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Abstract. In this paper, necessary and sufficient conditions for a number of reverse order laws
and mixed-type reverse order laws are derived by using the maximal ranks of the generalized Schur
complements.
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1. Introduction. Let C™*™ denote the set of m X n matrices with complex
entries and C™ denote the set of m-dimensional vectors. I denotes the identity
matrix of order k, O, xy, is the m x n matrix of all zero entries (if no confusion occurs,
we will drop the subindex). For a matrix A € C™*", A*, R(A) and r(A) denote the
conjugate transpose, the range space and the rank of the matrix A, respectively.

We recall that a generalized inverse X € C"*™ of a given matrix A € C"™*" is a
matrix which satisfies some of the following four Penrose equations [2]:

(11) (1) AXA=A4, (2) XAX =X, (3) (AX)" = AX, (4) (XA)* = XA.

For any matrix A € C"™*" let A{i,j,...,k} denote the set of matrices X € C"*™
which satisfy equations (i), (j),..., (k) from among equations (1) — —(4) of (1.1). A
matrix in A{i,j,..., k} is called an {4, 7, ..., k}-inverse of A and denoted by A(7»F),
In particular, an n X m matrix X of the set A{1} is called a {1}-inverse or a g-inverse
of A. X is called a {1,3}-inverse or a least squares g-inverse of A if it is an element

*Received by the editors on January 18, 2011. Accepted for publication on July 2, 2011. Handling
Editor: Oskar Maria Baksalary.

fSchool of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, P.R. China (Present
address: Department of Mathematics and Physics, Wuyi University, Jiangmen 529020, P.R. China
(xzpwhere@163.com)).

fSchool of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, P.R. China
(bzheng@Ilzu.edu.cn). Supported by the Fundamental Research Fund for Physics and Mathematic of
Lanzhou University, the Gansu Project of Science and Technology (no. 096RJZA049), the National
Natural Science Foundation of China (no. 11171371), and the Fundamental Research Funds for the
Central Universities (no. lzujbky-2009-49), China.

1085



Electronic Journal of Linear Algebra ISSN 1081-3810

A publication of the International Linear Algebra Society
Volume 22, pp. 1085-1105, November 2011

1086 Z.P. Xiong and B. Zheng

of A{1,3}; X is called a {1,4}-inverse or a minimum norm g-inverse of A if it is
an element of A{1,4}. The Moore-Penrose inverse of A is an element of the set
A{1,2,3,4}. Any matrix A admits a unique Moore-Penrose inverse, denoted by Af.
We refer the readers to [2, 15] for basic results on the generalized inverses.

Let A;, 1 = 1,2,...,n, be n matrices such that the product A;As -+ A, exists.
If each of the n matrices is nonsingular, then the product A; As - - - A,, is nonsingular
too, and the inverse of Aj Ay --- A, satisfies the reverse order law (A1 Ay -+ A,)7! =
ASTALY - AT However, this reverse order law does not hold for generalized in-
verses. Hence the necessary and sufficient conditions for the reverse order laws of the
generalized inverses of multiple matrix products to hold yield a class of interesting
problems that are fundamental in the theory of generalized inverses of matrices and
statistics. They have attracted considerable attention since the middle 1960s, and
recently many interesting results have been obtained, see [1, 3, 4, 5, 6, 8, 9, 10, 13,
14, 16, 17, 18, 19, 20, 21].

In the paper [6], Liu and Wei studied the reverse order law for least squares
g-inverses of multiple matrix products and derived some necessary and sufficient con-
ditions for

(1.2) An{1,3}A, 1 {1,3}--- A1{1,3} C (A1 45 --- A,){1,3}
and
(1.3) A {14} A, 1{1,4} - A {1,4} C (A1 Ay --- A,){1, 4}

by using P-SVD (Product Singular Value Decomposition). In this paper we revisit
these two reverse order laws by using the maximal rank of the generalized Schur
complements [12]. Some new simpler equivalent conditions for the inclusions (1.2)
and (1.3) are obtained in terms of only the ranks of the known matrices. Compared
with the conditions given in [6], our conditions can be easily checked and their proofs
are very simple. Furthermore, with the same technique the necessary and sufficient
conditions for the following mixed-type reverse order laws are derived:

(1.4) An{1,3}A,-1{1,3}--- A1{1,3} C (A1 Ay --- A, {1},
(1.5) Ap{1,4 A, 1 {1, 4} - A1 {1,4} C (A1 Ay --- Ap){1},
(1.6) Ap{1}An {1} - Ar{1} C (A1 Az - An){1, 3},
and

(1.7) Ap{1}An 1 {1} -+ A {1} C (A1 4z - A,){1,4}.
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For the sake of the simplicity in the following discussion, we will adopt the fol-
lowing notations for the matrix products with 4; € Cli*li+1 and X; € Cli+1xli,
1=1,2,...,m:

(1.8) A = AAir - Ay, 27 = XPXG - XS, 1<i<j<n,

In particular, o/ = A;, @ = AjAy---Aj, 27 = X and 27 = X{X; - X,
j=1,2,...,n,and define 277, , = I; ., . Also, in order to present the necessary and
sufficient conditions for the reverse order laws (1.2), (1.3) and the mixed-type reverse

order laws (1.4)-(1.7), we define the following two matrix functions:

(1.9) (VRN 0. CTP. CH. ¢

:A;; :L*lAT_A:, ;71A>{A1A2AanXn71X1
and
(110) PAl,AQ,...,An(X17X23"'7Xn)

=A1Ay - Ay — A1 As - AR X X1 - Xn A Ay - - Ay

The main tools in the later discussion are the following three lemmas. The first
lemma gives the formulas of the maximal ranks of the generalized Schur complements
related to the generalized inverses [11, 12], and the second shows the characterizations
of some generalized inverses of a matrix.

LeEMMA 1.1. [11,12] Let A € C™*", B € C™*!, C € CF*" and D € CK*!. Then

B A B
—CAMDBY = mi _ .
(1.112‘(1)m€f%4x{1} r(D—CAYYDB) mm{r(C, D),r ( D ) )T ( c D ) T(A)}a

: A*A A*B B
— (1,3) — mi _
(1.12)}4(1‘31)%22({1’3} r(D — CA“? B) = min {r ( o > r(A),r < > } .

LEMMA 1.2. [10] Let A € C™*" and G € C"*™. Then

(1.13) G e A{l} & AGA = A;
(1.14) G e A{1,3} & A"AG = A*;

(1.15) G € A{1,4} & GAA* = A*,
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LEMMA 1.3. [20] Let A; € ClXtit1 §=1,2,... n. Then

(1.16) lo+lsg+ -+l +r(Ar--Ap) > (A1) +r(A2) + - +7r(A4p).
In addition, the following rank equalities [7] will be needed in the sequel:

(1.17) r(A, B)=r(A)+r(EsB) =r(B)+r(EpA),

(1.18) r (é) = r(A) + 7(CF4) = r(C) + r(AFc),

where Eq4 =1 — AAT and Fy =1 — AT A.

This paper is organized as follows. The necessary and sufficient conditions for the
reverse order laws (1.2) and (1.3) to hold are investigated in Section 2. In Section 3
we study the necessary and sufficient conditions for the mixed-type reverse order laws
(1.4) and (1.5). Finally, the necessary and sufficient conditions for the mixed-type
reverse order laws (1.6) and (1.7) are discussed in Section 4.

2. The necessary and sufficient conditions for the inclusions (1.2) and
(1.3). Let Ta, ay,...4,(X1,Xo,...,X,) be as in (1.9). It is easy to see from the
characterization (1.14) of {1,3}-inverses that the reverse order law (1.2) holds if and
only if the following rank identity

2.1 T X1, Xo,..., X)) =

(2.1) e (Tay g, an (X1, Xoy oo X)) = 0

holds for any X; € A;{1,3},7=1,2,...,n. Hence, to give the necessary and sufficient
conditions for the inclusion (1.2), we first state the following theorem:

THEOREM 2.1. Let A; € Clixbitr =12 ....n, &, 1<i<j<mn, beasin
(1.8) and Ta, a,.... A, (X1, X2,...,X,) be as in (1.9). Then

,,,,,

(2.2) Xn7X21:af7(~~,X1 (Ta, Ay, A, (X1, X2, ..., X))
Ax o) 1)
o) Ar 1) B
—r : : . : =) r(4),
9] 9] A =2
N A A N C A

where X; varies over A;{1,3}, i=1,2,...,n.
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Proof. Let .;afij7 %j, 1<i<j<n,beasin (1.8). Then according to Lemma 1.1
(1.12) with A= Ay, B=1;,, D = (&")* and C = (o4")* " (Z35")*, we have

(2.3) Ir)l(ax (Tay Ay, 4, (X1, X2, ..., X))
1

=min{r (ot oy ) A ()]
— win {r(() AN2F) — () AD), b}

= (") A (23)" = ()" Av),

in which, by the row or column elementary block operations, from first equality to
second one we use the rank identities

() =1

and
7“( AT Ay A3 )—r( 0 AT)
() e (23 () ) )X — ()AL O
=r((e") A (23")" — (") A1) — r(Ar).

It’s worthy mentioning that similar techniques will be repeatedly used in the sequel.

Again by Lemma 1.1 (1.12) with A = Ay, B = I;,, C = (") * " (2F")* and
D = (#")* Ay, we have

(2.4) )Erzlaxl (T, Ay,...4, (X1, X2, ..., X))

= max r((&")" " (25")" — (") Ar)

(oS Y ()

=min{ (M o %()) — () A} <%%3*A1>‘r(A2)’ 52}'

By the formula (1.18), we obtain

) A
25) T((%ﬂ)%ﬂ(%ﬂ)*—(%ﬂ)*wf wm)
F () A (D) — () 2, () ArFag ) +r(As)
P () A (Ag - An(Z) — Ag), () Fay )+ r(As)
T(A1)+T’(A2)
o + r(As).

IAN A
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Thus, from (2.4) and (2.5), we have

(2.6) )r(r;a)?l r(Ta, Ay, A, (X1, X2,..., X))

r (@) () — (o), () A Fay) .
Generally, for 2 <1i < n, we can prove the following fact:

(2.7) max 7(Tay Ay, 4, (X1, X2, ..., X5))

i3 Xim1,e, X1

=r (@) A2 — (@)l (o) i Faz, ..., (o) o Fay).

In fact, the identity (2.7) is true for i = 2 (see (2.6)). Now assume identity (2.7) is
also true for ¢ — 1(¢ > 3), that is,

(2.8) X‘il)r?zi);le r(Ta, Ay, o4, (X1, Xo, ..., X))

=1 (A ) A (27) = (A )™, ()T Fay o () Fay).
Next we shall prove that (2.7) is also true for . Combining (2.8) with the formula
(1.12) in Lemma 1.1 (with A = A;, B = (I, O,---,0), C = (&) " (Z}1)"
and D = (")t~ ()'ti *Fas |, -, () Fa), we have

1

(2.9) max (T, Ay, 4, (X1, X2, ..., X))

i3 Xi—1yeees 1

= g () A (27— (A i (2 Ea o, (1) A Fa)

? 1

=max r((e1") " (2")" (L, O, -, O)

— (o)™ () Fay,, ., () Fay)
o ArA A %) %)
= min {7‘ ( (BP) AP () () i («5371”)*%172FA;71 (Wl")*eQﬁlFA; )
—r(4;), r < I i O-_ © )} .
N O P O U P A D7)

According to the formula (1.18), we know

(2.10)
A A; A 9, 9,
((%”) ()T ()T () A T (ﬂ")*leA;>
) A;!‘
((%”)*ﬁfi"( )T (e ()T »QleA*)
= r(Ai) +r (A A ()" — ()i, () ey~ 1FA* ") ot} Fa )
< (i) () (D) — () dtf, () )™ Fay )

_"_r((%n) %11 QFA;-*, PR (3/1”)*52711FA§)

1
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<r(Ag) + () AT () T2 A,y () ] Fay)
< (i) +r(Aima) +r () A T2 Fa: ey () 9 Fay)
Sr(A) L+ () P Fas ..., () A Fay).

Hence, by (2.9), (2.10) and the formula (1.18) we have

XigXIiIl??( X1 T(TA17A27~~-7An (Xl’ Xoy .o 7X"))

= s 1 () i () ALV () AP Ea o () A Fa)

X

AT A A7 (@] o
( (AP (X)) () ! (mn)*fdf%FAf,l («fol)*ﬂffFA; ) —7(4)
() (240" — () e, () T Faz, ., (") o Fas).

Specifically, in the case of i = n, we obtain

(2.11) max (Tay, A, A, (X1, X2, .00, X))

><

A A B L) (o, (A By o () R E)
P () A — (A, () A Fay, L, () e Fay)
() P, () cfp—2Fo () i Fay ).

n—1’ T

We now repeatedly apply formula (1.18) to (2.11) and finally have

(2.12) Xerial)’(wXI r(Tay Ay,...4, (X1, Xo,..., X))
= r () g ()P Fa, o oo () i Fay)
Az 0 (0]
@) A (0] N
=r : : " : - ZT(A
o) 0] A =2
()™t () ()]

From Theorem 2.1 and the identity (2.1), we can immediately get the neces-
sary and sufficient conditions for the inclusion (1.2) to hold, which are stated in the

following theorem.

THEOREM 2.2. Let A; € Ch¥livt i =12, ... n, and o/, 1 <i < j<n, be as
n (1.8). Then the following statements are equivalent:

(1) An{1,3}A,_1{1,3} - A1{1,3} C (A1 As... A,){1,3};

(2) (@) " Fay, () Fa; o () A Fag) = 0;
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Ax ) 0
0 Ar 0
4) r : : .. : = ;T(Az)
19) O Aj =
()™t () et T ()

Before presenting an example to confirm Theorem 2.2, we mention the following
general expressions of {1,3}— and {1,4}—inverse for any matrix A € C"™*™:

A{1,4} = {A]L + Y(Im _ AAT) - Ye (Cn><m}.

If we know the Moore-Penrose inverse A' of matrix A, then the above formulas make
very easy the computations of A{1,3} and A{1,4}.

EXAMPLE 2.3. Let

1 00
Al(i 8),142(1 (1) 8) andA3: 0 1 1
0 1 1
Then
At 0
r O AS = T(Ag) + T‘(Ag) = 4,

ALASATA Ay ASASATA

which means that the matrices Ay, As and Aj satisfy the condition (4) in Theorem
2.2. On the other hand, by the formula (2.13), we have

1 0

1/2 1/2
A1{1,3}= {( (l/ b/ > |a1, b1 EC}, A2{1,3}: -1 1 |(127 by € C
1 1 4 by
and
1 0
A3{1,3} = as bs c | as, bz, c€ C

—as 1/2—b3 1/2—(3
Hence, the matrix set A3{1,3}A45{1,3}A;{1,3} can be expressed as
Ag{]., 3}A2{1, 3}A1{1, 3} = {Ml :
1 0 0 1

0
1/2 1/2
M, = as b3 C -1 1 ( / b/ ) |ai, bj, CG(C}.

—as 1/2—b3 1/2—0 as b2 a“ !
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It is easy to verify that the identities
(A1 Ag A3 )My (A1 AxAs) = A1 AsAs and (A1 AsAsMy)* = A1 As AsMy
hold for any matrix My € A3{1,3}A2{1,3}A;1{1,3}, that is
Az{1,3}A2{1,3}A4:{1,3} C (A1 A245){1,3}.

In the remainder of this section, we will present the necessary and sufficient
conditions for the inclusion (1.3) involved {1,4}-inverses. Notice that GAA* = A* is
equivalent to the equation AA*G* = A. This implies that, by Lemma 1.2, G € A{1,4}
if and only if G* € A*{1,3}. So from the results obtained in Theorem 2.2, we can
immediately get the necessary and sufficient conditions for the inclusion (1.3), which
are stated below without proofs.

THEOREM 2.4. Let A; € Ctxlivt 4 =12 ... n, and &/, 1 <i<j<n, be as
in (1.8). Then the following statements are equivalent:

(1) Ap{1,4}A,_1{1,4} - A {1,4} C (A1 As -+ A,){1, 4}
EA{%U@Z{{L)*
EAS%n(%n)*
2) r :
Ear ()"
(3) R("(")") CR(A]_), i=23,....m

A O - O G(A)
O A5 - O i) | na

@ T S =S .
O O - AL, ")

Similar to Example 2.3, we can easily verify the following three matrices

111 10 -
Ar=[0 1 1], 4=[11 andA3:<1 1)
01 1 11

satisfy the inclusion relationship

As{1, 4} Ao {1, 43 A1 {1,4} C (A, AsA5){1,4).

3. The necessary and sufficient conditions for the inclusions (1.4) and
(1.5). Consider the matrix function Pa, a,.. a4, (X1, Xs,...,X,) defined in (1.10).
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By Lemma 1.2 (1.13), we know that the mixed-type reverse order law (1.4) holds if
and only if the rank identity

(31) Xn,XI:lfai{.u,Xl T(PAl,Ag,A..,An (Xl, XQ, cee ,Xn)) =0

holds, where each X; (i = 1,2,...,n) varies over the set A;{1, 3} of all {1,3}-inverses of
the matrix A;. Hence, to give the necessary and sufficient conditions for the inclusion

(1.4), we first study the concrete expression of the maximum rank of the matrix
function Pa, a,,..4,(X1,Xo,...,X,) when X; € 4;{1,3},i=1,2,...,n.

THEOREM 3.1. Let A; € Clixlivr i =1,... . n, and Pa, a,, . a,(X1,X2,..., Xp)
be as in (1.10). Then

(3.2) Xn,,Xry?i),i...,Xl (P4, Ay, 4, (X1, X2, ..., X))
A 1) 0
@) ALy - 0 n
=7 : : o +T(A1A2"'A7z)_ZT(Ai)7
9] o) ce A i=1
AIAQ"'Anfl A1A2...An72 Al

where X; varies over A;{1,3},i=1,2,...,n.

Proof. The basic idea for the proof of Theorem 3.1 is similar to that of Theorem
2.1. For the completeness of the paper, we still give the detailed proof here.

Let o/, 27,1 <i < j <mn,beasin (1.8). Then, by Lemma 1.1 (1.12) with
A=A, B=g/", D =" and C = " (Z3")*, we have

(3.3) n}(ax T(Pay Ay, A, (X1, Xo, ..., X))
1

w{r (el i) e ()]
=min<r —r(Ay),r n
oy 520 ) rane (2

. Al 'Qfln n
=min{r (g ) ~rEN o)}
= mln{r(gz{l”(%")* - Al) + T(A1A2 e An) - ’I“(Al), ’I“(AlAQ e An)}
=r( " (23")" — A1)+ r(Aidz- - Ag) — r(Ay).

Again by Lemma 1.1 (1.12) with A = Ay, B=1;,, C = &"(Z{)* and D = Ay, we
know that

(3-4) max (" (25")" — A1)

I A3As A I,
=min{r (i o) ()
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= min {r (%n(%no)* — P ;;121) —r(A2), 12}

= min{r (&"(23")" — o, ' Fag)+r(A2) —r(A2), 2}
= min{r(A; (25" (25°)" — A2, Fa;)), b}

=r (AN 2) -, A Fag),

where the rank identity (1.18) is used in the third equality. Hence, from (3.3) and
(3.4), we have

(3.5) )I(I;ajzgl T(PAI,AQ,‘..,AH(X1>X27---7XTL))

= max (" (25")" — A1) +r(Aidz - Ap) — (A1)
= (A (2) — A2, A Fag)+r(AAs-- Ay) —r(A)).

We assert that, for 2 <i <n,

(36) X“XI?E?‘??.vxl T(PAl,AQ,...,An <X17 X27 e 7X1’L))
=r (A X)) — o, AT Fax, AT Far

+’I"(A1A2 cee An) — T(Al).

T %1FA§)

17

This can be proved by induction on 4. In fact, the identity (3.5) has shown the truth
of the equality relation (3.6) for ¢ = 2. Assume that (3.6) is true for i — 1 (i > 3),
that is

(3.7) max (P4, Ay, A, (X1, X2, ..., X))

=r (2 — T AT s
+7“(A1A2 LR An) — T”(Al).

%i73FA:_ - dllFAg )

1’ 2’

We now prove that (3.6) is also true for ¢. Combining (3.7) with the formula (1.12)
in Lemma 1.1 (with A = A;, B=(I;;,, O, O, ---, 0),C = #"(Z%,)" and
D= (a7t 52711._2FA;.*71’ =Q{1i_3FA;.: -+, #'Fyay)), we have

PR

(3.8}(‘ Juax (P, A, A, (X1, X2, ..., X))

:Ir}(?“xr(dln('%fin)*_%iilv 'Q{liizFAf_la 'QfliigFAf_Q’ " 'dllFAé)
—|—’I“(A1A2 e An) — ’I“(Al)
:H)l(‘?“x T(dln(%n)*(‘[lw 0, 0O, -, O)

— (7", A TPFas |, ) Fa: o, @ Fag)) + (A Ap) —r(Ar)

—2?

_min{r( A A; A 0 0 .0 )_T(A})
'5271”( Z‘11)* lez—l 42711_2FA;‘71 "Qflz_gFAf,z . ~Q{11FA; 1)
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1, 0] 0] e 0]
(%1 Y| PFas | @ PFar, - o Fu )} ridid, n) = r(Ay)
= min{r ) e i —r(4;),
{ ('Q{ln( iﬁl)*f’g{f 42{1 1 % QFAf,l e1(2{111_7143) ( )
li"‘f‘r(%ZiQFAQ:N 52%1173FA;72, . %1FA; )}+T(A1A2An)_T(A1)
Since
59) ( 0 A 0 0 .0 >
. Jan( er,rl)* _ %z JZ{f_l e%l_QFA:‘71 J2{11—31;142#72 . JZ{llFAE

=r(A) +r (A2 = AT Far, o PFay o, A Fay)
<r(A) +r (N (20)" — o, T Far)

(e 2FA* o TBFas e, o Fas)

r(A) + (i) 4 (AP Fas |, A PFas o, AFay)

r(Ag) +r(Aia) + 7 (A P Fay o T Fa: A Fay )

r(A) +li+r (@ PFar |, oy PFa: , -+, @'Fay)

in which we have used the identity (1.18) in the first equality, so from (3.8) and (3.9)
we have

Y )

I/\ \/\ I/\

Xi,XIE?f,Xl r(Pay Ay, A, (X1, X2, ..., X))

=r (2 — A, A Far, o PFa: ., -+, @4'Fay)
‘H“(AlAQ H An) — T(A1).
In particular, when ¢ = n, we have

(3.10) < Xmix.‘. X, T(PA17A27---7A71, (Xl, XQ, ey Xn))

:T(JZ{ln( nn+1)* _”Qflnv JZfln_lF‘Aflv J2{1’”_2}7‘14:1717 Tty JZfllPWAE )
+7“(A1A2 e An) — ’I“(A1>
=r(o — o, A Far, @ PFar |, -+, @'Fay)

+’I"(A1A2 e An) — T’(Al)
—r ( JZ{ln_lFAfl’ %TL—QFA:

—17 )

JZfllFAg ) + ’/‘(AlAQ e An) — ’I"(Al).
By repeatedly applying the formula (1.18) to (3.10), we can finally have

P X1, Xo,..., X
Xn,XIfi),{.,.,Xlr( v As, Ay (X1, X2, o0, X))

=1 (2 Fas, %"’QFA:_N cooy W g ) +r(AAg - Ay) —r(Ay)

Ax 0 0
0 Ar 0 .

=r : : [ =D r(A) F (A A) = r(Ay)
10} 1) S A3 =2

Ay A, Ay A, e - Ay
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Az 1) NG
0 Ar NS .
=r : : o [ r(Adr- AL =D r(4)). O
10} o) e A3 i=1
AjAg - Apy A1Ay-- Ao - Ay

The next theorem is a direct result from Theorem 3.1 and the identity (3.1). It
provides some equivalently necessary and sufficient conditions for the inclusion (1.4)

to hold.
THEOREM 3.2. Let A; € Clixliti j=1.2.... . n. Then the following statements

are equivalent:

(1) Au{1,3} 4, 1 {1,3} -+ A {1,3} C (AsAg--- A,){1);

(2) ’I”(AlAg e AnleA;‘La A1A2 e An72FA;_la ceey AlFAg )
=r(4y) —r(Ar1--- Ay);
A 0) e
[0) A;’kL—l [0)
(3) r : 3 : = T(AZ) —T(AlAQAn)
o) 1) A =t
A1A2 e An—l A1A2 e An—2 e Al

ExXAMPLE 3.3. Take

1 00
Al:(é 8),142:(1 (1) 8) andAg,: 0 1 1
0 1 1
We easily get
A3 O
T 0] A; + T(A1A2A3) = 'I"(Al) + T‘(AQ) + T(Ag) = 5.
A Ay A

This implies that the matrices Ay, A2 and Aj satisfy the condition (3) in Theorem
3.2. On the other hand, since (also by formula (2.13))

1 0
A1{173}:{(a1 bl) \ah b1€C},

1 0
AQ{].,?)} = -1 1 | a2, by € C
az by
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and
1 0 0
A3{1,3} = as b3 c | as, by, ce C 5,

—as 1/2—b3 1/2—6
we have

A3{173}A2{1,3}A1{1,3} = {Mg :

1 0 0 1 1 0
My = as b3 c -1 1 ( ) | a;, bj, ce (C}
—as 1/2—b3 1/2—6 as b2 “ bl

Similar to Example 2.3, we can easily check that the identity
(A1A2A3)M2(A1A2A3) = A1A2A3
holds for any matrix My € A3{1,3}A2{1,3}A4:{1,3}. Hence,

A3{1,3}A42{1, 3} A1 {1, 3} C(A1A245){1}.

Again by the assertion that G € A{1,4} if and only if G* € A*{1,3}, we can get
the necessary and sufficient conditions for the inclusion (1.5) from the results obtained
in Theorem 3.2.

THEOREM 3.4. Let A; € Clixlivt §=1,2, ... n. Then the following statements
are equivalent:
(1). A {1,4}A, 1 {1,4}--- A1{1,4} C (A1 A2 --- A,){1};
Eaz AsAz--- Ay

EazAzAy--- Ay
(2). r . +r(A1As -+ Ay) = r(An);
EA;_lAn
A O -+ O AyA;---A,
o A5 -+ O As3A,---A, n
@.rf . . . . +r(A1As - Ap) = 30 r(A).
: : " : : i=1
o 0 - A A,

4. The necessary and sufficient conditions for the inclusions (1.6) and
(1.7). In order to present the necessary and sufficient condition for the inclusion (1.6),
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we first give the maximum rank of matrix function T4, a,... 4, (X1, X2,...,X;) when
each X; (i =1,2,...,n) varies over the set A;{1} of all g-inverses of the matrix A;.

THEOREM 4.1. Let A; € Clixlivi i =1,....n and Ta, a,, . a,(X1,Xo,..., Xp)
be as in (1.9). Then

(4.1) . Xm:alxm . (Ta, Ay, 4, (X1, X2,..., X))

= min {T(AlAQ Ay, i L — i: T(Am)} ,

m=1 m=1
where X; varies over A;{1} fori=1,2,....n

Proof. Let ,%j and %j, 1<i<j<n,beasin (1.8). Then for 2 <i<n-—1
and X; € A;j{1}, j=14,i+1,...,n, we first prove

(4.2) max ()" = () A (2T))
= min{r((e")" '), (") = (A") AN (2i1)") + 1 — (A0}

By the formula (1.11) in Lemma 1.1 (with A = A;, B = I}, C = (&")* " (Z]11)%,
D = (") o#{ ™), we have

max (") e T — (") A (2)")

i

—min {r () () ()

dz 1>

JZ{Z 1)
(") e — (") A (20)7) + 1 — (A}
= min{r((&") '), r((") o — () N (2711)7) + 1 = (A},

7 oty
T((%ﬂ)*ﬁ(%w oy 1)"" )}
(o

=min{r<<o<zf1">w1"<%il>*, () iy,

i.e., (4.2) holds, where the second equality holds as

v e
() A (240 () i

{ it sars )
(") A (2i)" = ()t O )

The last equality holds as

r () A (i) () e ™) = () )
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and

) 1.
r((A™)V* 1) < r(A4;_ §lir< il l)
(A1) ™) < (i) oty

When i = n, again by Lemma 1.1 (1.11) with A= A,, B=1,,, D = (&;*)*a/" "
and C = (o")* ", we have

(4.3) max (") A" = () A (27

: mn\*x n n\*x n— In
—in {r (o, (@t et ) r ().
An Il > }
r "o —r(A,
(o (oo )~ 7
= min{r((&/") " 1), ln—r(An)}
in which the last equality holds since

(o) ey, (o)) = () ),

I

(A ) < 1) <o = (T )

and
: < An Iln > - < Iln )
(JZ{ln)*JZ{ln (%n)*ﬁfln—l (%n)*%nfl .

We now prove (4.1). According to Lemma 1.1 (1.11) with A = Ay, B = I,
C = (") (25" and D = (&), we have

(4.4) n}gx T(TAI)Az)“_7A”(X17X27...,Xn))
— min{r n\x . /n n\* n\* r Ill
- { () (2), (), ((%n)*),
A Loy,
( (AP (L) () ) (A”}
— min{r(e), r(() it — (Y ALY + L — (A},

where the last equality holds as

P () (23 () = vl < r ( - )
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and

Al Ill — ny\* 71 ny\*x _sm n\*
Pyt oy ) =TI = () 1

Combining (4.2) and (4.4), we have

max (T4, A, (X1, Xo,...,X,))

X2,X1

11111111

(") ! — (") A (23")") + 11— (A1)}

= min{r(«/"), maxr
X2

+lo + 11 — T(AQ) —r Al)}

(

= min{r(e"), r((")" )+l —r(Ar), r((") o — (") A (25")")
(

= min{r(e"), (") o — (") A (25)) + 12 + b = r(A2) — (A1)},

in which the last equality holds since from Lemma 1.3, we have

(") )+l = r(A) 2 (")) + (A1) = r(Ay) = ().

We contend that, for 2 <i<n—1,

(4.5) - Jnax (5S4, 4s,...4, (X1, Xo,..., X,,))

i Xi—1,--,X1
LTI CE B PIIEERGED e SRTH)S
m=1 m=1
We proceed by induction on i. For i = 2, the equality relation (4.5) has been proved.
Assume that (4.5) is true for i — 1 (¢ > 3), that is

(4.6) max T(TAl,AQ,.H,An(XlaXQw--,Xn))

Xi—1,Xi—2,...,X1

_min{r(,efln), r((P) it — () (X)) + Zz i r( )}.

m=1

We now prove that (4.5) is also true for i. By (4.2) and (4.6), we have

x, A8 r(Ta, Ay, A, (X1, X2, .0, X5))

= min{r(a"), (o) o () (2T Z R SETe
— min{r(a), () A+ = S (A
()t — () RN ZE)) = (A4 S h — 3 r(An)).

m=1 m=1
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From Lemma 1.3, we know
_ i—1 i—1
r(() )+ Y b 2 () + Y (A,
m=1 m=1
thus

T X1, Xo,..., X
Xri,quzri?f-,X1r( Al,Ag,---,An( 1, A2, ) n))

= min{r(e"), (") A — (VA (D7) + Dl — D r(Am)}
m=1 m=1
In particular, when ¢ = n — 1, we have
(4.7) X,,L,l,%i}g,...,xl T(TAl,AQ,...,An (Xl, XQ, e ,Xn))
n—1 n—1
= min{r(&"), (") A = () A (X)) + D = Y (A}
m=1 m=1
On account of (4.3) and (4.7), it is seen that
max T(TA17A27___7A”(X1,X2,...,Xn))
Xn, Xn—1,...,X1
n—1 n—1
= min{r("), maxr((")" " = (") AN (2)7) + D oln =Y r(An)}
" m=1 m=1
n—1 n—1
= min{r(&"), () AT+ D b= Y r(Am),
m=1 m=1
n—1 n—1
b= r(An) + >l — Y (A}
m=1 m=1
Noting that
n—1 n—1
r(( ) A ) 4D = () + Y r(A),
m=1 m=1

we finally have

Xn7Xn—17~--1Xl

= min{r(A1 Az An), Y b — > r(Am)}. O
m=1 m=1

Since the inclusion (1.6) holds if and only if

X X X r(Tay,Az,.00, (X1, X2, .., X5)) =0,
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by Theorem 4.1 and Lemma 1.2 (1.14), we can immediately obtain the following
result:

THEOREM 4.2. Let A; € Clixlivi j=1,2,

...,n. Then the inclusion (1.6) holds
if and only if

min{r(A; Az -+ Ay), Z lm — Z r(Am)} =0,
m=1 m=1
that is,

A1As--- A, =0 or Zlm: Zr(Am), ie, r(A) =1, i=1,2,...,n.
m=1

m=1

EXAMPLE 4.3. Let

11 1 1 0 0 1
Alz(l,O), A2:<0 1 O) andA3: 01 0 O
0 01 0

Then r(A;) = 1, r(A2) = 2 and r(A43) = 3, and the ranks of these matrices satisfy
the conditions in Theorem 4.2.

On the other hand, by the definition of {1}-inverse, we have

ap as as
0 1 0
Ag{l} = 0 0 1 | a1, az, a3 €C
1—0,1 —a9 —as
by bo 1
Ag{l}: 0 1 |b1, by e C and Al{l}:{(c ) |81€(C}.
1—b —1—by !
Hence
A AU
Mg_ 0 0 1 0 1 (C > |(li, bj7 CkE(C}.
1—b —1—by !
17&1 —as —as

It is easy to verify that if M3 € As{1}A2{1}A{1}, then

(A1A2A3)M3(A1A2A3) = A1A2A3 and (A1A2A3M3)* = A1A2A3M3.
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Hence

As{1}Ax{1}A1{1} C (A1 A3A45){1,3}.

By Lemma 1.2 (1.14) and (1.15), G € A{1,4} if and only if G* € A*{1,3}. So
from the results obtained in Theorem 4.2, we can get the necessary and sufficient
conditions for the inclusion (1.7).

THEOREM 4.4. Let A; € Clixlivr j=1,2,... n. Then the inclusion (1.7) holds
if and only if

n+1 n
min{T(AlAQ e An); Z lm - Z T(Am)} = 07
m=2 m=1
that is,
n+1 n
AjAy Ay =0 or Y ln=> 1(An), ie, r(A) =11, i=12...n
m=2 m=1
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