
ELA

FAST LOW RANK APPROXIMATIONS OF

MATRICES AND TENSORS∗

S. FRIEDLAND† , V. MEHRMANN‡ , A. MIEDLAR§ , AND M. NKENGLA†

Abstract. In many applications such as data compression, imaging or genomic data analysis,

it is important to approximate a given m × n matrix A by a matrix B of rank at most k which is

much smaller than m and n. The best rank k approximation can be determined via the singular

value decomposition which, however, has prohibitively high computational complexity and storage

requirements for very large m and n.

We present an optimal least squares algorithm for computing a rank k approximation to an m×n

matrix A by reading only a limited number of rows and columns of A. The algorithm has complexity

O(k2 max(m, n)) and allows to iteratively improve given rank k approximations by reading additional

rows and columns of A. We also show how this approach can be extended to tensors and present

numerical results.

Key words. Singular value decomposition, CUR decomposition, Rank k approximation, Least

squares, Tucker decomposition.
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1. Introduction. Let A = [ai,j ] ∈ R
m×n, i.e., A is a real valued m × n matrix,

where m,n are very large, e.g., m,n ≈ 106. We may think of A as a full matrix which

describes a noisy image [17], micro-array [1], genetic marker or HAP SNP data [25]. In

order to compress or denoise the matrix, often a low rank (say rank k) approximation

B = [bi,j ] ∈ R
m×n of A is determined and used instead of the original data. Such a

decomposition can be written as

B = x1y
⊤
1 + · · · + xky

⊤
k , xi ∈ R

m, yi ∈ R
n, i = 1, . . . , k.

It requires only an amount of storage given by (m + n)k instead of mn floating

point numbers for the full A. The best rank k approximation of A with respect to
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the Frobenius norm can be determined via the singular value decomposition (SVD)

A = WΣV T , with orthogonal matrices W ∈ R
m×m, V ∈ R

n×n and a diagonal matrix

Σ = diag(σ1, . . . , σr, 0, . . . , 0) ∈ R
m×n with σ1 ≥ σ2 ≥ · · · ≥ σr > 0. Here r is the

rank of A and the best rank k approximation is given by B = W Σ̃V T , where Σ̃ is

obtained from Σ by replacing σk+1, . . . , σr with zeros [12].

The standard procedures for computing the SVD have a computational complex-

ity of O(min(m,n)2 max(m,n)) floating point operations (flops), see e.g., [2, 12]. This

makes the SVD unsuitable for most large scale applications. If only a low rank ap-

proximation is of interest, one can use Arnoldi or Lanczos methods [12, 19] to compute

the singular values and singular vectors associated with the k largest singular values.

This requires a substantial number of matrix-vector multiplications with the matrix

A and thus a complexity of at least O(mnk) which still may be too large. Due to its

high demand in applications, the topic of deriving faster methods to compute rank k

approximation has therefore recently received a lot of attention.

Let us briefly review some of the recent literature. In the context of data-sparse

approximations for the numerical solution of large linear systems, pseudo-skeleton

approximation algorithms were suggested [13, 14, 15]. These procedures use block

Gaussian elimination with a suitable k × k block matrix to determine a rank k ap-

proximation via a so-called CUR decomposition. They have complexity O(k2(m+n))

once an appropriate block is chosen.

Other methods with complexity O(mnk) that are also based on CUR decom-

positions and subspace sampling were suggested in [26, 27] and later improved and

analyzed in [3, 4]. An improvement of the sampling idea was suggested in [9], which

uses an iterative algorithm that reads several rows of A at random, determines from

these data a rank k approximation and then iteratively improves the approximation

by reading additional rows. Each update gives a better rank k approximation to A

and the algorithm is terminated if the approximation is not improved any further, or

if an allocated number of computational work is exceeded. The complexity of this

algorithm, however, is still O(mnk). The first approaches for sampling methods that

go below this complexity were presented in [16, 27].

In this paper, we describe a method that combines several of these ideas to an

iterative method that allows on the one hand adaptive improvement of current rank

k approximations and on the other hand has small computational complexity. This

method is extended to tensors and proofs for the 3-tensor and 4-tensor case are given.

The concept has been generalized to n-tensors in [24]. Let us briefly introduce the

main idea of our algorithm for matrices. Assume that we read at random p columns

and q rows of A, indexed by the sets J ⊂ {1, . . . , n}, I ⊂ {1, . . . ,m}. This information

corresponds to m× p and q × n matrices C and R respectively. We look for a matrix

F = CUR ∈ R
m×n, with U ∈ R

p×q still to be determined. We determine Uopt as a
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solution to the least square problem of minimizing
∑

(i,j)∈S(ai,j − (CUR)i,j)
2, i.e.,

Uopt = arg min
U∈Rp×q

∑

(i,j)∈S

(ai,j − (CUR)i,j)
2. (1.1)

Here S ⊂ {1, . . . ,m}× {1, . . . , n} combines the entries of A which are contained in C

and R. Let AI,J be the submatrix of A formed by the rows in I and columns in J . We

show that a Uopt with minimal Frobenius norm is given by A†
I,J , the Moore-Penrose

inverse of AI,J . See [12] for the definition and the properties of the Moore-Penrose

inverse. Assume that p = q and the matrix AI,J is invertible. Then Uopt = A−1
I,J is the

unique solution to (1.1), and the rows and columns of A indexed by I, J , respectively,

coincide with CA−1
I,JR. If AI,J is not a square matrix, or if AI,J is ill-conditioned,

then we modify the CUR approximation to be of the form CŨoptR, where Ũopt is the

Moore-Penrose inverse of a best rank ℓ approximation of AI,J . To ensure that AI,J

was not poorly chosen, we will pick several choices of AI,J and we will use the one

which has the maximal number of significant singular values and among those the one

with the maximal product. This concept is an alternative to the approaches to use

fiber-crosses [8] or a square submatrix AI,J of maximal absolute determinant [13, 14].

The paper is organized as follows. We present the mathematical formulation of

our method in Section 2 and in Section 3 we sketch how to extend our ideas to tensors.

In Section 4 we present some computational results obtained with our algorithm on

real and synthetic data and we compare our results with the best rank k approximation

and with a full least squares approximation.

2. Mathematical formulation. In this section, we describe the mathematical

basis of our method.

Let A = [ai,j ]
m,n
i,j=1 ∈ R

m×n and let ||A||F := (
∑m,n

i,j=1 a2
i,j)

1/2 denote the Frobenius

norm of A. We use the notation 〈m〉 := {1, . . . ,m}, 〈n〉 := {1, . . . , n} and let

I = {1 ≤ α1 < · · · < αq ≤ m} ⊂ 〈m〉, J = {1 < β1 < · · · < βp ≤ n} ⊂ 〈n〉

be two nonempty sets of cardinality q and p, respectively. Using the indices in I, J ,

we consider the submatrices

AI,J = [aαk,βl
]q,p
k,l=1 ∈ R

q×p,

R = AI,〈n〉 = [aαk,j ]
q,n
k,j=1 ∈ R

q×n,

C = A〈m〉,J = [ai,βl
]m,p
i,l=1 ∈ R

m×p, (2.1)

with index set S := 〈m〉×〈n〉\((〈m〉\I)× (〈n〉\J)), of cardinality #S = mp+qn−pq.

Thus, C = A〈m〉,J and R = AI,〈n〉 are composed of the columns J and the rows I of

A, respectively.
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A commonly used approximation [1, 4, 5, 6] of A based on C,R is of the form

CUR, for some U ∈ R
p×q. If we know all the entries of A then the optimal choice of

U is given by Ub satisfying

||A − CUbR||F = min
U∈Rp×q

||A − CUR||F ,

and it is well known that Ub = C†AR†.

Let Cr(p, q) ⊂ R
p×q denote the set of all real p × q matrices of rank at most r.

Then, more generally, for r ≤ min(p, q) the optimal rank r choice for U is given by

Ub,r satisfying

||A − CUb,rR||F = min
U∈Cr(p,q)

||A − CUR||F .

An explicit formula for Ub,r is given in [10]. For r = min(rankC, rankR) ≤ min(p, q),

one can choose Ub = Ub,r. The computational complexity to compute Ub is O(mnp2q2)

(or roughly O(mn) if p << m and q << n), which is again prohibitively large if m

and n are very large. Note that the iterative algorithm suggested in [9] to compute a

rank r approximation of A is of order O(mnr).

We have seen that to compute the best approximation to A of the form F = CUR

using only the entries of A given by C and R, we have to determine Uopt by solving

the minimization problem (1.1). The optimal solution can be determined by the least

squares solution, via a reformulation as linear system

Tu = a, T ∈ R
(mp+qn−pq)×pq,u ∈ R

pq,a ∈ R
mp+qn−pq, (2.2)

where u,a are vectors, whose coordinates are the entries of U and those entries of A,

which are either in C or R, respectively. Moreover T is a submatrix of the Kronecker

product A⊗A⊤. This least squares approach is nice for the analysis of the problem,

but it usually cannot be used for an efficient computation.

Instead, in the following two theorems, we give an explicit solution that can even

be computed fast. If AI,J is a square and invertible, then the overdetermined system

(2.2) has a unique solution but even if AI,J is not square we can make the solution

unique by requiring norm minimization in Frobenius norm.

Theorem 2.1. Let A ∈ R
m×n, and let I ⊂ 〈m〉, J ⊂ 〈n〉 have cardinality q and

p, respectively. Let C = A〈m〉,J ∈ R
m×p, and R = AI,〈n〉 ∈ R

q×n be as in (2.1) and

suppose that AI,J is invertible. Then the overdetermined system (2.2) has a unique

solution U = A−1
I,J , i.e., the rows in I and the columns in J of the matrix CA−1

I,JR

are equal to the corresponding rows and columns of A, respectively.

Proof. For any I ⊂ 〈m〉, J ⊂ 〈n〉, with #I = q, #J = p, and U ∈ R
p×q we have

the identity

(A〈m〉,JUAI,〈n〉)I,J = AI,JUAI,J .

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 22, pp. 1031-1048, October 2011



ELA

Fast Low Rank Approximations of Matrices and Tensors 1035

Hence the part of the system (2.2) corresponding to (CUR)I,J = AI,J reduces to the

equation

AI,JUAI,J = AI,J .

If AI,J is a square matrix and invertible, then the unique solution to this matrix

equation is U = A−1
I,J . Furthermore

(A〈m〉,JA−1
I,JAI,〈n〉)I,〈n〉 = AI,JA−1

I,JAI,〈n〉 = AI,〈n〉,

(A〈m〉,JA−1
I,JAI,〈n〉)〈m〉,J = A〈m〉,JA−1

I,JAI,J = A〈m〉,J .

This result can be extended to the general nonsquare case.

Theorem 2.2. Let A ∈ R
m×n, and let I ⊂ 〈m〉, J ⊂ 〈n〉 have cardinality q and

p, respectively. Let C = A〈m〉,J ∈ R
m×p, and R = AI,〈n〉 ∈ R

q×n be as in (2.1). Then

U = A†
I,J is the minimal solution (in Frobenius norm) of (1.1).

Proof. Using the SVD of AI,J we may assume w.l.o.g. that AI,J = Σr ⊕

0(q−r)×(p−r), where Σr = diag(σ1, . . . , σr) and r = rankAI,J . For U ∈ R
p×q denote

by Ur ∈ R
p×q the matrix obtained from U by replacing the last p − r rows and q − r

columns by rows and columns of zeros, respectively. Note that then CUR = CUrR

and ‖Ur‖F ≤ ‖U‖F , and equality holds if and only if U = Ur. Hence, the minimal

Frobenius norm least squares solution U of is given by U = Ur. Using the fact that

the rows r + 1, . . . , q and columns r + 1, . . . , p of CUR are zero it follows that the

minimum in (1.1) is reduced to the minimum on S ′ = 〈m〉 × 〈r〉 ∪ 〈r〉 × 〈n〉. Then,

by Theorem 2.1 the solution to the minimal Frobenius norm least squares problem is

given by Σ†.

To make use of these ideas in finite precision arithmetic we have to work with

the numerical rank rather than with the rank. For A ∈ R
m×n the numerical rank

ranknum A of A is defined to be the number of singular values σj of A that are above

a certain threshold, which is usually taken to be ǫ ·c(n,m) ·σ1, where ǫ is the machine

precision, c(n,m) is a low degree polynomial in the dimensions n,m and σ1 is the

largest singular value of A, see [2, 12] for details.

Assume that we have selected at random sets of q rows I and p columns J , and

set rnum := ranknum AI,J . If the rank of AI,J equals its numerical rank, then we can

use Theorem 2.2 to choose Uopt = A†
I,J . If ranknum < rankAI,J , then we choose as

approximation

B = A〈m〉,JA†
I,J,rnum

AJ,〈n〉, Ũopt = A†
I,J,rnum

, (2.3)

where AI,J,rnum
is the best rank rnum approximation of AI,J .

We summarize the presented procedure in the following algorithm.
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Algorithm 2.3. FSVD Let A ∈ R
m×n. Fix integers p, tmax ≥ 1 and set q = p.

1. Choose two sets I ⊂ 〈m〉, J ⊂ 〈n〉 of cardinality p at random. Determine

the numerical rank k(I, J) = rnumAI,J and the product of the first k(I, J)

singular values of AI,J , which is denoted by π(I, J). Repeat this procedure

tmax times and keep the rows and columns I, J with the maximal k := k(I, J)

and of those, keep that with maximal π(I, J).

2. Compute the best rank k approximation of AI,J denoted by AI,J,k.

3. Use B = CA†
I,J,kR as rank k approximation of A.

Based on the information that we read, the S-average error (SAE) of our approx-

imation is

Errorav(B) =

∑
(i,j)∈S(ai,j − bi,j)

2

∑
(i,j)∈S a2

i,j

(2.4)

and typically this error is expected to be small. But if we are not satisfied with the

average approximation error, then we can adaptively improve the approximation by

adding more rows and columns to the matrices C,R, i.e., by increasing the index sets

I, J and by computing a new A†
I,J,k for the extended sets.

Since B and B1 are of low rank, we can efficiently, (in complexity O(k2(n+m))),

compute the average distance

||B − B1||
2
F

||B||F ||B1||F
. (2.5)

This is done as follows. Write explicitly each matrix X in (2.5) as a sum of rank one

matrices, and recall that ‖X‖2
F = tr XX⊤, where tr denotes the trace. Finally note

that trxy⊤uv⊤ = (y⊤u)(v⊤u).

We adaptively increase the sets I, J until either the distance (2.5) has converged,

or we have exceeded the allowed amount of computational work. We can increase sets

I, J either incrementally by adding a fixed number of new columns and rows, or by

certain percentage which, for example, may depend on the size of the achieved reduc-

tion in the S-average error (SAE). However, since the choice of particular increase

strategy is problem-dependent, it is usually based on some heuristics.

In this iterative improvement, we employ updating the computation of A†
I,J,k.

Since updating of the singular value decomposition is usually not possible, we can

reduce the computational work (in particular for larger k) by replacing the singular

value decomposition with the ULV decomposition [29] which can be updated when

rows and columns are added.

Since the complexity of computing A†
I,J,k is O(min(p, q)2 max(p, q)), it follows

that for small p, q << m,n the computational complexity of this method is dominated
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by the reading of the data and the computation of the average error (2.4) and thus

we obtain a complexity of O(k2 max(m,n)).

After presenting the basic concept of our method for matrices, in the next section,

we show how these ideas can be extended to tensors.

3. Extensions to tensors. Tensor decompositions are used in many applica-

tions to help explain interactions among multi-way data. These applications include

chemometrics [11], psychometrics [18, 30], computer image and human motion recog-

nition [31] and image restoration to name a few as well as many other areas using

multi-way data analysis [7]. Collecting and storing large datasets of sensor data, so-

cial network data, fMRI medical data is easier than ever with commodity, terabyte

disks. This data explosion creates deep research challenges that require scalable,

tensor-based algorithms. The volume of a n-tensor is the product of the component

dimensions l1l2 · · · ln and therein lies the curse of dimensionality. In many applica-

tions N = l1l2 · · · ln is big primarily because n is big. And n is getting bigger because

researchers are interested in developing more sophisticated models that capture multi-

ple interactions instead of the simplistic pairwise interactions. In higher dimensions,

familiar linear algebra concepts such as rank, become complicated. Determining a

closed-form solution for the rank of a general tensor is still an open problem. More

pertinently, developing an analog to the Eckart-Young theorem applied in the SVD is

an area that continues to garner widespread interest for multilinear tensors. The most

common and widely used definition of a tensor rank refers to the minimum number

of rank-1 tensors needed to sum to the tensor, which is a very hard problem. Instead,

we use as tensor rank the n-rank of a tensor. The following definition involves the

matrix representation of tensors, where A(n) is the unfolding of the tensor A along

its nth mode (dimension).

Definition 3.1. Let A ∈ R
l1×···×ld and suppose that A(n) represents the matrix

derived by unfolding A in the nth-mode (n ∈ 〈d〉), then the n-rank of A denoted by

rankn(A), is

rankn(A) = rank(A(n)) for n ∈ 〈d〉.

Thus, the rankn(A) is the rank of the matrix A(n). As such, the 1-rank of

a matrix (a tensor of dimension 2) is its column rank, while the 2-rank is its row

rank. In this section, we discuss how our idea of computing least squares optimal

CUR decompositions can be extended to 3 and 4 tensors, see also [21]. For a general

n-tensor proof, see [24].

3.1. 3-tensors. Let A = [ai1,i2,i3 ] ∈ R
l1×l2×l3 be a 3-tensor, where the dimen-

sions l1, l2, l3, are large. For each j = 1, 2, 3, we read subtensors of A denoted by

Cj = [c
(j)
i1,ji2,ji3,j

] ∈ R
l1,j×l2,j×l3,j . We assume that Cj has the same number of coor-
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dinates as A in j-th direction, and a small number of coordinates in the other two

directions. That is, lj,j = lj and the other two indices ls,j , s ∈ {1, 2, 3}\{j} are of

order O(k), for j = 1, 2, 3. Therefore, Cj corresponds to the j-section of the ten-

sor A. The small dimensions of Cj are (lsj ,j , ltj ,j) where {sj , tj} = {1, 2, 3}\{j} for

j = 1, 2, 3. Let mj := lsj ,j ltj ,j for j = 1, 2, 3.

To determine an approximation, we then look for a 6-tensor

V = [vq1,q2,q3,q4,q5,q6
] ∈ R

l2,1×l3,1×l1,2×l3,2×l1,3×l2,3

and approximate the given tensor A by a tensor

B = [bi1,i2,i3 ] := V · C1 · C2 · C3 ∈ R
ℓ1×ℓ2×ℓ3 ,

where we contract the 6 indices in V and the corresponding two indices {1, 2, 3}\{j}

in Cj for j = 1, 2, 3, i.e., our approximation has the entries

bi1,i2,i3 =

ℓ2,1∑

q1=1

ℓ3,1∑

q2=1

ℓ1,2∑

q3=1

ℓ3,2∑

q4=1

ℓ1,3∑

q5=1

ℓ2,3∑

q6=1

vq1,q2,q3,q4,q5,q6
c
(1)
i1,q1,q2

c
(2)
q3,i2,q4

c
(3)
q5,q6,i3

.

This approximation is equivalent to a so-called Tucker approximation [30]. Indeed, if

we represent each tensor Cj by a matrix Cj ∈ R
mj×lj that has the same number of

columns as the range of the j-th index of the tensor A and as number of rows the

product of the ranges of the remaining two small indices of Cj , i.e., Cj = [c
(j)
r,ij

]
mj ·ℓj

r,ij=1.

Then c
(j)
r,ij

is equal to the corresponding entry c
(j)
i1,i2,i3

, where the value of r corresponds

to the double index (is, it) for {s, t} = {1, 2, 3}\{j}.

Now with U = [uj1,j2,j3 ] ∈ R
m1×m2×m3 , the equivalent Tucker representation of

B = [bi1,i2,i3 ] is given by the entries

bi1,i2,i3 =

m1∑

j1=1

m2∑

j2=1

m3∑

j3=1

uj1,j2,j3c
(1)
j1,i1

c
(2)
j2,i2

c
(3)
j3,i3

, (i1, i2, i3) ∈ 〈ℓ1〉 × 〈ℓ2〉 × 〈ℓ3〉.

This formula is expressed commonly as

B = U ×1 C1 ×2 C2 ×3 C3. (3.1)

We now choose three subsets of the rows, columns and tubes of A, with the goal

of maximizing the n-rank of the resulting subtensor,

I ⊂ 〈ℓ1〉, #I = p, J ⊂ 〈ℓ2〉, #J = q, K ⊂ 〈ℓ3〉, #K = r.

Let

C1 = A〈ℓ1〉,J,K := [ai,j,k], i ∈ 〈ℓ1〉, j ∈ J, k ∈ K,

C2 = AI,〈ℓ2〉,K := [ai,j,k], i ∈ I, j ∈ 〈ℓ2〉, k ∈ K, (3.2)

C3 = AI,J,〈ℓ3〉 := [ai,j,k], i ∈ I, j ∈ J, k ∈ 〈ℓ3〉,

S = (〈ℓ1〉 × J × K) ∪ (I × 〈ℓ2〉 × K) ∪ (I × J × 〈ℓ3〉).
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Then we define Uopt similarly to (1.1) as solution of a least squares problem, i.e.,

Uopt = arg min
U∈Rm1×m2×m3

∑

(i,j,k)∈S

(ai,j,k − (U ×1 C1 ×2 C2 ×3 C3)i,j,k)2. (3.3)

A tensor A is called generic if its entries are not the set of zeros of any finite

number of given polynomial equations in the entries of A.

Theorem 3.2. For a given generic tensor A ∈ R
ℓ1×ℓ2×ℓ3 let I ⊂ 〈ℓ1〉, J ⊂ 〈ℓ2〉,

and K ⊂ 〈ℓ3〉 be three sets of integers with the particular cardinalities #I = p,

#J = p, #K = p2 (chosen as such purely for convenience, for a given integer p). Let

C1 = A〈ℓ1〉,J,K ∈ R
ℓ1×p×p2

, C2 = AI,〈ℓ2〉,K ∈ R
p×ℓ2×p2

, and C3 = AI,J,〈ℓ3〉 ∈ R
p×p×〈ℓ3〉

be the subtensors defined as in (3.2). Assume that Cj ∈ R
mj×ℓj is the matrix induced

by the tensor Cj for j = 1, 2, 3.

Then the minimum given in (3.3) is zero, i.e., there exists U ∈ R
p3×p3×p2

such

that the tensor B given by (3.1) has the same entries as A for (i, j, k) ∈ S.

Proof. We can represent the tensor A = [ai,j,k] as a matrix E = [es,k] ∈

R
(ℓ1·ℓ2)×ℓ3 . So es,k = ai,j,k for the corresponding pair of indices (i, j) ∈ 〈ℓ1〉 × 〈ℓ2〉.

Then the set of indices (i, j) ∈ I×J corresponds to the set of indices L ⊂ 〈ℓ1·ℓ2〉, where

#L = p2. Since A is generic it follows that the submatrix EL,K that has row indices in

L and column indices in K is invertible. Hence, the matrix Ẽ = E〈ℓ1·ℓ2〉,KE−1
L,KEL,〈ℓ3〉

has the same entries as E in the places 〈ℓ1 · ℓ2〉 ×K ∪L× 〈ℓ3〉. Equivalently, one can

represent Ẽ as

A〈ℓ1〉,〈ℓ2〉,KE−1
L,KAI,J,〈ℓ3〉. (3.4)

For each k ∈ K, consider the matrix

Fk := A〈ℓ1〉,〈ℓ2〉,k = [ai,j,k]ℓ1,ℓ2
i,j=1 ∈ R

ℓ1×ℓ2 .

Since A is generic, det(Fk)I,J 6= 0 for each k ∈ K. Hence, Fk can be approximated

by Gk := (Fk)〈ℓ1〉,J(Fk)−1
I,J (Fk)I,〈ℓ2〉. Moreover, Gk has the same entries as Fk in the

positions 〈ℓ1〉 × J ∪ I × 〈ℓ2〉.

Equivalently, we have that

A〈ℓ1〉,J,kA
−1
I,J,kAI,〈ℓ2〉,k, (3.5)

is an approximation of A〈ℓ1〉,〈ℓ2〉,k, which has the same entries as A〈ℓ1〉,〈ℓ2〉,k in the

positions 〈ℓ1〉 × J ∪ I × 〈ℓ2〉 for k ∈ K. Replacing A〈ℓ1〉,〈ℓ2〉,k in (3.4) with the

expression that appears in (3.5) gives rise to the approximation B of the form (3.1).

Furthermore, B has the same entries as A for (i, j, k) ∈ S.
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Note that the Tucker decomposition outlined in Theorem 3.2 is not symmetric

with respect to the three coordinates of the 3-tensor A. In certain applications this

can be useful, where one coordinate dimension is significantly larger than the other

two, see e.g., [28] and the references therein.

Using the construction suggested in the proof of Theorem 3.2, one can derive

an algorithm for computing U which is similar to the approximation algorithm for

matrices outlined in Section 2. The complexity of this algorithm would be of order

O(max(p3ℓ1, p
3ℓ2, p

2ℓ3) + p8),

namely, the memory needed for the matrices C1, C2, C3 and the tensor U . The nu-

merical properties of this method are currently under investigation.

3.2. 4-tensors. The ideas that we have developed in the previous subsection

for 3-tensors can be extended easily to 4-tensors. However, in this case, we obtain a

result that is symmetric in all coordinates.

Theorem 3.3. For a given generic tensor A ∈ R
ℓ1×ℓ2×ℓ3×ℓ4 let I ⊂ 〈ℓ1〉, J ⊂

〈ℓ2〉, K ⊂ 〈ℓ3〉, and L ⊂ 〈ℓ4〉 be four sets of integers all of cardinality p and let

C1 = A〈ℓ1〉,J,K,L ∈ R
ℓ1×p×p×p,

C2 = AI,〈ℓ2〉,K,L ∈ R
p×ℓ2×p×p,

C3 = AI,J,〈ℓ3〉,K ∈ R
p×p×ℓ3×p,

C4 = AI,J,K,〈ℓ4〉 ∈ R
p×p×p×ℓ4

be four sections of A. Let C1 ∈ R
p3×ℓ1 , C2 ∈ R

p3×ℓ2 , C3 ∈ R
p3×ℓ3 , C4 ∈ R

p3×ℓ4 be

matrix representations corresponding to the four sections C1, C2, C3, C4 of A.

Then, there exists a tensor U ∈ R
p3×p3×p3×p3

such that the entries of the tensor

B = U ×1 C1 ×2 C2 ×3 C3 ×4 C4 ∈ R
ℓ1×ℓ2×ℓ3×ℓ4 .

coincide with the entries of A for (i, j, k, l) ∈ S, where

S := (〈ℓ1〉× J ×K ×L)∪ (I ×〈ℓ2〉×K ×L)∪ (I × J ×〈ℓ3〉×L)∪ (I × J ×K ×〈ℓ4〉).

Proof. The proof can be obtained in a similar way as that of the 3-tensor case.

Note that usually the tensor U will not be unique, since we can unfold the given

4-tensor A to a matrix E in 6 different ways.

4. Experimental results. In this section, we present several experimental re-

sults that demonstrates the usefulness of our algorithm when applied to some synthetic
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and real image data. The numerical results were run in Matlab [22] on a PC with an

Intel(R) Pentium(R) 4 CPU 3.20 GHz processor with 1 GB RAM memory, machine

precision 2.2204 · 10−16 and operating system SUSE Linux 10.2.

For the given matrix A and the computed rank k approximation B, we present

the total relative error (TRE) of the approximation, defined as

‖A − B‖F /‖A‖F ,

and the S-average error (SAE) as given in (2.4).

In order to demonstrate the statements made in Theorem 2.2, we compute Uopt

in two ways. First we solve the least squares problem (2.2) (we denote the solution

by Uopt1), then we compute Uopt2 = A†
I,J as in Theorem 2.2. As before, we denote by

tmax the number of trials to find a well conditioned matrix AI,J . We compare these

results with Ũopt defined in (2.3) and with the solution of the complete least squares

problem (denoted by CLS), given by Ub = C†AR†.

First of all, we observe that our algorithm tends to perform better with p and q

chosen closer to the matrix rank.

Figure 4.1 portrays the original image of the ‘Tire’ picture from the Image Pro-

cessing Toolbox of Matlab [22], given by a matrix A ∈ R
205×232 of rank 205, the

image compression given by the SVD (using the Matlab function svds [23]) of rank

30 and the image compression given by Bb = CUbR.

Fig. 4.1. Tire image (a) original, (b) SVD rank-30 approximation, (c) CLS rank-30 approxi-

mation, tmax = 100.

The corresponding image compressions given by the approximations Bopt1 , Bopt2

and B̃opt are displayed respectively in Figure 4.2. Here, tmax = 100 and p = q = 30.

Note that the number of trials tmax is set to the large value of 100 for all simulations

in order to be able to compare results for different (small and large) matrices.

In Table 4.1 we present the S-average and total relative errors of the image data
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Fig. 4.2. Tire image compression to a rank-30 image (a) Bopt1 , (b) Bopt2 , (c) B̃opt, tmax = 100.

rank SAE TRE

Bsvd 30 0.0072 0.0851

Bb 30 0.0162 0.1920

Bopt1 30 1.6613 · 10−26 0.8274

Bopt2 30 3.2886 · 10−29 0.8274

B̃opt 30 1.9317 · 10−29 0.8274
Table 4.1

Comparison of rank, S-average error (SAE) and total relative error (TRE) for the Tire image.

compression. Here, Bb = CUbR, Bopt2 = CUopt2R and B̃opt = CŨoptR. Table 4.1 in-

dicates that the less computationally costly FSVD with Bopt1 , Bopt2 and B̃opt obtains

a smaller S-average error than the more expensive complete least squares solution

CLS and the SVD. On the other hand, CLS and the SVD yield better results in terms

of the total relative error. However, it should be noted that CLS is very costly and

cannot be applied to very large matrices.

Figure 4.3 shows the results for the compression of the data for the original image

of a ‘Camera man’ from the Image Processing Toolbox of Matlab [22]. This data

is a matrix A ∈ R
256×256 of rank 253 and the resulting image compression of rank

69 is derived using the SVD and the complete least square approximation CLS given

by Bb = CUbR. Notice that there is no discernible difference to the eye in the

first two pictures. Figure 4.4 displays estimates given by the FSVD approximation

Bopt2 = CUopt2R and B̃opt = CŨoptR, respectively. Here, we chose tmax = 100 and

p = q = 80. Correspondingly, in Table 4.2 we provide the resulting S-average and

total relative errors. Due to the inability of the Matlab least squares solver for large

systems of equations, Bopt1 cannot be computed for large data. We see that the FSVD

approximation performs well when considering the computational cost compared with

the CLS approximation. Generally we want the total relative error (TRE) to be small,

however, since we are not able to compute for ‘real world’ applications, we use the
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Fig. 4.3. Camera man image (a) original, (b) SVD rank-69 approximation, (c) CLS rank-69

approximation, tmax = 100.

SAE as an indicator for our error, since it can be computed effectively.

Fig. 4.4. Camera man image compression. FSVD rank-69 approximation with (a) Bopt2 =

CUopt2R, (b) B̃opt = CŨoptR. tmax = 100.

rank SAE TRE

Bsvd 69 0.0020 0.0426

Bb 80 0.0049 0.0954

Bopt1 − − −

Bopt2 80 3.7614 · 10
−27

1.5154

B̃opt 69 7.0114 · 10
−4

0.2175

Table 4.2

Comparison of rank, S-average error (SAE) and total relative error (TRE) for the Camera

man image.

Figure 4.5 portrays the plots of total relative errors (TRE) versus number of
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selected rows q and columns p for the camera man image. The fact that the error

stabilizes as the number of rows and columns increases is quite perceptible. This can

be attributed to the fact that this increase implies that the rank of the submatrix

AI,J is getting closer to the rank of the original matrix and as such will result in a

decreasing total relative error. Although the FSVD converges reasonably well, the

SVD and CLS exhibit comparatively faster convergence.

Fig. 4.5. Camera man: total relative errors (TRE) versus number of selected rows q and

columns p, tmax = 100.

Figure 4.6 portrays the plot of the S-average error (SAE) versus the number of

chosen rows q and columns p for the camera man image. The theory suggests that

better choices of q and p will result in better approximations and result in smaller

average errors. This logic can be substantiated using the basis corresponding to

specific singular values from the SVD of AI,J . Larger singular values lead to better

approximations. In addition, we would expect the graph to exhibit a decrease in error

as the q and p values get larger because the resulting submatrix AI,J has a greater

probability of being well conditioned. This in turn will provide us with a better

Moore-Penrose inverse. Correspondingly, we can observe that the errors converge as

p and q approach the matrix rank.

Figures 4.7 and 4.8 exhibit the result of the same analysis applied to an original

high resolution image of ‘Canal at Night’ (an image from Max Lyons Digital Image

Gallery [20]) given by a matrix A ∈ R
812×1200 of rank 812. Figure 4.7 shows the

original and the SVD approximation image, of rank 159, with no ’eye-recognizable’

difference, while Figure 4.8 shows the approximations given by CLS and FSVD (with

B̃opt = CŨoptR), respectively. The parameters here are tmax = 100 and p = q = 200.
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Fig. 4.6. Camera man: S-average errors versus (SAE) number of selected rows q and columns

p, tmax = 100.

Fig. 4.7. Canal at Night image (a) original, (b) SVD rank-159 approximation, tmax = 100.

Fig. 4.8. Canal at Night image compression (a) CLS rank-200 approximation, (b) FSVD

rank-159 approximation with B̃opt, tmax = 100.
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In addition, Table 4.3 presents the corresponding S-average (SAE) and total

relative errors (TRE) of the algorithms when performed with the ranks as stated.

The results can be seen to be in accordance with the previous results. Hence, it can

be concluded that the algorithm performs similar for images of different resolutions.

rank SAE TRE

Bsvd 159 0.0091 0.0951

Bb 200 0.0109 0.1492

Bopt1 − − −

Bopt2 200 4.6677 · 10
−28

2.0919

B̃opt 159 0.0031 0.2246

Table 4.3

Comparison of rank, S-average error (SAE) and total relative error (TRE) for the Canal at

Night image.

To portray the significance of the cost in ‘real world’ approximations with very

large data sets, we examine the algorithms on a uniformly created 2500×2500 random

matrix of rank 50. Table 4.4 shows the results.

Time (seconds) Error SAE Error TRE rank

FSVD 0.123 9.6 × 10−15 0.0012 42

SVD of full A 258.4 1.16 × 10−39 6.2 × 10−30 50

SVD of A with rank = 50 35.21 5.26 × 10−39 2.19 × 10−29 50

SVD of A with rank = 42 33.47 6.68 × 10−14 2.58 × 10−4 42
Table 4.4

Performance of SVD vs FSVD on 2500 × 2500 matrix of rank 50

As the size of the data matrix grows, the advantage in the computational cost

of the FSVD makes a great difference. In addition, it is important to note that the

SVD algorithm used was a built-in heuristic from Matlab, which means it has been

optimized for the system. On the other hand, FSVD has not been optimized and runs

solely as an iterative process. Moreover, the structure of the FSVD allows to make

use of parallelization, or to take advantage of very sparse matrices by optimizing the

choice of columns and rows. In general, the choice of p and q is strongly problem-

dependent, therefore any additional information about the problem should be used

to select the appropriate number of columns and rows. If we are interested in a small

number of columns and rows one possibility would be selecting several sets I, J and

choosing the one giving the best approximation among all. The above concepts are

research topics of future work.
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5. Conclusions. We have introduced an iterative updating procedure for the

fast computation of rank k approximations of large dense matrices. We have demon-

strated the properties of the methods with real and synthetic data and we have shown

how the ideas can be extended to tensors.
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