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ON MATRICES WITH ALL MINORS NEGATIVE*

SHAUN M. FALLAT! AND P. VAN DEN DRIESSCHE?

Abstract. A matrix is called sign regular of order k if every minor of order ¢ has the same
sign for each 72 = 1,2,...,k. At one extreme of the sign regular matrices lies the well studied and
important class of totally positive matrices. The purpose here is to initiate a study of the other
extreme of sign regular matrices, namely the totally negative matrices (i.e., all minors negative).
Many aspects of this class are considered including: existence, spectral properties, inverses, Schur
complements, and factorizations.
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1. Introduction. Let A be an mxn real matrix, « C {1,...,m}, 8 C {1,...,n}
be index sets, and a¢ denote the complement of . Let A[a|3] denote the submatrix of
A lying in rows indexed by a and columns indexed by 3, with the principal submatrix
Ala|a] abbreviated to Afa]. For 1 < k < min{m,n}, the k' compound matrix Ay, of
A is the (TZ) X (Z) matrix with a, § entry equal to det A[a|8] where |a| = || =k
and the index sets are ordered lexicographically. Let 1 < k < min{m,n} and fix a
k-vector of signs € = (e1,...,€e;) with €; € {£1}; such a vector is called a signature.
Asin [1, (2.3)], [12, p. 12], an m x n matrix A is (strictly) sign reqular of order k
with signature € if for each p = 1,...,k, €, A4, is entrywise (positive) non-negative; see
also [8], [9], [15]. When k = min{m,n}, a (strictly) sign regular matrix of order k is
referred to as simply a (strictly) sign regular matrix. Note that (strictly) sign regular
matrices are called (strictly) fixed-sign matrices in [7, Chapter V].

In the case that k = min{m,n} and ¢; = 1, for j = 1,2,...,k, then A is called
(strictly) totally positive (usually abbreviated (STP) TP). By contrast, we focus on
the case that k& = min{m,n} and ¢; = —1, for j = 1,2,...,k; and we call such a
(strictly) sign regular matrix (totally negative) totally non-positive, which we abbre-
viate to (t.n.) t.n.p. Equivalently A is a (t.n.) t.n.p. matrix if the determinant of all
its minors of all orders, including 1, are negative (non-positive). In [9, p. 138] square
t.n. matrices are defined (they are referred to as strictly totally negative) and a char-
acterization is given in terms of the parameters obtained from a Neville elimination.

For m = n = k, if the requirement of (negativity) non-positivity is placed only on
the principal minors, then A is called (partially negative, p.n.) partially non-positive,
p-n.p., by Johnson [11]. A p.n. matrix is called an N-matrix in economic models;
see Bapat and Raghavan [2, p. 298], [14], and [16, Section 6], where p.n. matrices
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arise in conjunction with Lemke’s algorithm for solving linear and convex quadratic
programming problems. Evidently, for fixed n, {t.n. matrices} C {t.n.p. matrices} C
{p-n.p. matrices}, and {t.n. matrices} C {p.n. matrices}.

Whereas TP and STP matrices have been studied extensively (see, e.g., [1], [7]
and references therein) and are used in such applications as economics, we know of
no study of t.n. or t.n.p. matrices other than that in [9]. We begin such a study here,
and focus mainly on t.n. matrices. In Section 2, we give some basic results, including
spectral properties, in Section 3 we provide an algorithmic way of generating t.n.
matrices and in Section 4 we prove results on triangular factorizations of t.n. matrices.
Finally, in Section 5, we state some open problems and avenues for future research
related to t.n. matrices.

2. Basic Results. If A is a 2 X 2 t.n. matrix, then —PA is a STP matrix, where
P is the permutation matrix that reverses the rows. But for n > 3 there is no such
easy relation. The Cauchy-Binet formula can be used to prove the following product
results for matrices; see [1, Thm. 3.1].

PROPOSITION 2.1. Let A be an m x n (t.n.) t.n.p. matriz and let B and C be
n x p t.n. and STP matrices, respectively. Then AB is (strictly) sign regular of order
min{m,n, p} with signature e = (1,1,...,1), and AC is (strictly) sign regular of order
min{m,n, p} with signature e = (—1,—1,...,—=1). In particular, if m = n = p, then
AB is a (STP) TP matriz and AC is a (t.n.) t.n.p. matriz.

It is well known that Fischer’s inequality holds for TP matrices (see [1, (3.6)],
[13]), and because of the signs it follows trivially with strict inequality for t.n. matrices.

PROPOSITION 2.2. (Fischer’s Inequality) Let o, C {1,...,min{m,n}} with
anNB=a¢, If A is an m X n t.n.p. matriz, then

det Ala U 8] < det A[a] det A[B],

with strict inequality holding if A is a t.n. matriz.

In the case m = n, the following result identifies some spectral properties of t.n.
matrices.

THEOREM 2.3. If A is an n X n t.n. matriz, then all the eigenvalues of A are
real and distinct. Exactly one eigenvalue is negative, and this eigenvalue is simple,
has the largest modulus and has an eigenvector with all entries positive.

Proof. By considering the characteristic equation (which uses sums of only the
principal minors), [11, Thm. 2] shows that if A is a p.n. matrix, then A has exactly
one negative eigenvalue, with every other eigenvalue having no larger modulus. This
result thus holds for t.n. matrices, and furthermore, by Perron Frobenius (since —A
is entrywise positive), this eigenvalue has modulus greater than that of every other
eigenvalue, and its eigenvector can be taken entrywise positive. The fact that all
eigenvalues of A are real and distinct follows from [1, Thm. 6.2], where this is proved
for any square strictly sign regular matrix. O

By continuity it follows from Theorem 2.3, that if A is an n X n t.n.p. matrix, then
the eigenvalues of A are real and at most one is negative. See [1, Section 6] for other
observations including results on the eigenvectors of square sign regular matrices,
and [4] where the distribution of eigenvalues of sign regular matrices is considered
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(although there appears to be an error in [4, Thm. 4] regarding the sign of the pt*
eigenvalue of a sign regular matrix).

Let S be the n x n diagonal matrix with (i,4) entry equal to (—1)*~! for i =
1,2,...,n, thus S = diag(1, —1,...,+£1). It is well-known (see [1, Thm. 3.3(c)]) that
if A is STP (TP, invertible), then SA~1S is STP (TP, invertible). If A isann x n
t.n. matrix, then A is nonsingular, and the sign of the (i, j) entry of A=! is (—1)+J,
i.e., A~! has a “checkerboard pattern”. However, a signature similarity of A=! is sign
regular, as the following result shows.

THEOREM 2.4. Let A be an n x n t.n. matriz. Then SA™'S is strictly sign
regular with signature e = (1,...,1,—1).

Proof. Since det A < 0, it follows that det SA™'S < 0. Using Jacobi’s identity as
in [1, (1.32)],

det A[5¢|af]

-1 _
det SA™S[e|f] = ot A

> 0,
since A is t.n. and « and § are proper subsets of {1,2,...,n}. O

By using an argument similar to that in the proof of Theorem 2.4, we have the
following result, which is used in our first procedure for generating t.n. matrices.

REMARK 2.5. If A is strictly sign regular with signature ¢ = (1,...,1,—1), then
SA7LS is t.n.

We also note that a result analogous to Theorem 2.4 holds for t.n.p. matrices;
namely, if A is t.n.p. and invertible, then SA~!S is sign regular with signature ¢ =
(1,1...,1,-1).

For an n x n matrix A with A[«] invertible, the Schur complement of Ala] in A,
denoted by A/A[a], is defined as

A/Alo] = Alaf] - Alo”l0](Ao]) ™ Ala]a”]

It is well-known (see [1, (1.29)]) that if A is invertible, then the inverse of A/A[q]
is equal to A7'[a]. We now present a result about the Schur complement of a t.n.
matrix.

THEOREM 2.6. Let A be an n x n t.n. matriz and o C {1,2,...,n}. Then the
Schur complement A/A[a] is similar to o STP matriz vie a diagonal matriz with
diagonal entries £1.

Proof. From the previous remarks A/A[a] = (A7 '[ac])~!. Since A is t.n., the
result of Theorem 2.4 implies that A~! = SBS, where S = diag(1,—1,---,%1)
and B is strictly sign regular with signature e = (1,1,...,1,—1). Then A/Ala] =
(SBS[ac]) ! = (S[af]B[a‘]S[af]) ! = S[a](B[a]) "1S[ac]. The signature of B im-
plies that B[a‘] is STP (as « is nonempty), and hence by [1, Thm. 3.3], (B[a]) ™! =
S'CS', where S’ = diag(1,—1,...,£1) and C is a STP matrix. Therefore

A/A[a] = S[a°)S'CS'S[a’] = S"CS",

where S" = S[ac]S’ is a diagonal matrix with diagonal entries £1. O
The next observation follows immediately from the proof of the previous result.
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COROLLARY 2.7. Let A be an n xn t.n. matriz and let « C {1,2,...,n}. If a® is
an index set based on consecutive indices, then A/A[c] is a totally positive matriz.
Proof. Observe from the proof of Theorem 2.6 that

A/Ale] = (S[a“]S")C(S"S[a)),

where C is STP and S = diag(1,—1,...,£1) (n x n) and S’ = diag(1,-1,...,£1)
(laf] x |a®]). Thus, if a¢ is based on consecutive indices, then S[ac]S’ = £1. In either
case, A/A[a] is STP. O

3. Generating t.n. Matrices. At first glance, it is not immediately clear that
t.n. matrices exist for all values of m and n. However, this is indeed true, and t.n.
matrices are relatively easy to generate. We consider here two generating schemes
both involving STP matrices. Thus we assume that STP matrices are easy to generate;
indeed (see [6, Thm. 5]) n x n STP matrices can be parameterized via bidiagonal
factorizations and the rectangular case is an easy extension [5, Lemma 2.3]. We note
here that we do not claim nor expect that these procedures generate all (or even a
dense subset) of the t.n. matrices for given m and n. We view these procedures as a
means of verifying the existence of this particular class of matrices. To begin we state
a result for STP matrices; see [5, Thm. 4.2]. Matrix E;; denotes the n x n standard
basis matrix whose only nonzero entry is a 1 in the (i,5)** position.

LEMMA 3.1. Let A be an n x n STP matriz. Then A = A — cFEy1, where
T = Wt?--,n}] is singular and all of its proper minors are positive.

We now provide our first procedure for generating (square) t.n. matrices. Recall
that S = diag(1,—1,...,+£1).

PROPOSITION 3.2. Let A be an n x n STP matriz, and define A = A — zFq,

where © = Wm. Then there exists t > 0 (small) such that B = A —tEy, is

nonsingular and SB~1S is t.n.

Proof. By Lemma 3.1, A is singular and all of its proper minors are positive.
Thus, by continuity, there exists ¢ > 0 (small) such that B = A — tEy; has negative
determinant and all proper minors positive. Hence B is strictly sign regular with
signature e = (1,1,...,1,—1). Therefore, by Remark 2.5, SB~1§ is t.n. O

The above procedure is illustrated in the following example.

3 21
EXAMPLE 3.3. Let A = 2 3 2 |. Then A is STP with det A = 8 and
1 2 3

det A[{2,3}] = 5 (so x = 8/5). Then A = A —2F;;, = . If we choose

[ NCYSTER
N W N
W N =

t = .05, then
) -20 -16 —4
S(A—tE;)™1S=| -16 —12.2 -28
-4 28 -2

which is t.n.
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Our second procedure uses Proposition 2.1 to generate t.n. matrices. First we
need the following lemma.

LEMMA 3.4. Let A be an n x n matriz with det A < 0 and all proper minors
negatiwe. If C = [c;;] = A+ tE11 (t > 0) has ¢c11 <0, then C is t.n.

Proof. Suppose C = [¢;;] = A+tEq1, where t > 0 is chosen so that ¢11 < 0. Then
for any o, 8 C {1,2,...,n} with |a| = ||

det Ala|B] + tdet Ala \ {1}|8\ {1}], ifleang
detC[a|,B]={ detA%aIﬂ%, A if1§anﬁ.

Thus det Cla|f] < det A[a|8], for all a, B, except when a = 8 = {1}. But in this case
c11 < 0 by hypothesis. Also det C' < 0 since t > 0. Thus every minor of C is negative.
a

Note that there is a result analogous to Lemma 3.4 for increasing the (n, n) entry.

The following procedure is inductive in nature. Consequently, we assume (using
the previous procedure, for example) that t.n. matrices have already been generated
for small orders.

THEOREM 3.5. Letn > 2. Assume that A is an (n—1) X (n— 1) t.n. matriz, and
that B,C are two n x (n—1) STP matrices. Then BACT +t,Ey, and BACT +t,E,,
are n X n t.n. matrices for sufficiently small positive t; with j =1 or n.

Proof. Matrix F = BAC" is an n x n matrix with all proper minors negative (by
Cauchy-Binet) and det F = 0. By Lemma 3.4 increasing the (1,1) (or (n,n)) entry of
F, while keeping it negative, yields an n x n t.n. matrix, as desired. O

This procedure is illustrated in the following example.

11
EXAMPLE 3.6. Let A = [ :g :g ] and B=| 1 2 |. Then Ais t.n. and
1 3
-9 -14 -19
BABT = | -13 —20 -27
-17 -26 -35

has zero determinant. Increasing the (1,1) (or (3,3)) entry (keeping it negative) of
BABT yields a t.n. matrix.

We close this section by noting that if n X n t.n. matrices exist, then m x n t.n.
matrices also exist. This can be seen by multiplying an m x n STP matrix and an
n x n t.n. matrix and using Proposition 2.1.

4. Triangular Factorizations. There have been several investigations into LU
(or LDU) factorizations of STP and TP matrices into TP matrices; see, e.g., [1], [3].
In this section we explore the properties of triangular factorizations of t.n. matrices;
see also [9]. An n x n triangular matrix is said to be ASTP if all minors that are not
zero by virtue of the zero pattern are necessarily positive. If A is STP, then A can be
written as A = LDU where L (U) are lower (upper) ASTP (unit diagonal) and D is
a positive diagonal matrix; see [1, Thm. 3.5], [3, Thm. 1.1]. We use this result to aid
in a factorization result for t.n. matrices.
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THEOREM 4.1. Let A be an n X n t.n. matriz. Then A can be written as A =
UDL, where L (U) are lower (upper) ASTP matrices (unit diagonal) and D is a
diagonal matriz with all diagonal entries positive except for a negative (n,n) entry.

Proof. Let B=SA~'S, for S = diag(1,—1,...,%1). Then, by Theorem 2.4 B is
strictly sign regular with signature e = (1,1,...,1,—1). Choose z > 0 large enough
so that C' = B + xE,, is STP (it is clear that such an x exists). Then C' = L'D'U’
where L', U’ are ASTP (unit diagonal) and D is a positive diagonal matrix. Consider

B=L'D'U -zE,,
_| L1 O D; 0 U w
—[11 1H0 dnnHo 1]_“’E""

_ Ll 0 D1 0 Ul (1
Tl L1 0 duyw—= 0 1
— LID”UI.

Since D’ is a positive diagonal matrix, D; is a positive diagonal matrix, and since
det B < 0, it follows that dy, —z < 0. Also A™' = SBS = SL'D"U'S, and hence

A= S(U/)—l(D//)—l (Ll)—ls
= (S@) 'HD") NS S)
=UDL,

where U = S(U')"!S and L = S(L')~1S and D = (D")~!. By the remarks preceding
Theorem 2.4 it follows that U, L are ASTP and D has all diagonal entries positive
except for the (n,n) entry, which is negative. O

It is well-known (and not difficult to verify) that if p is the reverse permutation
matrix induced by the map i — n—i+1, then pApis STP (TP) if and only if A is STP
(TP). Not surprisingly, a similar result holds for t.n. and t.n.p. matrices. Namely,
pAp is t.n. (t.n.p.) if and only if A is t.n. (t.n.p.). A consequence of this simple fact
and the result of Theorem 4.1 is that any t.n. matrix A can be written as A = LDU
where L (U) are lower (upper) ASTP matrices (unit diagonal) and D is a diagonal
matrix with diagonal entries positive except for a negative (1,1) entry.

The converse to Theorem 4.1 does not hold in general; for example,

N I R

which is not t.n. It is true that any matrix U DL satisfying the conditions in Theorem
4.1 will have, for example, det UDL[{k,...,n}] <0, for k =1,2,...,n. However, the
product UDL need not even be entry-wise negative. In the above example, only the
(1,1) entry is not negative and all remaining minors are negative. This observation
leads to our next result; see [9] for a similar result, in which properties of the Neville
elimination are used in the proof.

THEOREM 4.2. Suppose A is an n X n matriz with a1, < 0 written as A =UDL,
where L (U) are lower (upper) ASTP matrices (unit diagonal) and D is a diagonal
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matriz with all diagonal entries positive except for a negative (n,n) entry. Then A is
totally negative.

Proof. First observe that A is invertible and det A < 0. To prove A is t.n.,
we show that B = SA™LS, for S = diag(1,—1,...+ 1) is strictly sign regular with
signature € = (1,1,...,1,—1), and apply Remark 2.5. If B = SA™1S, then B can
be written as B = L'D'U’, where L' (U') are lower (upper) ASTP matrices (unit
diagonal) and D’ is a diagonal matrix with all diagonal entries positive except for a
negative (n,n) entry. Consider

Bl{1,...,n—1}{1,...,n}]
=L'[{1,...,n—1}D'{1,...,n— LJU'{L,...,n— 1}|{1,...,n}].

Extending these (n — 1) x (n — 1) submatrices of L' and D’ to n X n while keeping
them lower ASTP and positive diagonal, respectively, and applying the result of [3,
Thm. 1.1}, shows that the above matrix is STP. Similarly, B[{1,...,n}|{1,...,n—1}]
is STP. The only remaining minors to verify are of the form det B[a|S] with n € anp.
By [1, Thm. 2.5] it is enough to check minors with row and column index sets based
on consecutive indices. Hence among the remaining minors to be checked, it is enough
to determine the sign of det B[{k,...,n}], for k =1,2,...,n. For k =1, det B < 0.
For k = 2,

det B[{2,...,n}] = det SAT'S[{2, ..., n}] = det A"'[{2,...,n}] = %[E}]

since a1 is negative (the last equality following from Jacobi’s identity). Consider the
case k = 3. By Sylvester’s identity (see [10, 0.8.6] and [5])

>0,

0 < detB[{2,...n}]detB[{3,...,n — 1}]
=detB[{3,...,n}]detB[{2,...,n — 1}]
—detB[{2,...,n — 1}|{3,...,n}]detB[{3,...,n}{2,...,n — 1}].

Hence it follows that detB[{3,...,n}] > 0. The remaining cases follow inductively
using the above relation as k increases to n. Hence B is strictly sign regular with
signature € = (1,...,1 —1). Thus A is t.n., as desired. O

Combining the results of Theorems 4.1 and 4.2 yields the following result (see
also [9, Thm. 3.4)).

COROLLARY 4.3. An n x n matriz A with a11 < 0 is totally negative if and only
if A can be written as A = UDL, where L (U) are lower (upper) ASTP matrices
(unit diagonal) and D is a diagonal matriz with all diagonal entries positive except
for a negative (n,n) entry.

5. Open Issues. We conclude with a variety of open problems and unresolved
issues related to totally negative and sign regular matrices. Recall from Proposition
2.1 that the product of any two square t.n. matrices is STP. We are interested in a
converse to this result, and propose the following problem.

PrOBLEM 5.1. Can any n x n totally positive matrixz be written as the product of
two totally negative matrices?
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There is also an analogous problem for totally nonnegative matrices; namely, can
any totally nonnegative matrix be written as a product of two totally nonpositive
matrices?

An interesting special case of Problem 5.1 deals with square roots of STP matrices.

PROBLEM 5.2. Does an n xn totally positive matriz have a totally negative square
root (i.e., can a STP matriz A be written as A = B, where B is t.n.)?

We now turn to a problem dealing with Fischer’s inequality for sign-regular ma-
trices. Recall that in Proposition 2.2 it is noted that Fischer’s inequality holds for
TP matrices and trivially for all t.n. matrices. However, Fischer’s inequality does not
hold in general for every strictly sign regular class of matrices, even when there is no
obvious sign contradiction by virtue of the sign regularity. For example, consider

-0.03 -1 -1
A=| -1 -2 -1
-1 -1 -0.01

Then A is strictly sign regular with e = (—1,—-1,1), i.e., A has all proper minors
negative, but det A is positive. However (to 2 d.p.), 0.04 = det A > ags det A[{1,2}] =
0.01.

PROBLEM 5.3. Describe all the signatures € of order n for which all n x n sign
regular matrices with signature e satisfy Fischer’s inequality.
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