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Abstract. We introduce the T -restricted weighted generalized inverse of a singular matrix A

with respect to a positive semidefinite matrix T , which defines a seminorm for the space. The

new approach proposed is that since T is positive semidefinite, the minimal seminorm solution is

considered for all vectors perpendicular to the kernel of T .
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1. Introduction. Quadratic forms have played a central role in the history of

mathematics in both the finite and infinite dimensional cases. A number of authors

have studied problems on minimizing (or maximizing) quadratic forms under vari-

ous constraints such as vectors constrained to lie within the unit simplex (Broom

[2]), and the minimization of a more general case of a quadratic form defined in a

finite-dimensional real Euclidean space under linear constraints (see, e.g., La Cruz

[5], Manherz and Hakimi [9]), with many applications in network analysis and control

theory (for more on this subject, see also [16, 17]). In his classical book on optimiza-

tion theory, Luenberger [13], presents similar optimization problems for both finite

and infinite dimensions.

In the field of applied mathematics, one sees an interest in applications of the

generalized inverse of matrices or operators (see [1]). In many computational and

theoretical problems, whenever a matrix is singular, various types of generalized in-

verses are used. An important application of the Moore-Penrose inverse in the finite

dimensional case is the minimization of a hermitian positive definite quadratic form

x′Tx under linear constraints. In this article, we propose another approach for the

case of a positive semidefinite quadratic form by choosing the constrained minimiza-

tion problem to take place only for the vectors perpendicular to its kernel.
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The material of this article provides the opportunity for research in several dif-

ferent directions. In particular, one useful financial application is based on the Cap-

ital Asset Pricing Model (CAPM) and the Arbitrage Pricing Theory (APT) models.

The CAPM is a variation of the classical portfolio selection problem, as defined by

Markowitz (1952) [14]. It uses the minimization of a quadratic form x′Σx under lin-

ear constraints that can be written in matrix form Ax = b, where Σ is the positive

semidefinite variance-covariance matrix of the assets. In fact, Σ is usually positive

definite, but cases exist where Σ is singular. Since the solution to this problem needs

the inverse matrix Σ−1, there is a clear need for developing algorithms that deal with

the singular case. APT models describe another influential theory on asset pricing.

They differ from the CAPM in that they are less restrictive in their assumptions al-

lowing for an explanatory (as opposed to statistical) model of asset returns. Their

implementation also requires inversion of a possibly singular covariance matrix; see,

for example, [3] which is a standard reference book on financial applications.

There are five sections following this section of introduction. Section 2 is a quick

review of the fundamental properties of generalized inverses. In Section 3, the theoret-

ical background for the restricted weighted generalized inverse is discussed together

with the main results of this work. Relations with the V -orthogonal projector, as

described in [21], are presented in Section 4. In Section 5, we test the efficiency of

the proposed method. For the exhibition of the effectiveness of our proposed method,

we have performed numerical experiments for the proposed constrained minimization

problem for both full and sparse positive semidefinite matrices. In particular, Section

5 is divided in two subsections: The first subsection gives numerical results of the

proposed method for the case of non-sparse positive semidefinite matrices while the

second one gives the corresponding results for the case of sparse positive semidefinite

matrices. Conclusions are provided in Section 6.

2. Preliminaries and notation. From now on H will denote a finite dimen-

sional Hilbert space (e.g., R
n or C

n) and B(H) will denote the set of matrices acting

on H. The results of this paper can also be extended to infinite dimensional Hilbert

spaces and operators instead of matrices.

The notion of the generalized inverse of a matrix was first introduced by H. Moore

in 1920 and again by R. Penrose in 1955. These two definitions are equivalent and the

generalized inverse of an operator or matrix is also called the Moore-Penrose inverse.

In the case when A is a real r × m matrix, Penrose showed that there is a unique

matrix satisfying the four Penrose equations, called the generalized inverse of A and

denoted by A†:

AA† = (AA†)∗, A†A = (A†A)∗, AA†A = A, A†AA† = A†,(2.1)

where A∗ denotes the conjugate transpose of A.
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It is easy to see that AA† is the orthogonal projection of H onto the range R(A) of A,

denoted by PA, and that A†A is the orthogonal projection of H onto R(A∗) denoted

by PA∗ . It is also well known that R(A†) = R(A∗).

Let us consider the equation Ax = b, A ∈ B(H), where A is singular. If b /∈ R(A),

then the equation has no solution. In this case we consider the equation Ax = PR(A)b,

where PR(A) is the orthogonal projection on R(A).

The following two propositions can be found in Groetsch [8, Theorem 2.1.1 and

Definition (V), pages 39 and 41].

Proposition 2.1. Let A ∈ B(H) and b ∈ H. Then, for u ∈ H, the following are

equivalent:

(i) Au = PR(T )b.

(ii) ‖Au − b‖ ≤‖ Ax − b‖,∀x ∈ H.

(iii) A∗Au = A∗b

Let B = {u ∈ H|A∗Au = A∗b}. Then this set B is closed and convex; it therefore

has a unique vector with minimal norm. In the literature, (e.g., Groetsch [8, page

41]), B is known as the set of the generalized solutions.

Proposition 2.2. For A ∈ B(H) and b ∈ H, consider the equation Ax = b.

Then it holds A†b = u, where u is the minimal norm solution in B.

This property has an application in the problem of minimizing a hermitian pos-

itive definite quadratic form 〈x,Qx〉 subject to linear constraints which are assumed

to be consistent.

3. The restricted weighted generalized inverse. For this section, we need

the notion of the weighted Moore-Penrose inverse of a matrix A ∈ C
m×n with respect

to two Hermitian positive definite matrices M ∈ C
m×m and N ∈ C

n×n denoted by

X = A†
M,N satisfying the following four equations (see [4, page 118, Exercise 30] or

[22, Section 3]; for computational methods, see [20], and for more on this subject, see

[6, 7]):

AXA = A, XAX = X, (MAX)∗ = MAX, (NXA)∗ = NXA(3.1)

It is also known (see, e.g., [1]) that

A†
M,N = N− 1

2 (M
1

2 AN− 1

2 )†M
1

2

In this case, A†
M,Nb is the M -least squares solution of Ax = b which has minimal

N -norm.

This notion can be extended to the case for which M and N are positive semidef-

inite matrices. In this case, G is a matrix such that Gb is a minimal N semi-norm,
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M -least squares solution of Ax = b. Subsequently, G must satisfy the following four

conditions (See [4], page 118, exercises 31– 34):

MAGA = MA, NGAG = NG, (MAG)∗ = MAG, (NGA)∗ = NGA.(3.2)

When N is positive definite, then there exists a unique solution for G.

As mentioned above, the Moore-Penrose inverse has an application in minimiz-

ing a constrained quadratic form. As presented in Pappas [19], we may look for the

minimum of a positive semidefinite quadratic form 〈x, Tx〉 among the vectors x ∈

N (T )⊥ = R(T ∗) = R(T ), or equivalently, under the constraints Ax = b, x ∈ R(T ).

The following theorem holds for linear bounded operators acting on an infinite di-

mensional Hilbert space H, T denotes a singular positive operator with a canonical

form T = U(T1 ⊕ 0)U∗ where U is a unitary operator, R being the unique positive

solution of the equation R2 = T1 and R† =

[

R−1 0

0 0

]

. (For more on the canonical

form of singular hermitian matrices and operators, see [4, Chapter 4].)

Theorem 3.1. ([19, Theorem 3.9]) Let T ∈ B(H) be a singular positive operator,

and the equation Ax = b, with A ∈ B(H) singular with closed range and b ∈ H. If the

set S = {x ∈ N (T )⊥ : Ax = b} is not empty, then the problem:

minimize 〈x, Tx〉, x ∈ S

has the unique solution

x̂ = UR†(AUR†)†b

assuming that PA∗PT has closed range.

By rephrasing Theorem 3.1 for the finite dimensional case, while taking into

account the fact that for unitary matrices, we have U∗ = U† and that UR†U∗ =

(T †)
1

2 , we deduce the following theorem.

Theorem 3.2. Let T ∈ R
m×m be a positive semidefinite hermitian matrix, and

the equation Ax = b with A ∈ R
n×m and b ∈ R

m. If the set S = {x ∈ N (T )⊥ : Ax =

b} is not empty, then the problem:

minimize 〈x, Tx〉, x ∈ S

has the unique least squares solution

û = (T †)
1

2 (A(T †)
1

2 )†b.
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Based on Theorem 3.2, similarly as the weighted Moore-Penrose inverse, we can

extend this notion to the N-restricted weighted inverse with M positive definite and

N a positive semidefinite matrix:

Â†
M,N = (N†)

1

2 (M
1

2 A(N†)
1

2 )†)†M
1

2(3.3)

giving a solution such that Â†
M,Nb is a minimal N semi- norm, M -least squares solu-

tion of Ax = b but restricted on the range of N .

Definition 3.3. Let T ∈ R
m×m be a positive semidefinite hermitian matrix and

A ∈ R
n×m. Then the m × n matrix

Â†
In,T = (T †)

1

2 (A(T †)
1

2 )†

is the T -restricted weighted Moore-Penrose inverse of A, such that Â†
In,T b is a minimal

T semi-norm least squares solution of Ax = b, restricted on the range of T .

Using the above definition, the solution becomes

û = Â†
In,T b

and since T is positive semidefinite, 〈x, Tx〉 defines a seminorm for the space C
n.

Therefore, û is a minimal T semi-norm least squares solution of Ax = b.

We can verify that the solution û satisfies the constraint Ax = b. Indeed, Aû =

A(T †)
1

2 (A(T †)
1

2 )†b = PAT b, and since the set S = {x ∈ R(T ) : Ax = b} is not empty,

we have that b must be equal to ATw for some w and therefore PAT b = b.

We can also notice that the matrix Â†
In,T does not satisfy all four conditions

of equation (3.2) as it is an inverse restricted to the range of T . Similarly to the

equations (3.2) we have the following:

Proposition 3.4. Let T ∈ R
m×m be positive semidefinite, A ∈ R

n×m and the

equation Ax = b. Then the T-restricted weighted inverse Â†
I,T satisfies the following

conditions:

(i) AÂ†
I,T A = PAT A.

(ii) TÂ†
I,T AÂ†

I,T = TÂ†
I,T .

(iii) (AÂ†
I,T )∗ = (AÂ†

I,T ).

(iv) Â†
I,T AÂ†

I,T = Â†
I,T PAT .

Proof.

(i) AÂ†
I,T A = A(T †)

1

2 (A(T †)
1

2 )†A = PAT †A = PAT A.

(ii) TÂ†
I,T AÂ†

I,T = T (T †)
1

2 (A(T †)
1

2 )†A(T †)
1

2 (A(T †)
1

2 )† = T (T †)
1

2 (A(T †)
1

2 )† =

TÂ†
I,T .
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(iii) (AÂ†
I,T )∗ = (A(T †)

1

2 (A(T †)
1

2 )†)∗ = (PAT †)∗ = PAT † = AÂ†
I,T .

(iv) Â†
I,T AÂ†

I,T = (T †)
1

2 (A(T †)
1

2 )†A(T †)
1

2 (A(T †)
1

2 )† = (T †)
1

2 (A(T †)
1

2 )†P
AT

1

2

=

Â†
I,T PAT .

From the above conditions it is clear that Â†
I,T is not an {i, j, k} inverse of A.

Nevertheless, many of the known properties of the generalized inverses also hold for

the T -restricted weighted inverse, with slight modifications, as we can see in the

following proposition.

Proposition 3.5. Let T ∈ R
m×m be positive semidefinite and A ∈ R

n×m. The

T-restricted weighted inverse Â†
I,T has the following properties:

(i) If Â†
I,T = Â†

I,S for two positive semidefinite matrices S and T , then R(AT ) =

R(AS).

(ii) Similarly to the well-known formula TT † = PT , we have that AÂ†
I,T = PAT .

(iii) If A is a matrix in R
m×m and Â†

I,T A = AÂ†
I,T , then PAT (T †)

1

2 = (T †)
1

2 PTA∗ .

Proof.

(i) Let the two positive semidefinite matrices S, T such that Â†
I,T = Â†

I,S . Then

AÂ†
I,T = AÂ†

I,S ⇒ PAT = PAS .

(ii) Trivial.

(iii) If Â†
I,T A = AÂ†

I,T , then

(T †)
1

2 (A(T †)
1

2 )†A = A(T †)
1

2 (A(T †)
1

2 )† ⇒

(T †)
1

2 (A(T †)
1

2 )†A(T †)
1

2 = A(T †)
1

2 (A(T †)
1

2 )†(T †)
1

2

and so,

(T †)
1

2 P
(A(T †)

1

2 )∗
= PAT (T †)

1

2

but, since R((A(T †)
1

2 )∗) = R(TA∗) we have that PAT (T †)
1

2 = (T †)
1

2 PTA∗ .

In the sequel, we present an example which clarifies Definition 3.3. In addition,

the difference between the proposed minimization (x ∈ N (T )⊥) and the minimization

for all x ∈ H is clearly indicated.

Example 3.6. Let H = R
4, the matrix A =

[

1 2 1 −1

0 1 0 −1

]

and the positive

semidefinite matrix

T =









2 2 2 2

2 3 3 3

2 3 4 4

2 3 4 4
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Here, the equation is Ax = b with b =

[

2

1

]

.

Using Definition 3.3 we can compute the T-restricted weighted inverse Â†
I2,T :

Â†
I2,T =









1.2667 −1.8667

−0.1333 0.9333

−0.1333 −0.0667

−0.1333 −0.0667









.

Then Â†
I2,T b = ( 2

3 , 2
3 ,− 1

3 ,− 1
3 )T is a minimal T semi-norm least squares solution of

Ax = b, restricted on the range of T .

It is easy to see that all vectors u ∈ R(T ) have the form u = (x, y, z, z)T , x, z ∈ R,

so the solution has the expected form. With calculations we can find that all vectors

belonging to R(T ) and also satisfying Au = b have the form of

u = (−2z, z + 1, z, z)T , z ∈ R.

In Figure 1, we plot the values of z and the corresponding values of ‖u‖T = uTu′.

It is clear that the value of z = − 1
3 gives the minimum value for the semi-norm

‖·‖T . Therefore the vector û = ( 2
3 , 2

3 ,− 1
3 ,− 1

3 )T found from the T-restricted weighted

inverse Â†
I2,T minimizes the semi-norm ‖.‖T . In this case, ‖û‖2

T = 1.333.

−1.5 −1 −0.5 0 0.5 1
0

5

10

15

20

25

30
Minimization of T− seminorm under Ax = b

Values of z

u
T

u
’

Minimum attained
for  z= − 0.333

Fig. 3.1. Constrained minimization of ‖.‖T , u ∈ N (T )⊥ under Ax = b.
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If the minimization takes place for all vectors u ∈ R
4, then the minimum semi-

norm vector satisfying Au = b is the vector w = (0, 0, 1,−1)T and we have that

‖w‖T = 0.

4. Relations with the V -orthogonal projector. For every matrix X ∈ R
n×p

and a positive semidefinite matrix V ∈ R
n×n, the matrix

PX:V = X(X∗V X)†X∗V

is called the V -orthogonal projector with respect to the semi-norm ‖ · ‖V (see e.g.,

[21] or [22, Section 3]). The V -orthogonal projector is unique when r(V X) = r(X).

In this section, we study relations between Â†
I,T and PA:T . We will make use of the

following Theorem:

Theorem 4.1. ([21, Theorem 7]) Let PX:V be as given, and suppose r(V X) =

r(X). Then PX:V = X(V
1

2 X)†V
1

2 .

Using the above notation, we can see that similarly to the Moore-Penrose inverse

property T †T = PT∗ we have the following:

Proposition 4.2. Let T ∈ R
m×m be a positive semidefinite matrix and A ∈

R
n×m. If r(T †A∗) = r(A∗), then the T-restricted weighted inverse Â†

I,T has the

property Â†
I,T A = P ∗

A∗:T † .

Proof. As we can see, in our case we have that X ≡ A∗ and V ≡ T †. Therefore,

PA∗:T † = A∗((T †)
1

2 A∗)†(T †)
1

2 . As such,

P ∗
A∗:T † = (T †)

1

2 (A(T †)
1

2 )†A = Â†
I,T A.

Remark 4.3. The relation r(T †A∗) = r(A∗) can be replaced by

N (T ) ∩N (A)⊥ = N (T ) ∩R(A∗) = {0}.

Proof. Since r(T †A∗) = r(A∗)−dim(N (T †)∩R(A∗)) we must have that N (T †)∩

R(A∗) = {0} but since T is positive, N (T †) = N (T ). So, r(T †A∗) = r(A∗) is

equivalent to N (T ) ∩R(A∗) = {0}.

By the above remark, we can have many results related to the V -orthogonal

projector, using Theorems 7 and 8 in [21].

Proposition 4.4. Let T ∈ R
m×m be a positive semidefinite matrix and A ∈

R
n×m, such that N (T ) ∩R(A∗) = {0}. Then the following hold:

(i) APA∗:T † = PAT A.
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(ii) In the case when AÂ†
I,T = Â†

I,T A, we have that P ∗
A∗:T † = PAT .

(iii) Â†
I,T PAT A = Â†

I,T A.

(iv) The matrix Â†
I,T A is hermitian.

(v) Â†
I,T A = PT .

Proof.

(i) APA∗:T † = AÂ†
I,T A from Proposition 4.2 which is equal to PAT A from Propo-

sition 3.4.

(ii) If AÂ†
I,T = Â†

I,T A, then from Proposition 4.2 and Proposition 3.5 we have

PAT = P ∗
A∗:T † .

(iii) From [21, Theorem 7], we have that P 2
A∗:T † = PA∗:T † and so (Â†

I,T A)2 =

(Â†
I,T A) ⇒ Â†

I,T AÂ†
I,T A = Â†

I,T A. Therefore Â†
I,T PAT A = Â†

I,T A.

(iv) From [21, Theorem 8], we have that PA∗:T † = P ′
A∗:T † and so Â†

I,T A is hermi-

tian.

(v) From [21, Theorem 8], we have that PA∗:T † = PT † = PT and so Â†
I,T A =

PT .

An important paper for the interested reader relating seminorms and generalized

inverses is [18].

5. Numerical experiments. For the exhibition of our proposed method ef-

fectiveness, we have performed numerical experiments for the proposed constrained

minimization problem, for both full and sparse positive semidefinite matrices. In

particular, the present section is divided in two subsections, the first one gives nu-

merical results of the proposed method for the case of non-sparse positive semidefinite

matrices, and the second gives the corresponding results for the case of sparse posi-

tive semidefinite matrices. Also, for the purpose of monitoring the performance, we

present tables with the execution times of the proposed MATLAB functions. All the

numerical tasks have been performed by using the MATLAB R2009a environment

on an Intel(R) Pentium(R) Dual CPU T23101.46 GHz 1.47 GHz 32-bit system with

2 GB of RAM memory running on the Windows Vista Home Premium Operating

System.

5.1. Non-sparse positive semidefinite matrices. In this subsection, we dis-

cuss the case of non-sparse positive semidefinite matrices in order to clarify the effi-

ciency of the proposed method. For the purpose of monitoring the performance, we

present in Table 1 the execution times of the proposed method (wsol) on a set of

non-sparse positive semidefinite matrices. In order to construct this set of matrices,

we used a set of 9 singular test matrices of size 1000 × 1000 with a “large” condition

number from Higham’s Matrix Computation Toolbox (mctoolbox), see [10].
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The proposed method was tested with a MATLAB function named wsol and

the time responses have been recorded using a MATLAB function named testpsd.

These two MATLAB functions can be found in [11], together with a help file and

several MATLAB files that implement all the proposed examples from this paper.

The interested reader is strongly encouraged to run these files under the guidance of

the included help file in order to verify the experimental results of this paper.

Table 5.1

Non-sparse positive semidefinite matrices, PSD matrix size 1000 × 1000.

Generator Matrix PSD matrix rank wsol(time in seconds)

chow 999 43.45

cycol 250 53.24

gearmat 999 52.52

kahan 168 55.19

lotkin 12 54.76

prolate 511 76.22

hilb 13 53.94

magic 3 58.79

vand 24 52.33

From Table 1, it is evident that the proposed numerical method, based on the in-

troduction of the wsol function, enables us to perform fast estimations for a variety of

dimensions. In fact, the joint amount of tests, calculations and further considerations

required to reach the goal may well render the manual solution process a prohibit-

ing task. By using the wsol function an interested user can solve the minimization

problem within a few seconds. Note that the wsol function requires the presence of

a MATLAB function in order to calculate the generalized inverse of a matrix. There

are several methods for computing the Moore-Penrose inverse of a matrix. Some of

the most commonly used methods are based on the Singular Value Decomposition

method (MATLAB’s pinv function), the conjugate Gram-Schmidt process and the

Moore-Penrose inverse of partitioned matrices (see [23]), and iterative methods which

are derived from the second Penrose equation (see [20]). In this work, for the deter-

mination of the Moore-Penrose inverse matrix, we use the results of a recent work,

[12], where a very fast and reliable method is presented. This method is efficiently

applicable in full or sparse matrices, ill-conditioned or not.

5.2. Sparse positive semidefinite matrices. In this subsection, we test the

proposed method on sparse positive semidefinite matrices from the Matrix Market

Repository [15]. We chose six matrices from the set BCSSTRUC1 (BCS Structural

Engineering matrices, eigenvalue matrices), for no specific reason other than these
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matrices have the required properties, i.e., sparse and positive semidefinite. As in

the previous section, we followed a similar reasoning in order to test the efficiency

of the proposed method. For this purpose, the proposed method was tested with a

MATLAB function named spwsol and the time efficiency was tested with the sptestm

file. Note that all the necessary files that implement the proposed examples from the

Matrix Market collection can be found in [11].

Table 5.2

Sparse positive semidefinite matrices.

matrix name size structural rank spwsol(time in seconds)

BCSSTM01 48 24 0.0023

BCSSTM03 112 72 0.0072

BCSSTM04 132 66 0.0115

BCSSTM05 153 full 0.016

BCSSTM07 420 full 4.62

BCSSTM10 1086 full 66.35

From Table 2, it is evident that the proposed numerical method, based on the

introduction of the spwsol function, enables us to perform fast estimations for a

variety of matrix dimensions.

6. Concluding remarks. In this work, we define the T -restricted weighted

generalized inverse of a singular matrix A with respect to a positive semidefinite

matrix T , which defines a seminorm for the space. We assume that T is positive

semidefinite, so the minimal seminorm solution is considered for all vectors belonging

to N (T )⊥. Numerical experiments show that the proposed method performs well for

both full and sparse positive semidefinite matrices.

Therefore, the proposed method can find applications also in many financial prob-

lems, apart from the usual matrix optimization areas such as statistical modeling,

linear regression, electrical networks, filter design, etc.
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