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CHARACTERIZATION OF P -PROPERTY FOR SOME

Z-TRANSFORMATIONS ON POSITIVE SEMIDEFINITE CONE
∗

R. BALAJI†

Abstract. The P -property of the following two Z-transformations with respect to the positive

semidefinite cone is characterized:

(i) I − S, where S : Sn×n
→ Sn×n is a nilpotent linear transformation,

(ii) I − L
−1

A
, where LA is the Lyapunov transformation defined on Sn×n by LA(X) = AX +

XAT .

(Here Sn×n denotes the space of all symmetric n×n matrices and I is the identity transformation.)
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1. Introduction. An n×n matrix is said to be a Z-matrix if all the off-diagonal

entries are non-positive. Several interesting properties on Z-matrices can be found in

[1]. For a square matrix of order n, by an easy verification, we find that the following

are equivalent:

1. A is a Z-matrix.

2. If x ∈ R
n and y ∈ R

n then,

x ≥ 0, y ≥ 0 (entrywise non-negative), and xT y = 0 =⇒ yT Ax ≤ 0.

Motivated by the above fact, we consider Z-transformations with respect to positive

semidefinite cone.

Let S
n×n be the vector space of n × n symmetric matrices with real entries. A

linear transformation L : S
n×n → S

n×n is called a Z-transformation with respect to

the positive semidefinite cone if

X � 0, Y � 0 and XY = 0 =⇒ 〈L(X), Y 〉 := trace (L(X)Y ) ≤ 0.

(Here X � 0 means X is symmetric and positive semidefinite.) Significances of Z-

transformations (especially in mathematical programming) can be found in [2]. An

important result on Z-transformations is the following:
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Theorem 1.1 (Theorem 6 [2]). Let L : S
n×n → S

n×n be a Z-transformation.

Then the following are equivalent.

1. There exists a X ≻ 0 such that L(X) ≻ 0.

2. For every Q � 0, there exists a unique X � 0 such that L(X) = Q.

3. For every Q ∈ S
n×n, there exists a X � 0 such that Y := L(X) + Q � 0 and

XY = 0.

We will say that a transformation S (defined on S
n×n) has the property (c) if:

X � 0 =⇒ S(X) � 0.

Transformations of the type I−S, where I is the identity transformation on S
n×n and

S is a linear transformation with property (c) are called Stein-type transformations.

These transformations are important examples of Z-transformations. For a Stein-type

transformation it is known that all the statements of Theorem 1.1 are equivalent to

the condition ρ(S) < 1, where ρ(S) is the spectral radius of S (see [3]).

A transformation L : S
n×n → S

n×n is said to have the P -property if the following

condition is satisfied:

XL(X) = L(X)X and XL(X) � 0 =⇒ X = 0.

One of the unsolved problem on Z-transformations (see [2]) is to show that all the

items in Theorem 1.1 are equivalent to the condition that L has the P -property. Even

for the Stein-type transformations, the problem remains unsolved. More precisely,

if I − S is a Stein-type transformation such that ρ(S) < 1, then the problem of

determining whether I−S has the P -property has no answer. It is natural to consider

the simplest case, when ρ(S) = 0. In other words, assuming S is nilpotent, we ask

whether the Stein-type transformation I −S has the P -property. First, we settle this

question in this paper.

If S is a Z-transformation satisfying any of the items in Theorem 1.1, we find

that S−1 has property (c). We now ask whether I − S−1 has the P -property if S is

a Z-transformation with property (c) and such that ρ(S−1) < 1. One of the well-

studied Z-transformations is the Lyapunov transformation for which we know that all

the items of Theorem 1.1 are equivalent to the fact that A is a positive stable matrix

(See the definitions below for Lyapunov transformation and positive stable matrix).

If S = L−1

A , where LA is the Lyapunov transformation corresponding to a positive

stable matrix A with the property ρ(L−1

A ) < 1, then for the Stein-type transformation

I − L−1

A , we show that I − L−1

A has the P -property.

2. Preliminaries. All the matrices appearing here are assumed to be real. The

following notations and definitions will be useful in the sequel.
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• Definition 2.1. Let A be a square matrix. Then A is said to be positive

stable if every eigenvalue of A has a positive real part.

• Definition 2.2. For a square matrix A, the corresponding Lyapunov trans-

formation LA : S
n×n → S

n×n is defined by LA(X) := AX + XAT .

• If Q is an n × n matrix, and α = {1, . . . , k} (k < n), Qαα will denote the

k × k leading principal submatrix of Q.

• Definition 2.3. Let L : S
n×n → S

n×n be a linear transformation. For any

α = {1, . . . , k}, we define a linear transformation Lαα : S
k×k → S

k×k by

Lαα(Z) := [L(X)]αα (Z ∈ S
k×k),

where corresponding to Z ∈ S
k×k, X ∈ S

n×n is the unique matrix such that

Xij =

{
Zij (i, j) ∈ α × α

0 else.

We call Lαα the principal subtransformation corresponding to α.

• If β ∈ R, then we define β+ := max(β, 0) and β− := max(−β, 0). Suppose

D is a diagonal matrix with diagonal entries di. Then D+ will denote the

diagonal matrix whose diagonal entries are d+

i . Similarly, D− will denote the

diagonal matrix whose entries are d−i .

• If X ∈ S
n×n, then there exists an orthogonal matrix U such that UXUT = D,

where D is diagonal. Now we define X+ := UD+UT and X− := UD−UT .

It is easy to see that for every X ∈ S
n×n, X = X+ − X−; X+ and X− are

positive semidefinite.

• We will use the fact that if T is a linear transformation on S
n×n with property

(c), then its spectral radius is an eigenvalue of T (see Theorem 0 in [4]).

• Let T : S
n×n → S

n×n be a linear transformation. Then T is a nilpotent

transformation if there exists a positive integer m such that Tm = 0.

3. Results. We prove our main results now.

3.1. Case 1. We intend to show that I − S has the P -property if S is nilpotent

and has property (c). The result is trivial if S = 0 and so in the rest of the discussion,

we assume S is nonzero. Let ν be the least positive integer satisfying

(3.1) Sν = 0, and Sν−1 6= 0.

First we prove the following basic lemma.

Lemma 3.1. Let S be a nilpotent transformation. Assume that S has property

(c). Then the following are true:

(a) If Q ≻ 0, then Q /∈ Image(S).
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(b) If rankS(X) = m, then there exists a P � 0 such that rankS(P ) ≥ m. In

fact, if X ∈ S
n×n, then

rank S(X) ≤ rank S(|X|),

where |X| := X+ + X−.

Proof. Let S satisfy (3.1). Suppose S(P ) = Q for some Q ≻ 0. If X � 0, then

there exists ǫ > 0 such that Q − ǫX ≻ 0. Since S has the property (c) and satisfies

(3.1), we have:

(3.2) Sν−1(Q − ǫX) + Sν−1(ǫX) = 0,

(3.3) Sν−1(Q − ǫX) � 0, and Sν−1(ǫX) � 0.

In view of (3.2) and (3.3), Sν−1(X) = 0. Therefore for any Y ∈ S
n×n,

Sν−1(Y ) = Sν−1(Y +) − Sν−1(Y −) = 0

and so Sν−1 = 0 which is a contradiction to (3.1). This proves (a).

For any two positive semidefinite matrices U and V in S
n×n,

(3.4) rank(U − V ) ≤ rank(U + V ).

The above inequality can be proved as follows. Let x ∈ R
n be an element in the null

space of U + V . This gives Ux = −V x and thus, xT Ux = −xT V x. Since U and V

are symmetric and positive semidefinite, we get Ux = 0 = V x and thus,

nullity (U + V ) ≤ nullity (U − V ).

By rank nullity theorem, (3.4) follows.

By setting U = S(X+) and V = S(X−) in (3.4), we find from the property (c) of

S that the positive semidefinite matrix P := X+ + X− satisfies m ≤ rankS(P ). This

proves (b).

We now prove the first main result.

Theorem 3.2. Suppose S : S
n×n → S

n×n is a nilpotent transformation with

property (c). Then I − S has the P -property.

Proof. We prove the result by induction on n. If n = 2, the result is true (see

Theorem 13 in [2]). For k < n, we will assume that the result holds and now we prove

for k = n. Let Q0 ∈ S
n×n be such that

rankS(Q0) ≥ rankS(Q) for all Q ∈ S
n×n.
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In view of Item (b) in Lemma 3.1, without any loss of generality, we assume Q0 � 0.

If k̂ = rankS(Q0), then Item (a) of Lemma 3.1 implies k̂ < n. There exists an

orthogonal matrix U such that

US(Q0)U
T =

[
D 0

0 0

]
,

D ∈ S
k̂×k̂ being diagonal and nonsingular. Define S̃ : S

n×n → S
n×n by

S̃(X) := US(UT XU)UT .

If Q̂0 = UQ0U
T , then

S̃(Q̂0) =

[
D 0

0 0

]
.

By an easy verification, we find that S̃ is nilpotent and has property (c). Further,

(3.5) rank S̃(Q̂0) ≥ rank S̃(Q) for all Q ∈ S
n×n.

We now claim that for any X ∈ S
n×n,

(3.6) S̃(X) =

[
E 0

0 0

]
, for some E ∈ S

k̂×k̂.

Let Q � 0 and F := S̃(Q). As F = [fij ] � 0, fii = 0 if and only if the ith column

of F is zero. Suppose fii > 0 for some i > k̂. Then

rank S̃(Q̂0 + Q) = rank(S̃(Q̂0) + S̃(Q)) ≥ k̂ + 1 > k̂.

Thus, we have rank S̃(Q̂0 + Q) > rank S̃(Q̂0) which is a contradiction to (3.5). So,

for any Q � 0,

S̃(Q) =

[
E′ 0

0 0

]
, E′ ∈ S

k̂×k̂.

Since for any X ∈ S
n×n, S̃(X) = S̃(X+) − S̃(X−), using the c-property of S̃, we see

that (3.6) holds.

Let X =

[
X1 X2

XT
2 X3

]
(X1 ∈ S

k̂×k̂) be such that X(X − S̃(X)) � 0. If

S̃(X) =

[
F 0

0 0

]
.
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Then from

(3.7)

[
X1 X2

XT
2 X3

]([
X1 X2

XT
2 X3

]
−

[
F 0

0 0

])
� 0,

it follows that XT
2 X2 + X2

3 � 0, and therefore, X2 and X3 are zero matrices. So,

F = S̃αα(X1), where α = {1, . . . , k̂}. From (3.7) we now have

(3.8) X1(X1 − S̃αα(X1)) � 0.

We next claim that S̃αα has the property (c). Let X0 ∈ S
k̂×k̂ be positive semidef-

inite and

Y0 = S̃

([
X0 0

0 0

])
.

Since S̃ has property (c), Y0 is a positive semidefinite matrix. Noticing that S̃αα(X0)

is a leading principal submatrix of Y0, we conclude S̃αα(X0) is positive semidefinite.

This proves our claim.

Now we assert that S̃αα is nilpotent. Since S̃αα has property (c), r := ρ(S̃αα) is

an eigenvalue of S̃αα. Let X0 ∈ be a nonzero matrix in S
k̂×k̂ such that

S̃αα(X0) = rX0.

In view of (3.6) and the definition of S̃αα,

S̃

([
X0 0

0 0

])
=

[
rX0 0

0 0

]
.

Hence, r is an eigenvalue of S̃. Since S̃ is nilpotent, r = 0. Thus, S̃αα is nilpotent.

By our induction assumption, I − S̃αα must have P -property and hence from

(3.8), X1 = 0; thus, X = 0. This proves that I − S̃ has the P -property. It is easy to

see that I − S has the P -property if and only if I − S̃ has the P -property. The proof

is now complete.

Corollary 3.3. Let {A1, . . . , Aν} be a finite set of n × n nilpotent matrices.

Assume that AiAj = AjAi for all i and each Ai is nilpotent. Then the transformation

X −
∑ν

i=1
AiXAT

i has the P -property.

Proof. Let MAi
(X) = AiXAT

i . Then, using AiAj = AjAi, we verify that

MAi
MAj

= MAj
MAi

. Now it is easy to see that
∑n

i=1
MAi

is nilpotent, and hence,

X −
∑ν

i=1
AiXAT

i has the P -property.
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3.2. Case 2. Now we shall show that if a matrix A is positive stable and

ρ(L−1

A ) < 1, then I − L−1

A has the P -property. Note that by Lyapunov theorem

(cf. Theorem 6 [3] ), L−1

A will have the property (c). Hence, I − L−1

A is a Stein-type

transformation and satisfy all the items in Theorem 1.1. Before proving the main

result, we will prove some intermediate lemmas.

Lemma 3.4. Let A be a positive stable matrix of order n and ρ(L−1

A ) < 1. Then

1. trace A > n
2
.

2. If there exist a nonsingular X and Y := X − L−1

A (X) such that XY = Y X

and XY � 0, then X must be indefinite.

Proof. If λ is an eigenvalue of A, then it is straightforward to verify that λ+λ∗ is an

eigenvalue of LA. In other words, 2Re(λ) is an eigenvalue of the linear transformation

LA. Our assumptions on A now imply that

0 <
1

2Re(λ)
< 1,

and hence, Re(λ) > 1

2
. As A is a real matrix, we now deduce that the sum of all the

eigenvalues of A is greater than n
2
. This proves 1.

Suppose X � 0 is a nonsingular matrix such that XY � 0. Because XY = Y X,

there exists an orthogonal matrix U such that X = UDUT and Y = UEUT , where

D and E are diagonal matrices and now XY � 0 implies that

(3.9) DE � 0.

The matrix D must be positive definite as X is a nonsingular positive semidefinite

matrix and by (3.9), we conclude E � 0; hence,

Y � 0.

This means that X − L−1

A (X) � 0. The matrix A is positive stable, and hence by

Lyapunov theorem I −L−1

A , is a Z-transformation. From the assumption ρ(L−1

A ) < 1,

it follows from Item 2 of Theorem 1.1 that

(I − L−1

A )(X) � 0 =⇒ X � 0.

Therefore, X cannot be positive semidefinite. This is a contradiction.

In a similar manner, it follows that X cannot be negative semidefinite. This

proves 2.

Lemma 3.5. If A is positive stable and ρ(L−1

A ) < 1, then

1. There does not exist a nonsingular matrix X commuting with Y := X −

L−1

A (X), such that XY � 0.
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2. If X is either positive semidefinite or negative semidefinite and if Y := X −

L−1

A (X) is such that XY = Y X, then

XY � 0 ⇒ X = 0.

Proof. Let X be a nonsingular matrix such that XY = Y X and XY � 0, where

Y := X − L−1

A (X). In view of previous lemma, X must be indefinite.

As XY = Y X and XY � 0, there is an orthogonal matrix U such that

UXUT =

[
D 0

0 −E

]
, UY UT =

[
−F 0

0 G

]
,

where the matrices D and E are positive definite; F and G are positive semidefinite.

Further D, E, F , and G are diagonal. Note that X − Y = L−1

A (X), and thus,

X = LA(X − Y ). We now have

(3.10)

[
D 0

0 −E

]
= UXUT = ULA(X − Y )UT

= ULA(UT (U(X − Y )UT )U)UT

= ULA(UT

[
D + F 0

0 −E − G

]
U)UT .

= LUAUT (

[
D + F 0

0 −E − G

]
).





Let di, ei, fi and gi be the diagonal entries of D, E, F and G, respectively.

Assume that the order of D and F is ν. If α11, α22, . . . , αnn are the diagonal entries

of UAUT , then we find from the above equations that

αkk =





dk

2(dk + fk)
if k = 1, . . . , ν

ek

2(ek + gk)
if k = ν + 1, . . . , n.

Thus, trace A = trace (UAUT ) ≤ n
2 . This contradicts Lemma 3.4. Therefore item 1

is proved.

The proof of item 2 follows easily by replacing E = 0 in the above.

Theorem 3.6. Let A be an n × n positive stable matrix with real entries. If LA

is the corresponding Lyapunov transformation then the following are equivalent:

(i) ρ(L−1

A ) < 1.

(ii) I − L−1

A has the P -property.
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Proof. Since I−L−1

A is a Stein-type-transformation, (ii) ⇒ (i) follows immediately

from the fact that ρ(L−1

A ) is an eigenvalue of L−1

A . We now prove (i) ⇒ (ii).

Let X be such that

X(X − L−1

A (X) � 0.

Put Y := X − L−1

A (X). In view of Lemma 3.4 and Lemma 3.5, we see that X must

be indefinite and X is singular. Since X and Y commute and XY � 0, there is an

orthogonal matrix U such that

UXUT =




D 0 0

0 −E 0

0 0 0


 , UY UT =




−F 0 0

0 G 0

0 0 L


 ,

where the matrices D and E are positive definite; F and G are positive semidefinite.

Further, D, E, F , G and L are diagonal. Assume that D and E are of order ν1 and

ν2, respectively.

Now working similarly as in (3.10) of previous lemma, it is easy to show that

(3.11)




D 0 0

0 −E 0

0 0 0


 = LUAUT






D + F 0 0

0 −E − G 0

0 0 −L




 .

Put Ã = UAUT . It is straightforward to verify that ρ(L
Ã
) = ρ(LA). First we consider

the case L = 0. We now define two diagonal matrices of order ν1 + ν2 viz.

D̃ :=

[
D 0

0 −E

]
, Ẽ :=

[
D + F 0

0 −E − G

]
.

It is easy to note that D̃ and Ẽ are nonsingular.

Let Ã =

[
A1 A2

A3 A4

]
, where A1 is of order ν1 + ν2. Since L = 0, from (3.11), we

have
[

D̃ 0

0 0

]
= L

Ã

([
Ẽ 0

0 0

])
.

From the above equation, we have

(3.12)

[
D̃ 0

0 0

]
=

[
A1Ẽ + ẼAT

1 ẼAT
3

A3Ẽ 0

]
;

hence, A3Ẽ = 0. The matrix Ẽ must be nonsingular and therefore A3 = 0. Thus,

every eigenvalue of A1 must be an eigenvalue of A and so A1 is positive stable. We
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claim that r := ρ(L−1

A1
) < 1. Since A1 is positive stable, L−1

A1
will have the property

(c) (by Lyapunov theorem) and so r is an eigenvalue of L−1

A1
. Let V be such that

L−1

A1
(V ) = rV . Let Ṽ be the n × n matrix defined by

Ṽ =

[
V 0

0 0

]
.

It is easy to see that L−1

Ã
(Ṽ ) = rṼ and since ρ(L−1

A ) = ρ(L−1

Ã
) < 1, we deduce r < 1.

From (3.12), we have D̃ = A1Ẽ + ẼAT
1 , and thus, L−1

A1
(D̃) = Ẽ. Now we have

D̃(D̃ − L−1

A1
(D̃)) = D̃(D̃ − Ẽ)

=

[
D 0

0 −E

] [
−F 0

0 G

]

� 0.

Thus, D̃ is a nonsingular matrix such that D̃ and D̃ − L−1

A1
(D̃) commute and

D̃(D̃ − L−1

A1
(D̃)) � 0. This contradicts the previous lemma.

We now consider the case where L is nonzero. First assume L is nonsingular.

Since L is a diagonal matrix, the diagonal entries of L must be nonzero now. In this

case using (3.11), we compute the diagonal entries αkk of Ã:

αkk =





dk

2(dk + fk)
if k = 1, . . . , ν1

ek

2(ek + gk)
if k = ν1 + 1, . . . , ν1 + ν2

0 if k > ν1 + ν2.

Now it is easy to see that trace Ã ≤ 1
2(ν1 + ν2) < n

2 which contradicts Lemma 3.4.

Finally, we consider the case L is singular but nonzero. In this case, we can write

UXUT and UY UT as follows:

UXUT =




D 0 0 0

0 −E 0 0

0 0 0 0

0 0 0 0


 , UY UT =




−F 0 0 0

0 G 0 0

0 0 L1 0

0 0 0 0


 ,

where the matrix L1 is nonsingular. Suppose the order of L1 is ν3. Let the matrix Ã

be partitioned conformally (as above in UXUT and UY UT ) into

Ã =




A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44


 .
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Following the same arguments as above, we see that A41, A42, and A43 are zero

matrices. Further if Â is the (ν1 +ν2 +ν3)× (ν1 +ν2 +ν3) leading principal submatrix

of A, then we see that

(3.13)




D 0 0

0 −E 0

0 0 0


 = L

Â






−F 0 0

0 G 0

0 0 L1




 ,

Â is positive stable and ρ(L−1

Â
) < 1. Invoking Lemma 3.4, we find that

trace Â >
1

2
(ν1 + ν2 + ν3).

However, calculating the trace of Â by finding the sum of all the diagonal entries of

Â from (3.13), we see that

trace Â ≤
1

2
(ν1 + ν2).

This is a contradiction. The proof is now complete.
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