 24 28 98 69 25 64 29 37 88 100 39	0.56 3.50 1.36 64.5 121.0 6.1 0.41 2.38 1.58 62.6 134.1 3.6
1991	9144	T3 6760	261 6 FNG	10.2 1.3 23.7 0.8 0.0	6.30 5.90	0.70 12.20 12.90	67 28 33 80 84 37	0.42 2.42 1.57 51.4 125.3 3.8
1991	91201	NO 8920	260 3 FNG	6.3 0.0 20.2 0.0 0.0	13.70 2.60	1.00 16.30 17.30	64 29 34 90 90 36	0.45 2.65 1.50 61.6 130.6 4.1
1991	91202	NO 9080	200 S FNG	21.3 0.0 22.7 0.0 0.0	5.60 9.10	2.10 14.70 16.80	69 31 41 90 101 43	0.53 3.23 1.40 81.0 145.3 5.1 0.37 2.20 1.65 60.9 141.3 3.2
1991	91204 91205	NO 9360 NO 9160	82 8 PN 210 5 PNG	37.6 2.6 23.1 0.0 0.0 26.7 0.3 23.7 0.0 0.0	3.10 1.40 3.20 4.80	1.30 4.50 5.80 1.30 8.00 9.30	80 37 53 87 115 59 69 30 40 70 87 43	0.24 1.64 2.04 54.1 160.0 2.2 0.27 1.75 1.93 41.1 127.8 2.5
1991	91206	. 8680 : NO 6640	0 0 TF	16.1 0.1 12.3 0.0 0.0 1.6 1.2 47.4 9.5 3.7	7.40 5.10	4.40 12.50 16.90 2.30 3.80 6.10	62 27 30 124 89 33 76 31 44 60 101 54	0.61 4.13 1.30 89.7 141.7 7.1 0.15 1.36 2.56 34.4 134.2 1.8
1991	91211	T2 6720	0 0 TF.	19.9 0.0 49.0 0.0 0.0	3.30 2.30	1.40 5.60 7.00	78 32 48 54 115 65	0.06 1.13 4.13 32.3 139.9 1.4
	91213	NO 7720	0 0 PNG	1.0 0.0 14.0 0.0 0.0	21 90 4 20	2 50 26 10 20 50	C4 30 33 103 85 33	A 53 3 33 1 40 70 7 133 5 5 3

total and green vegetative characteristics (Table 3). There was considerable scatter, however, in the relationship between total (THP) and green herbaceous vegetation (GHP) when examined across

years and no simple or multiple regression model could be found that explained more than 40% of the variation in NDVI in all years. In particular, data from 1990 had higher biomass for the same NDVI values as in other years. Because of differences in the timing of field sampling and satellite overpass in 1990, we did not use data collected in 1990 to develop our relationship between spectral NDVI and field estimates of phytomass. TVI and TM band 7 were most highly correlated with standing dead phytomass.

		Spectral	
Vegetative Characteristic	Year	Index	r
Tabal standing	1989	NUVI	0.53
biomage	1990	NDVI	0.45
DIOMASS	1991	NDVI	0.72
Green herbaceous phytomass	1989	NDVI	0.53
Green nerbaceous phycomass	1990	NDVI	0.46
	1991	NDVI	0.74
Green graminoida	1989	NDVI	0.66
steen grammordo	1990	NDVI	0.48
	1991	NDVI	0.74
Green forbs	1989		NS
	1990		NS
	1991		NS
Standing dead	1989		NS
herbaceous phytomass	1990		NS
	1991		NS
Percent standing dead	1989	TV12, TM73	0.61, 0.52
of total standing	1990	TM7	0.35
phytomass	1991	TVI, TH7	0.52, 0.42

THP and GHP alone explained 45 and 46% (P 0.001) of the variation, respectively, in NDVI at field sites sampled in either 1989 or 1991. Elevation explained an additional 6% of the variation in NDVI (Table 4). Neither burn intensity nor standing dead herbaceous phytomass (SDHP) or the proportion of standing dead of THP explained additional variation in these data once the effects of elevation were accounted for. In contrast, the proportion of THP that was dead explained a significant amount of additional variation in NDVI if elevation were not included in the model. Burn intensity explained a significant amount of the variation in NDVI when combined with THP but not when combined with green grass GG or GHP (Table 4). Average percent canopy cover of other site characteristics that we measured, such as litter or bareground, did not contribute significantly to explaining additional variation in NDVI.

Independent variables	Coefficients	Т	£	r
Constant	0.272	5.79	0.00	0.56
Total biomass	0.013	4.40	0.00	
Proportion standing dead	-0.301	-3.07	0.00	
Burn intensity	-0.071	-2.10	0.04	
Constant	0.321	8.41	0.00	0.55
Treen grass	0.016	4.31	0.00	
Proportion standing dead	-0.329	-3.32	0.00	
Burn intensity	-0.057	-1.62	0.11	
Constant	-0.113	-0.65	0.518	0.53
Green berbaceous phytomass	0.015	6.14	0.000	
Elevation	0.0005	1.78	0.082	
Burn intensity	-0.029	-0.78	0.438	
Constant	-0.202	-1.29	0.20	0.52
Treen berbaceous phytomass	0.017	6.07	0.00	
Elevation	0.0005	2.46	0.02	
Constant	-0.216	-1.37	0.18	0.51
Total phytomass	0.016	6.02	0.00	
Elevation	0.0005	2.41	0.02	

When the linear relationship was inverted to predict GHP, less than 50% of the variation in THP and GHP was explained by NDVI and elevation. The relationship appeared weak because many high-elevation fields sites with high NDVI values had low GHP. As a result, we stratified sites by elevation and found that following linear models explained 55% of the variation in TGP and GHP at low elevational (≤ 2620 m) sites:

THP
$$(g/0.1 \text{ m}^2) = 29.25 \text{ x NDVI-1.191}$$
 (P <0.001, s.e. = 4.61) Eq. 1

GHP $(g/0.1 \text{ m}^2) = 31.2 \text{ x NDVI- } 0.501$ (P < 0.001, s.e. = 4.54) Eq. 2

Using an exponential model, NDVI explained only an additional 1% of the variation in either THP or GHP.

The relationship between NDVI and phytomass at high elevation was nonlinear and the following curves were used to describe the relationships:

THP
$$(g/0.1 \text{ m}^2) = 19 \times (\text{NDVI} - 0.18)$$
 Eq. 3
0.110 + (NDVI - 0.18)

GHP
$$(g/0.1 \text{ m}^2) = 17 \times (\text{NDVI} - 0.18)$$
 Eq. 4
0.102 + (NDVI - 0.18)

The above equations were used to predict the

THP and GHP of 16 low elevation sites and 7 high elevation sites that were not used to develop the above predictive equations. On average, GHP was underestimated at low elevations by 0.93 g/m² and THP overestimated by 1.01 g/0.01 m². At high elevations, GHP was overestimated by 2.34 g/0.01 m² and THP by 2.73 g/0.01 m². Mean percent error in estimates of GHP (37%) at low elevations was greater than at high elevations (24%) because phytomass was generally lower at low elevation sites than at high elevations sites.

FUTURE ANALYSES

We intend to use the biomass-spectral relationships to characterize herbaceous vegetative recovery in the sagebrush-grassland areas in our study area. Our approach is to import TM spectral bands 3 and 4 from Landsat imagery for 1989, 1990, 1991 for our study area and to geo-reference the coverages to Yellowstone National Park's burned area and elevation coverages in ARC/INFO GRID. Next, we will stratify the area by elevation and identify nonforested areas of the study using the YNP habitat type map. Within each elevational stratum, we will use the NDVI-biomass algorithm developed for that elevation to predict the green and total biomass on a pixel-by-pixel basis and calculated the average for both burned and unburned areas. Initial attempts to complete this analysis were thwarted by what we believed to be either major geo-referencing problems or discrepancies between the burned areas and habitat types and what was evident on the Landsat imagery. Once these corrections have been made we can complete our analyses.

ACKNOWLEDGEMENTS

I would like to thank Cathy Wilson for her assistance in field work and initial data analysis. John Baldwin, Jon Hak, Robin Reid, Verda and Mike Shingleton, Greg McDaniel, and Bob Brennen provided help in collecting field data and processing samples. We also thank Rich Kluckus, Don Despain, Francis Singer, John Varley, Jennifer Whipple, George McKay, and Jack Norland of Yellowstone National Park for their administrative and field support. Drs. Kenneth Gerow and Jeff Pontius of the University of Wyoming provided statistical advice.

LITERATURE CITED

- Despain, D. G. 1990. Yellowstone Vegetation: consequences of environment and history in a natural setting. Roberts Rinehart. 239 pp.
- Eberhardt, L. L. and M. A. Simmons. 1987. Calibrating population indices by double sampling. J. Wildl. Manage. 51:665-675.
- Hall, D. K. J. P. Ormsby, L. Johnson, and J. Brown. 1980. Landsat digital analysis at Kokolik River, Alaska. Remote Sens. Environ. 10:263-272.
- Hardinsky, M.A., F. C. Daiber, C.T. Roman, and V. Klemas. 1984. Remote sensing of biomass and annual net aerial primary productivity of a salt marsh. Remote Sens. of Environ. 16:91-106.
- Houston, D. B. 1982. The Northern Yellowstone elk: ecology and management. Macmillian Publishing, New York. 474 pp.
- Huete, A. R. and R.D. Jackson. 1987. Suitability of spectral indices for evaluating vegetation characteristics on arid rangelands. Remote Sens. of Environ. 23:213-232.
- Huete, A. R., R. D. Jackson, D.F. Post. 1985. Spectral response of a plant canopy with different soil backgrounds. Remote Sens. of Environ. 17:37-53.
- Jackson, R. D. 1983. Spectral indices in n-Space. Remote Sens. of Environ 13: 409-421.
- Jakubauskas, M., K. P. Lulla and P. W. Mausel. 1990. Assessment of vegetation change in a fire-altered forest landscape. Photogr. Eng. Remote Sens. 56:371-377.
- Merrill, E. H., M. K., Bramble-Brodahl, R. W. Marrs, M. S. Boyce. 1993. Estimation of green herbaceous phytomass from Landsat MSS data in Yellowstone National Park. J. Range Manage. 46:151-157.

- Pearson, R.L., C. J. Tucker, and L.D. Miller. 1976. Spectral mapping of short grass prairie biomass. Photogramm. Eng. Remote Sens. 42:317-3245.
- Shibayama, M. and T. Akiyama. 1989. Seasonal visible, near-infrared and mid-infrared spectra of rice canopies in relation to LAI and above-ground dry phytomass. Remote Sens. of Environ. 27:119-127.
- Sellers, P.J. 1985. Canopy reflectance, photosynthesis and transpiration. Int. J. Remote Sens. 6:1335-1372.
- Tueller, P. T. 1989. Remote sensing technology for rangeland management applications. J. Range Manage. 42: 442-453. Remote Sens. of Environ. 8:127-150.

Appendix I. Equations used to calibrate spectral values from Landsat imagery for Yellowstone National Park on 13 August 1990 and 31 July 1991 to August 2, 1989 for 6 thematic mapper (TM) spectral bands.

Year	TM Band	a	b	s.e.	<u>r</u> ²
1990 to 1989	1	-10.90	1.174	3.05	0.99
	2	- 4.14	1.097	1.25	0.99
	3	0.31	1.081	16.94	0.86
	4	- 6.81	1.162	3.89	0.99
	5	- 0.27	1.018	4.51	0.99
	7	- 1.54	1.146	3.54	0.98
1991 to 1989	1	2.53	0.962	1.39	0.99
	2	- 0.87	0.955	0.82	0.99
	3	4.96	0.906	17.14	0.88
	4	- 2.47	1.043	3.42	0.99
	5	3.32	0.901	1.19	0.99
	7	2.64	0.935	5.85	0.96
	5 7	3.32 2.64	0.901 0.935	1.19 5.85	0.

Published by Wyoming Scholars Repository, 1993