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Abstract. In this paper, some representations for the Moore-Penrose inverse of a linear com-

bination of generalized and hypergeneralized projectors are found. Also, the invertibility for some

linear combinations of commuting generalized and hypergeneralized projectors is considered.
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1. Introduction. Let C
n×m denote the set of all n×m complex matrices. The

symbols A∗, R(A), N (A), and rank(A) will denote the conjugate transpose, the range

(column space), the null space, and the rank of a matrix A, respectively. By C
n×n
r

we will denote the set of all matrices from C
n×n with a rank r. The Moore-Penrose

inverse of A, is the unique matrix A† satisfying the equations

(1) AA†A = A, (2) A†AA† = A†, (3) AA† = (AA†)∗, (4) A†A = (A†A)∗.

For a square matrix A there exists a unique reflexive generalized inverse of A which

commutes with A if and only if A is of the index 1, that is, rank(A) = rank(A2) ([4],

Theorem 1). This generalized inverse is called the group inverse of A and is denoted

by A♯.

In will denote the identity matrix of order n while 0s,s will denote the null-

matrix of order s. We use the notations CP
n , COP

n , CEP
n , CGP

n , and CHGP
n for the

subsets of C
n×n consisting of projectors (idempotent matrices), orthogonal projectors

(Hermitian idempotent matrices ), EP (range-Hermitian) matrices, generalized, and

∗Received by the editors on August 14, 2011. Accepted for publication on October 24, 2011.

Handling Editor: Oskar Maria Baksalary.
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hypergeneralized projectors, respectively, i.e.,

CP
n = {A ∈ C

n×n : A2 = A},

COP
n = {A ∈ C

n×n : A2 = A = A∗},

CEP
n = {A ∈ C

n×n : R(A) = R(A∗)} = {A ∈ C
n×n : AA† = A†A},

CGP
n = {A ∈ C

n×n : A2 = A∗},

CHGP
n = {A ∈ C

n×n : A2 = A†}.

The concepts of generalized and hypergeneralized projectors were introduced by

Groß and Trenkler [9] who presented interesting properties of the classes of general-

ized and hypergeneralized projectors. Very interesting results concerning generalized

and hypergeneralized projectors can be found in the papers of J.K. Baksalary, O.M.

Baksalary, X. Liu, and G. Trenkler [2], O.M. Baksalary [1], J.K. Baksalary, O.M.

Baksalary, and J. Groß [3], J. Beńıtez and N. Thome [6], and G.W. Stewart [11].

In this paper, we give the form for the Moore-Penrose inverse, i.e., the group in-

verse of a linear combination c1A+c2B of two commuting generalized or hypergeneral-

ized projectors. Also, we studied the nonsingularity of c1A+c2B and c1A+c2B+c3C,

where A, B and C are commuting generalized or hypergeneralized projectors under

various conditions.

2. The Moore-Penrose inverse and the invertibility of a linear com-

bination of commuting generalized or hypergeneralized projections. J.K.

Baksalary, O.M. Baksalary, X. Liu, and G. Trenkler [2], proved that any generalized

projector A ∈ C
n×n
r can be represented by

A = U

[

K 0

0 0

]

U∗,

where U ∈ Cn×n is unitary and K ∈ C
r×r is such that K3 = Ir and K∗ = K−1. Any

hypergeneralized projector A ∈ C
n×n
r has a form

A = U

[

ΣK 0

0 0

]

U∗,

where U ∈ Cn×n is unitary, Σ = diag(σ1Ir1
, . . . , σtIrt

) is a diagonal matrix of singular

values of A, σ1 > σ2 > · · · > σt > 0, r1 + r2 + · · · + rt = r and K ∈ C
r×r satisfies

(ΣK)3 = Ir and KK∗ = Ir.

There are also some other very useful representations for generalized and hyper-

generalized projectors. By using the fact that any generalized projector A ∈ C
n×n
r is

a normal matrix, by the spectral theorem we have that A = Udiag(λ1, λ2, . . . , λn)U∗,
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where U is a unitary matrix and λj , j = {1, . . . , n} are the eigenvalues of A. By [6,

Theorem 2.1], we have that λj ∈ {0, 1, ω, ω}, j = {1, . . . , n}, where ω = exp(2πi/3).

Hence,

A ∈ CGP
n ⇔ A = Udiag(λ1, λ2, . . . , λn)U∗,

where U∗ = U−1 and λj ∈ {0, 1, ω, ω}, j = {1, . . . , n}, ω = exp(2πi/3) .

Similarly, for A ∈ CHGP
n using the fact that A is EP-matrix, by [7, Theorem

4.3.1] we can conclude that

A ∈ CHGP
n ⇔ A = U(K ⊕ 0)U∗,

where U ∈ C
n×n is a unitary matrix and K ∈ C

r×r is nonsingular such that K3 = Ir,

where r = rank(A).

From the above representations it is obvious that any generalized projector is a

hypergeneralized projector.

The following fact will be used very often:

If X,Y ∈ C
n×n and c1, c2 ∈ C, then

X3 = Y 3 = In, XY = Y X ⇒

(c1X + c2Y )(c2
1X

2 − c1c2XY + c2
2Y

2) = (c3
1 + c3

2)In.(2.1)

In this section, we first present the form for the Moore-Penrose inverse, i.e., the

group inverse of c1A + c2B, where A, B are two commuting generalized or hypergen-

eralized projectors and c1, c2 ∈ C \ {0} and c3
1 + c3

2 6= 0.

Theorem 2.1. Let A ∈ C
n×n and B ∈ C

n×n be commuting generalized or

hypergeneralized projectors, and let c1, c2 ∈ C \ {0} and c3
1 + c3

2 6= 0. Then

(c1A + c2B)† =
1

c3
1 + c3

2

(

c2
1A

2B3 − c1c2AB + c2
2A

3B2
)

+
1

c1
A2(In − B3)(2.2)

+
1

c2
B2(In − A3).

Furthermore, c1A + c2B is nonsingular if and only if n = rank(A) + rank(B) −

rank(AB) and in this case (c1A + c2B)−1 is given by (2.2).

Proof. Since A and B are two commuting EP-matrices, by [5, Corollary 3.9], we

have that

A = U(A1 ⊕ A2 ⊕ 0t,t ⊕ 0)U∗, B = U(B1 ⊕ 0s,s ⊕ B2 ⊕ 0)U∗,
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where A1, B1 ∈ C
r×r, A2 ∈ C

s×s, B2 ∈ C
t×t are nonsingular and A1B1 = B1A1. If

in addition A and B are hypergeneralized projectors (the following reasoning works

if A,B are generalized projectors), then A3
1 = B3

1 = Ir, A3
2 = Is, and B3

2 = It. Since

c1A + c2B = U
(

(c1A1 + c2B1) ⊕ c1A2 ⊕ c2B2 ⊕ 0
)

U∗,(2.3)

we can use (2.1) to get the expression for (c1A + c2B)†. Thus, by (2.1) we get that

c1A1 + c2B1 is nonsingular and that

(c1A1 + c2B1)
−1 =

1

c3
1 + c3

2

(

c2
1A

2
1 − c1c2A1B1 + c2

2B
2
1

)

.

Now, using that

In − A3 = U(0 ⊕ 0 ⊕ It ⊕ In−(r+t+s))U
∗, A3B3 = U(Ir ⊕ 0 ⊕ 0 ⊕ 0)U∗

and

In − B3 = U(0 ⊕ Is ⊕ 0 ⊕ In−(r+t+s))U
∗,

we have

(c1A + c2B)† = U((c1A1 + c2B1)
−1 ⊕

1

c1
A2

2 ⊕
1

c2
B2

2 ⊕ 0)U∗

=
1

c3
1 + c3

2

(

c2
1A

2 − c1c2AB + c2
2B

2
)

A3B3

+
1

c1
A2(In − B3) +

1

c2
B2(In − A3).

Since A4 = A and B4 = B, we get that (2.2) holds. Also, it is evident that rank(A) =

r + s, rank(B) = r + t and rank(AB) = r. So, the last summand in the direct sum

of (2.3) does not appear if and only if n = rank(A) + rank(B) − rank(AB), which is

a necessary and sufficient condition for the invertibility of c1A + c2B.

As a corollary, we get that in the case when A is generalized or hypergeneralized

projector and c1, c2 ∈ C, c1 6= 0, c3
1 +c3

2 6= 0, a linear combination c1In +c2A is always

nonsingular.

Theorem 2.2. Let A ∈ C
n×n be a generalized or hypergeneralized projector,

c1, c2 ∈ C, c1 6= 0, c3
1 + c3

2 6= 0. Then c1In + c2A is nonsingular and

(c1In + c2A)−1 =
1

c3
1 + c3

2

(

c2
1A

3 − c1c2A + c2
2A

2
)

+
1

c1
(In − A3).

Let G ⊂ CGP
n denote a commuting family of generalized projectors and H ⊂

CHGP
n denote a commuting family of hypergeneralized projectors, i.e., an infinite
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set of generalized projectors or hypergeneralized projectors in which each pair in

the set commutes under multiplication. If we consider a finite commuting family

{Ai}m
i=1 where all of the members are generalized or hypergeneralized projectors, then

∏m
i=1 Aki

i , where k1, . . . , km ∈ N , is also a generalized or hypergeneralized projector.

Hence, we have the following result:

Proposition 2.3. Let all of Ai ∈ C
n×n, i = {1, . . . ,m} be commuting general-

ized or hypergeneralized projectors, c1, c2 ∈ C, c1 6= 0, c3
1 + c3

2 6= 0 and k1, . . . , km ∈ N

. Then c1In + c2

∏m
i=1 Aki

i is nonsingular.

With the additional requirements of Theorem 2.1 it is possible to give a more

precise form of Moore-Penrose inverse, i.e., the group inverse.

Corollary 2.4. Let c1, c2 ∈ C \ {0}. If A,B are commuting generalized or

hypergeneralized projectors such that AB = 0, then

(c1A + c2B)† =
1

c1
A2 +

1

c2
B2.

In the next result, we present the form of Moore-Penrose inverse, i.e., the group

inverse of c1A
m + c2A

k, where m, k ∈ N and A is a generalized or hypergeneralized

projector. It is a corollary of Theorem 2.1.

Corollary 2.5. Let A ∈ C
n×n
r be a generalized or hypergeneralized projector

and let c1, c2 ∈ C, c3
1 + c3

2 6= 0 and m, k ∈ N. Then

(c1A
m + c2A

k)† =
1

c3
1 + c3

2

(

c2
1A

2m − c1c2A
m+k + c2A

2k
)

,

where At =







A3, t ≡3 0,

A, t ≡3 1

A2, t ≡3 2

. Furthermore, c1A
m + c2A

k is nonsingular if and only

if A is nonsingular and in this case the inverse of c1A
m + c2A

k is given by

(c1A
m + c2A

k)−1 =
1

c3
1 + c3

2

(

c2
1A

p − c1c2A
q + c2A

r
)

,

where 2m ≡3 p, m + k ≡3 q and 2k ≡3 r.

Proof. It follows by Theorem 2.1 and the fact that rank(Ap) = rank(A), for any

p ∈ N.

As a corollary we get a result from [2].

Corollary 2.6. [2] Let A ∈ C
n×n
r be a generalized projector and let c1, c2 ∈ C,

c3
1 + c3

2 6= 0. Then

(c1A + c2A
∗)† =

1

c3
1 + c3

2

(c2
1A

2 − c1c2A
3 + c2

2A).
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Let us recall that for the matrices A,B ∈ C
n×m, a matrix A is less than or equal

to B with respect to the star partial ordering, denoted by A
∗

≤ B [8], if

A∗A = A∗B and AA∗ = BA∗.

If A ∈ CEP
n , then for any B ∈ C

n×n,

A
∗

≤ B ⇔ AB = A2 = BA.

In the next theorem, we present the form of Moore-Penrose inverse, i.e., the group

inverse of c1A
m + c2B

k under the condition that A,B are generalized projectors and

AB = BA = A2. Remark that the same result holds if we suppose that A,B are

generalized projectors such that B − A ∈ CGP
n ; or A ∈ CEP

n , B ∈ CHGP
n such that

A
∗

≤ B.

Theorem 2.7. Let c1, c2 ∈ C, c2 6= 0, c3
1 + c3

2 6= 0 and m, k ∈ N. If A ∈ C
n×n

and B ∈ C
n×n are hypergeneralized projectors such that AB = BA = A2, then

(c1A
m + c2B

k)† =
1

c3
1 + c3

2

(

c2
1A

2m − c1c2A
m+k + c2

2A
2k

)

+
1

c2
B2k(In − A3),(2.4)

where At =







A3, t ≡3 0

A, t ≡3 1

A2, t ≡3 2

and Bs =







B3, s ≡3 0

B, s ≡3 1

B2, s ≡3 2

.

Proof. By [5, Corollary 3.9] and the fact that AB = BA = A2, we have that

A = U(A1 ⊕ 0t,t ⊕ 0)U∗, B = U(B1 ⊕ B2 ⊕ 0)U∗,

where A1, B1 ∈ C
r×r, B2 ∈ C

t×t are nonsingular and A1B1 = B1A1 = A2
1. Evidently

A1 = B1. If in addition A and B are hypergeneralized projectors, then A3
1 = Ir and

B3
2 = It. Hence,

c1A
m + c2B

k = U
(

(c1A
m
1 + c2A

k
1) ⊕ c2B

k
2 ⊕ 0

)

U∗.

By (2.1) we get that c1A
m
1 + c2A

k
1 is nonsingular and that

(c1A
m
1 + c2A

k
1)−1 =

1

c3
1 + c3

2

(

c2
1A

2m
1 − c1c2A

m+k
1 + c2

2A
2k
1

)

.

Now, by using that

A3 = U(Ir ⊕ 0 ⊕ 0)U∗, B3 − A3 = U(0 ⊕ It ⊕ 0)U∗,

we have that (2.4) holds.
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Remark 2.8. If A ∈ CEP
n , B ∈ CHGP

n , and A
∗

≤ B, we can conclude that B −A

is a hypergeneralized projector. If A and B are hypergeneralized projectors, then

A
∗

≤ B or AB = A2 = BA is sufficient for B − A to be a hypergeneralized projector

[9].

Theorem 2.9. Let A ∈ C
n×n
r and B ∈ C

n×n be commuting hypergeneralized

projectors. Let c1, c2 ∈ C \ {0}, c3
1 + c3

2 6= 0 and m, k, l ∈ N. Then

[

Am(c1A
k + c2B

l)

]†

=
1

c3
1 + c3

2

(

c2
1A

2(m+k)B3 − c1c2A
(2m+k)Bl + c2

2A
2mB2l

)

+
1

c1
A2(m+k)(In − B3),

where At =







A3, t ≡3 0

A, t ≡3 1

A2, t ≡3 2

and Bs =







B3, s ≡3 0

B, s ≡3 1

B2, s ≡3 2

.

Proof. The proof is similar to the proof of the Theorem 2.1.

The following theorem presents a necessary and sufficient condition for the invert-

ibility of c1A + c2B + c3C in the case when A,B,C are commuting hypergeneralized

projectors such that BC = 0 and c1, c2, c3 ∈ C\{0}, c3
1 + c3

2 6= 0, c3
1 + c3

3 6= 0. Remark

that the same result holds if we suppose that A,B,C ∈ G such that B +C ∈ CGP
n , or

when A,B,C ∈ H such that B
∗

⊥ C with the same conditions for the scalars c1, c2, c3.

The notion of star-orthogonality was introduced by Hestenes [10]. Let us recall

that matrices A,B ∈ C
n×m are star-orthogonal, denoted by A

∗

⊥ B, if AB∗ = 0 and

A∗B = 0. It is well-known that for A,B ∈ CEP
n ,

A
∗

⊥ B ⇔ AB = 0 ⇔ BA = 0.

If A,B are hypergeneralized projectors, then A
∗

⊥ B or AB = BA = 0 is sufficient for

A + B to be a hypergeneralized projector (see [9]).

Theorem 2.10. Let c1, c2, c3 ∈ C \ {0}, c3
1 + c3

2 6= 0, c3
1 + c3

3 6= 0. If A,B,C ∈

C
n×n are commuting hypergeneralized projectors such that BC = 0, then the following

conditions are equivalent:

(i) c1A + c2B + c3C is nonsingular,

(ii) B3 + C3 + A(In − B3 − C3) is nonsingular,

(iii) rank(A(In − B3 − C3)) = n − (rank(B) + rank(C)).
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Proof. By [5, Corollary 3.9], we have that

B = U(B1 ⊕ 0s,s ⊕ 0)U∗, C = U(0r,r ⊕ C1 ⊕ 0)U∗,

where B1 ∈ C
r×r, C1 ∈ C

s×s are nonsingular and U is unitary. Since B2 = B† and

C2 = C†, we get that B3
1 = Ir and C3

1 = Is. Also, since A commutes with B and

C, it follows that A = U(A1 ⊕ A2 ⊕ A3)U
∗ where A1, A2, A3 are hypergeneralized

projectors and A1B1 = B1A1, A2C1 = C1A2.

Now,

c1A + c2B + c3C = U
(

(c1A1 + c2B1) ⊕ (c1A2 + c3C1) ⊕ c1A3

)

U∗,

so c1A+ c2B + c3C is nonsingular if and only if c1A1 + c2B1, c1A2 + c3C1, and A3 are

nonsingular. By Proposition 2.3 we get that c1A1B
2
1 + c2I is nonsingular. Now, by

c1A1 +c2B1 = (c1A1B
2
1 +c2I)B1 it follows that c1A1 +c2B1 is nonsingular. Similarly,

we get that c1A2 + c3C1 is nonsingular. Thus, c1A + c2B + c3C is nonsingular if and

only if A3 is nonsingular i.e., B3 + C3 + A(In − B3 − C3) is nonsingular. Hence,

(i) ⇔ (ii). Also, we have that A3 is nonsingular if and only if rank(A3) = n− (r + s)

which is equivalent with the fact that rank(A(In − B3 − C3)) = n − (r + s) =

n − (rank(B) + rank(C)). So, (i) ⇔ (iii).

Remark that from the proof of Theorem 2.10 and Theorem 2.1, if one of the

conditions (i) − (iii) holds, we get the formula for the inverse of c1A + c2B + c3C:

(c1A + c2B + c3C)−1 =
1

c3
1 + c3

2

(

c2
1A

2B3 − c1c2AB + c2
2A

3B2
)

+
1

c2
B2(In − A3)

+
1

c3
1 + c3

3

(

c2
1A

2C3 − c1c3AC + c2
2A

3C2
)

+
1

c3
C2(In − A3)(2.5)

+
1

c1

(

B3 + C3 + A(In − B3 − C3)
)−1

(In − B3 − C3),

which will be useful later in Theorem 2.11.

In the following theorem, under the assumption that c1, c2, c3 ∈ C, c1 6= 0, c3
1 +

c3
2 6= 0, c3

1 + c3
3 6= 0, we show that c1In + c2A + c3B is nonsingular, in the case when

A, B are commuting hypergeneralized projectors such that AB = 0. Remark that

the same theorem holds if we suppose that A,B are generalized projectors such that

A + B ∈ CGP
n or when A, B are hypergeneralized projectors such that A

∗

⊥ B.

Theorem 2.11. Let c1, c2, c3 ∈ C, c1 6= 0, c3
1 + c3

2 6= 0, c3
1 + c3

3 6= 0. If

A, B ∈ C
n×n are commuting hypergeneralized projectors such that AB = 0, then

c1In + c2A + c3B is nonsingular and
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(c1In + c2A + c3B)−1 =
1

c3
1 + c3

2

(

c2
1A

3 − c1c2A + c2
2A

2
)

+
1

c3
1 + c3

3

(

c2
1B

3 − c1c3B + c2
3B

2
)

+
1

c1
(In − A3 − B3).

Proof. The proof follows by Theorem 2.10 and (2.5).

Corollary 2.12. Let c1, c2, c3 ∈ C \ {0}, c3
1 + c3

2 6= 0, c3
1 + c3

3 6= 0. If

A,B,C ∈ C
n×n are commuting hypergeneralized projectors such that BC = 0, then

the invertibility of c1A+c2B+c3C is independent of the choice of the scalars c1, c2, c3.

Corollary 2.13. Let c1, c2, c3 ∈ C\{0}, c3
1 +c3

2 6= 0, c3
1 +c3

3 6= 0. If A,B,C ∈ G

such that B + C ∈ CGP
n or A,B,C ∈ H such that B

∗

⊥ C, then the invertibility of

c1A + c2B + c3C is independent of the choice of the scalars c1, c2, c3.
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[6] J. Beńıtez and N. Thome. Characterizations and linear combinations of k-generalized projec-

tors. Linear Algebra Appl., 410:150–159, 2005.

[7] S.L. Campbell and C.D. Meyer Jr. Generalized Inverses of Linear Transformations. Pitman,

London, 1979.

[8] M.P. Drazin. Natural structures on semigroups with involution. Bull. Amer. Math. Soc.,

84:139–141, 1978.

[9] J. Großand G. Trenkler. Generalized and hypergeneralized projectors. Linear Algebra Appl.,

264:463–474, 1997.

[10] M.R. Hestenes. Relative hermitian matrices. Pacific J. Math., 11:225–245, 1961.

[11] G.W. Stewart. A note on generalized and hypergeneralized projectors. Linear Algebra Appl.,

412:408–411, 2006.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 22, pp. 1129-1137, November 2011


