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BLOCK NORMAL MATRICES AND GERSHGORIN-TYPE DISCS∗

JAKUB KIERZKOWSKI† AND ALICJA SMOKTUNOWICZ†

Abstract. The block analogues of the theorems on inclusion regions for the eigenvalues of

normal matrices are given. By an inclusion region for a given matrix A we mean a region of the

complex plane that contains at least one of the eigenvalues of A. Some nonsingularity results for

partitioned matrices are also presented.
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1. Introduction. The purpose of this paper is to derive new inclusion regions

of Gershgorin type for partitioned normal matrices; see Theorems 2.7–2.8. Theorem

2.7 improves the results of Meyer and Veselić; see [5, p. 436]. We also give the block

versions of nonsingularity results; see Theorem 2.9. Theorem 2.9 is an analogue of

Varga’s Theorem 6.2 for strictly block diagonally dominant matrices; see [11, p. 157].

We review some of the standard facts on the location of eigenvalues of block matrices

which are useful in error analysis of numerical algorithms and in study convergence

of block iterative methods for solving linear systems of equations.

The set of all n-by-n matrices over C is denoted by Mn. We recall that a normal

matrix A ∈ Mn is any matrix satisfying AA∗ = A∗A, where A∗ is the conjugate

transpose of a matrix A. Normal matrices A can be Hermitian (A∗ = A), skew-

Hermitian (A∗ = −A), and unitary (A∗A = In), where In is the n×n identity matrix.

We consider only the spectral matrix norm and the second vector norm. Throughout

the paper, σ(A) denotes the set of all eigenvalues of A, ρ(A) = max{|λ| : λ ∈ σ(A)}
is the spectral radius of A and R(x,A) = x∗Ax is the Rayleigh quotient of x ∈ C

n

with ‖x‖2 = 1.

First, we review some important facts on the location of eigenvalues of matrices.

Theorem 1.1. (Gershgorin, 1931) The eigenvalues of A ∈ Mn lie in the union
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⋃n
i=1 Gi of the n discs

Gi = {z ∈ C : |z − aii| ≤ ri(A)}, (1.1)

where ri(A) denotes the deleted absolute row sums of A, i.e.,

ri(A) =
∑

j 6=i

|aij |. (1.2)

However, some Gershgorin’s discs may contain no eigenvalues. In case of normal

matrices, such situation does not occur.

Theorem 1.2. ([7]) Let A ∈ Mn be normal. Then each of the discs

Ei = {z ∈ C : |z − aii| ≤ si(A)}, (1.3)

where

si(A) =

√

∑

j 6=i

|aij |2, (1.4)

must contain an eigenvalue of A.

Using the Cauchy-Schwartz inequality we get

si(A) ≤ ri(A) ≤
√

n − 1 si(A), i = 1, . . . , n. (1.5)

Thus, Ei ⊆ Gi for all i = 1, . . . , n, so the Euclidean discs Ei are smaller than the

Gershgorin discs Gi. Unfortunately, some eigenvalues of the normal matrix A can be

located outside the set
⋃n

i=1 Ei.

Theorem 1.3. For any λ ∈ C and n > 2, there exists a normal matrix A ∈ Mn

such that λ is an eigenvalue of A and

|λ − aii| > si(A) (i = 1, . . . , n).

Proof. Let A = (λ − n)In + J , where J has each entry equal to 1. It is easily

seen that σ(J) = {0, n}. Therefore, σ(A) = {λ, λ − n}. From this it follows that

|λ − aii| = n − 1 > si(A) =
√

n − 1 for all i. This completes the proof.

It is well-known that if A ∈ Mn is strictly diagonally dominant (i.e., A satisfies

the strong row-sum criterion: |aii| > ri(A) for all i = 1, . . . , n), then A is nonsingular;

see, for example, [1]. Some other interesting nonsingularity results were given in [1].

Now we present a new nonsingularity result involving the radii si(A).
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Theorem 1.4. If A ∈ Mn satisfies the strong square-sum criterion, i.e.,

ω(A) =
n

∑

i=1

s2
i (A)

|aii|2
< 1, (1.6)

then A is nonsingular.

Moreover, if A, satisfying the strong square-sum criterion, is Hermitian and all

of its diagonal elements aii are positive, then A is positive definite.

We give a proof of this theorem in Section 2; see Theorem 2.9. It is known

that the strong square-sum criterion and the strong row-sum criterion are sufficient

conditions for the convergence of the Jacobi method for solving a linear system of

equations Ax = b; see [4, p. 359]. Notice that these criteria are not equivalent.

Example 1.5. Let

A1 =









88 7 12 17

7 78 17 12

12 17 68 27

17 22 27 58









, A2 =









14 −6 4 −1

−6 24 −11 3

4 −11 20 −3

−1 3 −3 11









.

It is easily seen that A1 is not strictly diagonally dominant but satisfies the strong

square-sum criterion with ω(A1) ≈ 0.8393. On the other hand, A2 does not satisfy the

strong square-sum criterion, since ω(A2) ≈ 1.0806. However, A2 is strictly diagonally

dominant.

We extend these results to partitioned matrices in Section 2. Some of them can

be derived from the following residual theorem; see, e.g., [4, p. 104].

Theorem 1.6. If A ∈ Mn is a normal matrix with eigenvalues λ1, . . . , λn, then

for any α ∈ C and any vector x ∈ C
n with ‖x‖2 = 1

min
i=1,...,n

|λi − α| ≤ ‖Ax − αx‖2.

To illustrate the theory, we present numerical tests in Section 3.

2. Inclusion theorems for block matrices. Let the matrix A ∈ Mn be

partitioned into q × q blocks

A = [Aij ] =











A11 A12 · · · A1q

A21 A22 · · · A2q

...
...

. . .
...

Aq1 Aq2 · · · Aqq











, (2.1)
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where Ai,j ∈ C
ni,nj is the (i, j) block of A, {n1, . . . , nq} is a given set of positive

integers, and n1 + · · · + nq = n.

First, we recall very useful estimations of the eigenvalues of partitioned matri-

ces, frequently used in error analysis of numerical algorithms and in the study of

convergence of iterative methods for solving large linear systems of equations.

Theorem 2.1. Assume that A ∈ Mn is partitioned as in (2.1). If λ ∈ σ(A),

then

|λ| ≤ ρ(µ(A)) ≤ ‖µ(A)‖2, (2.2)

where µ(A) is a matricial norm of A, defined as

µ(A) =











‖A11‖2 ‖A12‖2 · · · ‖A1q‖2

‖A21‖2 ‖A22‖2 · · · ‖A2q‖2
...

...
. . .

...

‖Aq1‖2 ‖Aq2‖2 · · · ‖Aqq‖2











. (2.3)

Theorem 2.1 is a generalization of the Perron-Frobenius inequality and was first

proved by Ostrowski; see [2], [6] and [10].

If, additionally, the matrix A is normal, one can estimate real and imaginary

parts of eigenvalues of A in terms of eigenvalues of diagonal blocks Akk; see also [8]

where interesting analogue of min-max theorem for normal matrices was presented.

Theorem 2.2. Assume that A ∈ Mn is normal and partitioned as in (2.1). Let

σ(A) = {λ1, λ2, . . . , λn}. Then, for any k ∈ {1, 2, . . . , q} and any α ∈ σ(Akk), the

following inequalities hold

min
i=1,...,n

Re λi ≤ Re α ≤ max
i=1,...,n

Re λi (2.4)

and

min
i=1,...,n

Im λi ≤ Im α ≤ max
i=1,...,n

Im λi. (2.5)

Proof. By the normality of A, there exist a unitary matrix U and a diagonal

matrix D such that A = UDU∗ with D = diag(λ1, λ2, . . . , λn). Let y = U∗x, where

x ∈ C
n and ‖x‖2 = 1. Then ‖y‖2 = 1 and the Rayleigh quotient R(x,A) = x∗Ax can

be written as R(x,A) = R(y,D) =
∑n

i=1 λi |yi|2. From this we obtain

min
i=1,...,n

Re λi ≤ Re R(x,A) ≤ max
i=1,...,n

Re λi (2.6)

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 22, pp. 1059-1069, October 2011



ELA

Block Normal Matrices and Gershgorin-Type Discs 1063

and

min
i=1,...,n

Im λi ≤ Im R(x,A) ≤ max
i=1,...,n

Im λi. (2.7)

Assume now that u is an eigenvector of Akk such that ‖u‖2 = 1 and Akku = αu.

Define x = [x1
T , x2

T , . . . , xq
T ]T , where xk ∈ C

nk be such that xi = 0 for i 6= k

and xk = u. Then R(x,A) = R(u,Akk) = α. From this and (2.6)–(2.7), we get

(2.4)–(2.5).

Notice that normality of A in Theorem 2.2 is crucial; see the following easy

example.

Example 2.3. Let

A =

[

1 2

−2 3

]

.

Then A is not normal and the eigenvalues of A are λ1,2 = 2± i
√

3. We see that (2.4)

is not valid in this case.

Feingold and Varga proved the following Gershgorin-type theorem for partitioned

matrices; see [3] and [11, pp. 157–159].

Theorem 2.4. Assume that A ∈ Mn is partitioned as in (2.1). If λ ∈ σ(A) and

λ /∈ σ(Akk) for all k, then there exists i ∈ {1, . . . , q} such that

1

‖(λ I − Aii)−1‖2

≤
∑

j 6=i

‖Aij‖2. (2.8)

However, it is difficult to compute this inclusion region in practice. If all diagonal

blocks Akk are normal, then the following theorem holds; see [5].

Corollary 2.5. Assume that A ∈ Mn is partitioned as in (2.1). Suppose that

all diagonal blocks Akk of A are normal. If λ is an eigenvalue of A, then there exists

i ∈ {1, 2, . . . , q} such that

min
α∈σ(Aii)

|λ − α| ≤
q

∑

j=1,j 6=i

‖Aij‖2. (2.9)

In [5], Meyer and Veselić obtained the following generalization of Theorem 1.2.

Theorem 2.6. Assume that a normal matrix A ∈ Mn is partitioned as in (2.1).

Let

Ŝi(A) =

√

√

√

√

q
∑

j=1,j 6=i

‖Aji‖2
2 (i = 1, . . . , q). (2.10)
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Then each disc of the form |z−α| ≤ Ŝi(A), where α is an eigenvalue of Aii, contains

at least one eigenvalue of A.

Now we show that in (2.10) one can replace Ŝi(A) by smaller radii Si(A).

Theorem 2.7. Assume that a normal matrix A ∈ Mn is partitioned as in (2.1).

Let

Si(A) = ‖[AT
1i, A

T
2i, . . . , A

T
i−1,i, A

T
i+1,i, . . . , A

T
qi]‖2

(i = 1, . . . , q). (2.11)

Then each disc of the form |z−α| ≤ Si(A), where α is an eigenvalue of Aii, contains

at least one eigenvalue of A.

Proof. Let α be an eigenvalue of Aii. Then there exists a vector u ∈ C
ni such

that Aiiu = αu and ‖u‖2 = 1.

Define x = [x1
T , x2

T , . . . , xq
T ]T , where xk ∈ C

nk be such that xk = 0 for k 6= i

and xi = u. Then

Ax − αx =



























A1iu

A2iu

· · ·
Ai−1,iu

Aiiu − αu

Ai+1,iu

· · ·
Aqiu



























=



























A1i

A2i

· · ·
Ai−1,i

0

Ai+1,i

· · ·
Aqi



























u.

Taking norms, we get the desired inequality. We have

‖Ax − αx‖2 ≤ ‖[AT
1i, A2i

T , . . . , AT
i−1,i, 0, AT

i+1,i, . . . , A
T
qi]

T ‖
2
‖u‖2.

Thus,

‖Ax − αx‖2 ≤ Si(A)‖u‖2 = Si(A).

From this and Theorem 1.6, we conclude that

min
i=1,...,n

|λi − α| ≤ ‖Ax − αx‖2 ≤ Si(A).

This finishes the proof.

Notice that by Ostrowski’s theorem we have Si(A) ≤ Ŝi(A) for all i = 1, . . . , q.

Now we give a block analogue of the inequality involving diagonal elements and

eigenvalues of A; see [9] for unpartitioned case.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 22, pp. 1059-1069, October 2011



ELA

Block Normal Matrices and Gershgorin-Type Discs 1065

Theorem 2.8. Assume that A ∈ Mn is partitioned as in (2.1) and define

Ri(A) =

√

√

√

√

q
∑

j=1,j 6=i

‖Aij‖2
2 (i = 1, . . . , q). (2.12)

Then each eigenvalue λ of A such that λ /∈ σ(Aii) for all i = 1, . . . , q, satisfies

q
∑

i=1

‖(λ Ini
− Aii)

−1‖2

2 R2
i (A) ≥ q

q − 1
. (2.13)

Proof. Let λ be an eigenvalue of A, and suppose Ax = λx with ‖x‖2 = 1. Let

x = [x1
T , x2

T , . . . , xq
T ]T , where xi ∈ C

ni .

We have

q
∑

j=1

Aijxj = λxi, i = 1, . . . , q,

and thus,

(λ Ini
− Aii)xi =

q
∑

j=1,j 6=i

Aijxj , i = 1, . . . , q.

Since λ /∈ σ(Aii), all matrices λ Ini
− Aii are nonsingular. From this, it follows that

xi = (λ Ini
− Aii)

−1

q
∑

j=1,j 6=i

Aijxj , i = 1, . . . , q.

Taking norms, we obtain

‖xi‖2 ≤ ‖(λ Ini
− Aii)

−1‖2

q
∑

j=1,j 6=i

‖Aij‖2‖xj‖2. (2.14)

By the Cauchy-Schwartz inequality, we have





q
∑

j=1,j 6=i

‖Aij‖2‖xj‖2





2

≤
q

∑

j=1,j 6=i

‖Aij‖2
2

q
∑

j=1,j 6=i

‖xj‖2
2 = R2

i (A)

q
∑

j=1,j 6=i

‖xj‖2
2,

so we can rewrite (2.14) as follows

‖xi‖2
2 ≤ ‖(λ Ini

− Aii)
−1‖2

2 R2
i (A)

q
∑

j=1,j 6=i

‖xj‖2
2, i = 1, . . . , q. (2.15)
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For simplicity of notation, let bi stand for

bi =

q
∑

j=1,j 6=i

‖xj‖2
2. (2.16)

Since 1 = ‖x‖2
2

= ‖x1‖2
2

+ · · · + ‖xq‖2
2
, the elements we have just defined satisfy

bi = 1 − ‖xi‖2
2, (2.17)

and

q
∑

i=1

bi =

q
∑

i=1

(1 − ‖xi‖2
2) = q −

q
∑

i=1

‖xi‖2
2 = q − 1. (2.18)

Thus, we can rewrite (2.15) as follows

‖xi‖2
2 ≤ ‖(λ Ini

− Aii)
−1‖2

2 R2
i (A) bi, i = 1, . . . , q. (2.19)

Notice that by the assumptions of our theorem, all bi are positive. From this and

(2.17)–(2.19), we get

q
∑

i=1

‖(λ Ini
− Aii)

−1‖2

2 R2
i (A) ≥

q
∑

i=1

‖xi‖2
2

bi

=

(2.20)

=

q
∑

i=1

1 − bi

bi

=

q
∑

i=1

(

1

bi

− 1

)

=

q
∑

i=1

1

bi

− q.

By an application of the harmonic-arithmetic mean inequality and from (2.18) we

obtain

q
∑

i=1

1

bi

≥ q2

∑q
i=1 bi

=
q2

q − 1
.

This together with (2.20) gives the desired inequality (2.13).

As a corollary we obtain the following generalization of Theorem 1.4.

Theorem 2.9. If A ∈ Mn satisfies the strong block square-sum criterion, i.e.,

q
∑

i=1

‖A−1
ii ‖2

2 R2
i (A) < 1, (2.21)

then A is nonsingular.

Moreover, if A is Hermitian, satisfies the strong square-sum criterion and all

diagonal blocks Aii are positive definite, then A is positive definite.
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Proof. Let us first prove nonsingularity of A. On the contrary, suppose that A is

singular. Then there is an eigenvalue λ = 0 of A. From Theorem 2.8, taking λ = 0 in

(2.13), we deduce that q/(q − 1) < 1, which is impossible.

Now assume that A is Hermitian, satisfies the strong square-sum criterion and all

diagonal blocks Aii are positive definite. Since A is Hermitian, all its eigenvalues are

real. It is sufficient to prove that they are positive. Conversely, suppose that there

exists a negative eigenvalue λ̂ of A. By assumption, all matrices Aii are Hermitian

and positive definite, so λ̂ /∈ σ(Aii). Since λ̂ is negative, we conclude that

‖(λ̂ Ini
− Aii)

−1‖2 < ‖Aii
−1‖2, i = 1, . . . , q.

By Theorem 2.8, we get

q
∑

i=1

‖A−1
ii ‖2

2 R2
i (A) ≥

q
∑

i=1

‖(λ̂ Ini
− Aii)

−1‖2

2 R2
i (A) ≥ q

q − 1
,

but this contradicts our assumption (2.21). This finishes the proof.

Remark 2.10.

• Theorem 2.9 is an analogue of Varga’s Theorem 6.2 for strictly block diago-

nally dominant matrices; see [11, p. 157].

• It is clear that using AT instead of A in the above theorems a new set of the

radii can be obtained.

• It is easy to prove, by Ostrowski’s theorem, that the strong block square-sum

criterion (2.21) is sufficient condition for the convergence of the block Jacobi

method for solving a linear system of equations Ax = b.

3. Computational examples. Numerical tests were given in MATLAB, ver-

sion 6.5.0.180913a (R13) with unit roundoff ǫ ≈ 2.2 · 10−16 in IEEE double precision.

The eigenvalues of A were plotted as crosses ‘x’.

Example 3.1. Let

A =























611 0 0 407 0 0 −49

0 899 113 −192 0 0 −8

0 113 899 196 0 0 8

407 −192 196 611 0 0 59

0 0 0 0 411 −599 208

0 0 0 0 −599 411 208

−49 −8 8 59 208 208 99























.

Then A is normal and σ(A) ≈ {−374.7, 122.4, 302.9, 729.5, 1010.0, 1012.0, 1139.0}.
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Table 3.1

Results for the computed radii for the matrix A.

i 1 2 3 4 5 6 7

ri(A) 456 313 317 854 807 807 540

si(A) 409.93 222.92 226.38 494.37 634.08 634.08 304.20

−500 0 500 1000 1500

−800

−600

−400

−200

0

200

400

600

800

−400 −200 0 200 400 600 800 1000

−600

−400

−200

0

200

400

600

Picture 1: Gershgorin’s discs Gi (on the left) and the Euclidean discs Ei (on the right).

Notice that some eigenvalues of A are outside the set
⋃n

i=1 Ei.

Example 3.2. We generated random matrices of entries from the distribution

N(0, 1) from Matlab’s function“randn”. We use the following Matlab’s code to pro-

duce the matrix A(20 × 20), which is unitary in floating point arithmetic.

randn(’state’,0)

n=20;A=orth(randn(n)+i*randn(n));

−5 −4 −3 −2 −1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

4

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

Picture 2: Gershgorin’s discs Gi (on the left) and the Euclidean discs Ei (on the right).
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