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Abstract. In this note, additive results are presented for the generalized Drazin inverse in Ba-

nach algebra. Necessary and sufficient conditions are given for the generalized Drazin invertibility of

the sum of two commuting generalized Drazin invertible elements. These results are a generalization

of the results from the paper [C.Y. Deng and Y. Wei. New additive results for the generalized Drazin

inverse. J. Math. Anal. Appl., 370:313–321, 2010.] to the Banach algebra case.
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1. Introduction. Let A be a complex Banach algebra with the unit 1. By

A−1, Anil and Aqnil, we denote the sets of all invertible, nilpotent, and quasi-nilpotent

elements in A, respectively. By σ(a) we denote the spectrum of the element a ∈ A

and by acc(σ(a)) we denote the set of all accumulation points of σ(a). If B is a sub-

algebra of A and a ∈ B, then by σB(a) we denote the spectrum of the element a in

the sub-algebra A. Let us recall that the Drazin inverse of a ∈ A [4], is the element

x ∈ A (denoted by aD) which satisfies

xax = x, ax = xa, ak+1x = ak,(1.1)

for some nonnegative integer k. The least such k is the index of a, denoted by ind(a).

When ind(a) = 1, then the Drazin inverse aD is called the group inverse and is denoted

by ag or a#.
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The conditions from (1.1) are equivalent to

xax = x, ax = xa, a − a2x ∈ Anil.(1.2)

The concept of the generalized Drazin inverse in a Banach algebra was introduced

by Koliha [8]. The condition a − a2x ∈ Anil from (1.2) was replaced by the condition

a − a2x ∈ Aqnil. Hence, the generalized Drazin inverse of a is the element x ∈ A

(written as ad) which satisfies

xax = x, ax = xa, a − a2x ∈ Aqnil.

The set Ad consists of all a ∈ A such that ad exists. The Drazin index of a, ind(a),

is the nilpotency index of a − a2b if a − a2b ∈ Anil and ind(a) = ∞, otherwise. It is

well-known that for a ∈ A, ad exists if and only if 0 /∈ acc(σ(a)) and in that case ad

is unique [8].

An alternative definition of the generalized Drazin inverse in a normed algebra

and a ring is also given in [5, 6, 7]. For interesting properties of the generalized Drazin

inverse see [8].

Let a ∈ A and let p ∈ A be an idempotent (p = p2). Then we write

a = pap + pa(1 − p) + (1 − p)ap + (1 − p)a(1 − p),

and use the notations

a11 = pap, a12 = pa(1 − p), a21 = (1 − p)ap, a22 = (1 − p)a(1 − p).

Every idempotent p ∈ A induces a representation of an arbitrary element a ∈ A given

by the following matrix

a =

[

pap pa(1 − p)

(1 − p)ap (1 − p)a(1 − p)

]

p

=

[

a11 a12

a21 a22

]

p

.

Let aπ be the spectral idempotent of a corresponding to {0}. It is well-known

that a ∈ Ad can be represented in the following matrix form,

a =

[

a11 0

0 a22

]

p

,(1.3)

relative to p = aad = 1 − aπ, where a11 is invertible in the algebra pAp and a22 is

quasinilpotent element of the algebra (1− p)A(1− p). Using that representation, the

Drazin inverse of a is presented by

ad =

[

(a11)
−1
pAp 0

0 0

]

p

,
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where (a11)
−1
pAp is the inverse of a11 in sub-algebra pAp.

In this note, we generalize the results from [2] to the Banach algebra case.

First we state the following result which is proved in [9] for matrices, and extended

in [3] for bounded linear operators and in [1] for arbitrary elements of a Banach

algebra.

Theorem 1.1. Let x, y ∈ A and

x =

[

a c

0 b

]

p

, y =

[

b 0

c a

]

(1−p)

relative to the idempotent p ∈ A.

(1) If a ∈ (pAp)d and b ∈ ((1−p)A(1−p))d, then x and y are generalized Drazin

invertible and

xd =

[

ad u

0 bd

]

p

, yd =

[

bd 0

u ad

]

(1−p)

(1.4)

where u =
∞
∑

n=0
(ad)n+2cbnbπ +

∞
∑

n=0
aπanc(bd)n+2 − adcbd.

(2) If x ∈ Ad and a ∈ (pAp)d, then b ∈ ((1 − p)A(1 − p))d and xd, yd are given

by (1.4).

2. Results. In this section, we present our main results.

Theorem 2.1. Let a, b ∈ Ad and ab = ba. Then a + b ∈ Ad if and only if

1 + adb ∈ Ad. In this case, we have

(a + b)d = ad(1 + adb)dbbd + (1 − bbd)

[

∞
∑

n=0

(−b)n(ad)n

]

ad

+ bd

[

∞
∑

n=0

(bd)n(−a)n

]

aπ,

‖(a + b)d − ad‖ ≤ ‖bbd‖‖ad‖
[

‖(1 + adb)d‖ + 1
]

+ ‖(1 − bbd)‖

[

∞
∑

n=1

‖(−b)n(ad)n‖

]

‖ad‖

+‖bd‖

[

∞
∑

n=0

‖(bd)n(−a)n‖

]

‖aπ‖,

and

(a + b)(a + b)d = (aad + bad)(1 + adb)dbbd + (1 − bbd)aad + bbdaπ,

‖(a + b)(a + b)d − aad‖ ≤
[

‖aad + bad‖‖(1 + adb)d‖ + ‖1 − 2aad‖
]

‖bbd‖.
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Proof. Since a is generalized Drazin invertible, we will suppose that a is given by

(1.3). Let b =

[

b11 b12

b21 b22

]

p

.

From ab = ba, we get that b12 = (a11)
−1
pApb12a22 which implies that b12 =

(a11)
−n
pApb12a

n
22, for arbitrary n ∈ N. Since a22 is a quasi-nilpotent, we get that

b12 = 0. Similarly, by ab = ba it follows that b21 = a22b21(a11)
−1
pAp, i.e., b21 = 0. Also,

a11b11 = b11a11 and a22b22 = b22a22.

Since, b ∈ Ad and σ(b) = σ(b11)pAp ∪ σ(b22)(1−p)A(1−p), using the Theorem 4.2

from the famous paper of Koliha [8], we get that b11 ∈ pAp and b22 ∈ (1 − p)A(1 − p),

so b11, b22 ∈ Ad and we can represent b11 and b22 as

b11 =

[

b′11 0

0 b′22

]

p1

and b22 =

[

b′′11 0

0 b′′22

]

p2

,

where p1 = b11b
d
11, p2 = b22b

d
22, b′11, b′′11 are invertible in the algebras p1Ap1 and p2Ap2

respectively, and b′22, b′′22 are quasi-nilpotent. Since b11 commutes with an invertible

a11 and b22 commutes with quasi-nilpotent a22, as before we prove that

a11 =

[

a′
11 0

0 a′
22

]

p1

and a22 =

[

a′′
11 0

0 a′′
22

]

p2

.

Since p1p = pp1 = p1, from the fact that a11 is invertible in the subalgebra pAp

we get that a′
11 and a′

22 are invertible in the algebras p1Ap1 and (p − p1)A(p − p1)

respectively. Also, a′′
11 and a′′

22 are quasi-nilpotent and we have that a′
ii commutes

with b′ii and a′′
ii commutes with b′′ii, for i = 1, 2.

Since a′
22 is invertible and b′22 is quasi-nilpotent and they commute, we have that

(a′
22)

−1
(p−p1)A(p−p1)

b′22 is quasi-nilpotent, so (p−p1)+(a′
22)

−1
(p−p1)A(p−p1)

b′22 is invertible

in (p − p1)A(p − p1) and a′
22 + b′22 ∈ Ad.

Similarly, we conclude that a′′
11 + b′′11 ∈ Ad.

Also, a′′
22 + b′′22 is generalized Drazin invertible.

Now, we obtain that

a + b = a′
11 + b′11 + a′

22 + b′22 + a′′
11 + b′′11 + a′′

22 + b′′22.

Since, a′
11 + b′11 ∈ p1Ap1 and b′22 + a′′

11 + b′′11 + a′′
22 + b′′22 ∈ (p − p1)A(p − p1) we have

that

a + b ∈ Ad ⇔
(

a′
11 + b′11 ∈ Ad and a′

22 + b′22 + a′′
11 + b′′11 + a′′

22 + b′′22 ∈ Ad
)

.
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Firstly, we will consider the generalized Drazin invertibility of y = a′
22 + b′22 + a′′

11 +

b′′11 + a′′
22 + b′′22. From p2yp2 = a′′

11 + b′′11 and (1− p2)y(1− p2) = a′
22 + b′22 + a′′

22 + b′′22,

we conclude that

y ∈ Ad ⇔
(

a′′
11 + b′′11 ∈ Ad and a′

22 + b′22 + a′′
22 + b′′22 ∈ Ad

)

.

Before, we show that a′′
11 + b′′11 ∈ Ad, so y ∈ Ad if and only if z = a′

22 + b′22 + a′′
22 +

b′′22 ∈ Ad. Notice that z = pzp + (1 − p)z(1 − p), where pzp = a′
22 + b′22 ∈ Ad and

(1−p)z(1−p) = a′′
22 +b′′22 ∈ Ad, so z ∈ Ad. Hence, y ∈ Ad and we get that a+b ∈ Ad

if and only if a′
11 + b′11 ∈ Ad.

Now,

(a′
11 + b′11)

d = a′
11(p1 + (a′

11)
−1
p1Ap1

b′11)
d = p1pad(1 + adb)dbbdpp1.

By the first equation, we easily obtain

(a + b)d − ad = ad(1 + adb)dbbd + (1 − bbd)

[

∞
∑

n=0

(−b)n(ad)n

]

ad

+ bd

[

∞
∑

n=0

(bd)n(−a)n

]

aπ − ad

= ad(1 + adb)dbbd − bbdad + (1 − bbd)

[

∞
∑

n=1

(−b)n(ad)n

]

ad

+ bd

[

∞
∑

n=0

(bd)n(−a)n

]

aπ.

From above, we can estimate

‖(a + b)d − ad‖ ≤ ‖bbd‖‖ad‖
[

‖(1 + adb)d‖ + 1
]

+ ‖(1 − bbd)‖

[

∞
∑

n=1

‖(−b)n(ad)n‖

]

‖ad‖

+ ‖bd‖

[

∞
∑

n=0

‖(bd)n(−a)n‖

]

‖aπ‖,

and

‖(a + b)(a + b)d − aad‖ = ‖(aad + bad)(1 + adb)dbbd − bbdaad + bbdaπ‖

≤
[

‖aad + bad‖‖(1 + adb)d‖ + ‖1 − 2aad‖
]

‖bbd‖.

Corollary 2.2. Let a, b ∈ Ad be such that ab = ba and 1 + adb ∈ Ad.
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(1) If b is quasi-nilpotent, then

(a + b)d =

∞
∑

n=0

(ad)n+1(−b)n = (1 + adb)−1ad.

(2) If bk = 0, then (a + b)d =
k−1
∑

n=0
(ad)n+1(−b)n = (1 + adb)−1ad.

(3) If bk = b (k ≥ 3), then bd = bk−2 and

(a + b)d = ad(1 + adb)dbk−1 + (1 − bk−1)ad

+bk−2

[

∞
∑

n=0
(bd)n(−a)n

]

aπ

= ad(1 + adb)dbk−1 + (1 − bk−1)ad

+bk−2(1 + abk−2)daπ.

(4) If b2 = b, then bd = b and

(a + b)d = ad(1 + adb)db + (1 − b)ad + b

[

∞
∑

n=0
(−a)n

]

aπ

= ad(1 + adb)db + (1 − b)ad + b(1 + a)daπ.

(5) If a2 = a and b2 = b, then 1 + ab is invertible and a(1 + ab)−1b = 1
2ab. In

this case,

(a + b)d = a(1 + ab)−1b + b(1 − a) + (1 − b)a

= a + b − 3
2ab.

Theorem 2.3. Let a ∈ Ad and b ∈ A be such that ‖bad‖ < 1, aπbaπ = aπb and

aπab = aπba. If aπb ∈ Ad, then a + b ∈ Ad. In this case,

(a + b)d = (1 + adb)−1ad + (1 + adb)−1aπ

∞
∑

n=0

(bd)n+1(−a)n

+

[

∞
∑

n=0

(

(1 + adb)−1ad

)n+2

baπ(a + b)n

]

aπ

×

[

1 − (a + b)aπ

∞
∑

n=0

(bd)n+1(−a)n

]

,

and

‖(a + b)d − ad‖ ≤
‖ad‖‖bad‖

1 − ‖bad‖
+ ‖(1 + adb)−1aπ‖

∞
∑

n=0

‖(bd)‖n+1‖(−a)‖n

+

[

∞
∑

n=0

(

‖ad‖‖bad‖

1 − ‖bad‖

)n+2

‖b‖‖a + b‖n

]

‖aπ‖2

+ ‖aπ‖2

[

∞
∑

n=0

(

‖ad‖‖adb‖

1 − ‖adb‖

)n+2

‖b‖‖a + b‖n+1

][

∞
∑

n=0

‖(bd)‖n+1‖a‖n

]

.
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Proof. Since a ∈ Ad and aπb(1 − aπ) = 0, we have that for p = 1 − aπ

a =

[

a1 0

0 a2

]

p

and b =

[

b1 b3

0 b2

]

p

where a1 is invertible in the algebra pAp and a2 is quasi-nilpotent element of the

algebra (1 − p)A(1 − p). Also by aπab = aπba and the fact that aπb ∈ Ad, we

conclude that a2b2 = b2a2 and b2 ∈ Ad. Since σ(bad) ∪ {0} = σ(adb) ∪ {0}, it follows

from ‖bad‖ < 1 that 1 + adb is invertible. Now, from Theorem 2.1, we have that

(a2 + b2)
d =

∞
∑

n=0

(bd
2)

n+1(−a2)
n.

Using Theorem 1.1, we get that

(a + b)d =





(a1 + b1)
−1 S

0
∞
∑

n=0
(bd

2)
n+1(−a2)

n





p

,

where

S =

[

∞
∑

n=0

(a1 + b1)
−n−2b3(a2 + b2)

n

] [

1 − p − (a2 + b2)

∞
∑

n=0

(bd
2)

n+1(−a2)
n

]

−(a1 + b1)
−1b3

∞
∑

n=0

(bd
2)

n+1(−a2)
n.

We know that
[

(a1 + b1)
−1 0

0 0

]

p

= (1 + adb)−1ad

and




0 0

0
∞
∑

n=0
(bd

2)
n+1(−a2)

n





p

= aπ

∞
∑

n=0

(bd)n+1(−a)n.

Also, by computation we get

(

0 S

0 0

)

p

=

[

∞
∑

n=0

(

(1 + adb)−1ad
)n+2

baπ(a + b)n

]

aπ

×

[

1 − (a + b)aπ

∞
∑

n=0

(bd)n+1(−a)n

]

−(1 + adb)−1adbaπ

∞
∑

n=0

(bd)n+1(−a)n.
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Hence,

(a + b)d = (1 + adb)−1ad + (1 + adb)−1aπ

∞
∑

n=0

(bd)n+1(−a)n

+

[

∞
∑

n=0

(

(1 + adb)−1ad
)n+2

baπ(a + b)n

]

aπ

×

[

1 − (a + b)
∞
∑

n=0

(bd)n+1(−a)n

]

.

Since

(a1 + b1)
−1 ⊕ 0 = (1 + a−1

1 b1)
−1a−1

1 ⊕ 0 = a−1
1 (1 + b1a

−1
1 )−1

It follows that

(1 + adb)dad ⊕ 0 = ad(1 + bad)d

By the above facts and the condition ‖bad‖ < 1, we obtain

‖(a + b)d − ad‖ = ‖

∞
∑

n=1

ad(bad)n + (1 + adb)−1aπ

∞
∑

n=0

(bd)n+1(−a)n

+

[

∞
∑

n=0

( ∞
∑

n=0

ad(bad)n

)n+2

baπ)(a + b)n

]

aπ

×

[

1 − (a + b)aπ

∞
∑

n=0

(bd)n+1(−a)n

]

‖

≤
‖ad‖‖bad‖

1 − ‖bad‖
+ ‖(1 + adb)−1aπ‖

∞
∑

n=0

‖(bd)‖n+1‖(−a)‖n

+

[

∞
∑

n=0

(

‖ad‖‖bad‖

1 − ‖bad‖

)n+2

‖b‖‖a + b‖n

]

‖aπ‖2

+ ‖aπ‖2

[

∞
∑

n=0

(

‖ad‖‖bad‖

1 − ‖bad‖

)n+2

‖b‖‖a + b‖n+1

][

∞
∑

n=0

‖(bd)‖n+1‖a‖n

]

.

Corollary 2.4. Let a ∈ Ad and b ∈ A be such that ‖bad‖ < 1, aπb(1 − aπ) = 0

and aπab = aπba,

(1) If baad = 0 and b is quasi-nilpotent, then a + b ∈ Ad and

(a + b)d =
∞
∑

n=0

(ad)n+2b(a + b)n + ad.
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(2) If aπb = baπ, σ(aπb) = 0, then a + b ∈ Ad and

(a + b)d = (1 + adb)−1ad = ad(1 + bad)−1.

The following theorem is a generalization of Theorem 2.3 and a generalization of

Theorem 6 from [2].

Theorem 2.5. Let a, b ∈ Ad and let q be an idempotent such that aq = qa,

(1− q)bq = 0, (ab− ba)q = 0, and (1− q)(ab− ba) = 0. If (a + b)q and (1− q)(a + b)

are generalized Drazin invertible, then a + b ∈ Ad and

(a + b)d =

∞
∑

n=0

Sn+2qb(1 − q)(a + b)n(1 − q)

[

1 − (a + b)S

]

+

[

1 − (a + b)S

]

q
∞
∑

n=0

(a + b)nqb(1 − q)Sn+2

+(1 − Sqb) (1 − q)S + Sq,

where

S = ad(1 + adb)dbbd + (1 − bbd)

[

∞
∑

n=0
(−b)n(ad)n+1

]

+

[

∞
∑

n=0
(bd)n+1(−a)n

]

aπ.

Proof. The proof is similar to the proof of Theorem 2.3.
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[7] R.E. Harte. On quasinilpotents in rings. Panamer. Math. J., 1:10–16, 1991.

[8] J.J. Koliha. A generalized Drazin inverse. Glasgow Math. J., 38:367–381, 1996.

[9] C.D. Meyer and N.J. Rose. The index and the Drazin inverse of block triangular matrices. SIAM

J. Appl. Math., 33:1–7, 1977.

[10] Y. Wei and C. Deng. A note on additive results for the Drazin inverse. Linear Multilinear

Algebra, to appear, doi:10.1080/03081087.2010.496110.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 22, pp. 1049-1058, October 2011


