CHARACTERIZATION OF P-PROPERTY FOR SOME Z-TRANSFORMATIONS ON POSITIVE SEMIDEFINITE CONE*

R. $\mathrm{BALAJI}^{\dagger}$

Abstract

The P-property of the following two \mathbf{Z}-transformations with respect to the positive semidefinite cone is characterized: (i) $I-S$, where $S: \mathbb{S}^{n \times n} \rightarrow \mathbb{S}^{n \times n}$ is a nilpotent linear transformation, (ii) $I-L_{A}^{-1}$, where L_{A} is the Lyapunov transformation defined on $\mathbb{S}^{n \times n}$ by $L_{A}(X)=A X+$ $X A^{T}$. (Here $\mathbb{S}^{n \times n}$ denotes the space of all symmetric $n \times n$ matrices and I is the identity transformation.)

Key words. P-property, Stein-type transformations, Lyapunov transformations.

AMS subject classifications. 90C33, 17C55.

1. Introduction. An $n \times n$ matrix is said to be a \mathbf{Z}-matrix if all the off-diagonal entries are non-positive. Several interesting properties on Z-matrices can be found in [1]. For a square matrix of order n, by an easy verification, we find that the following are equivalent:
2. A is a \mathbf{Z}-matrix.
3. If $x \in \mathbb{R}^{n}$ and $y \in \mathbb{R}^{n}$ then,

$$
x \geq 0, \quad y \geq 0 \quad \text { (entrywise non-negative), } \quad \text { and } \quad x^{T} y=0 \quad \Longrightarrow \quad y^{T} A x \leq 0
$$

Motivated by the above fact, we consider Z-transformations with respect to positive semidefinite cone.

Let $\mathbb{S}^{n \times n}$ be the vector space of $n \times n$ symmetric matrices with real entries. A linear transformation $L: \mathbb{S}^{n \times n} \rightarrow \mathbb{S}^{n \times n}$ is called a Z-transformation with respect to the positive semidefinite cone if

$$
X \succeq 0, \quad Y \succeq 0 \quad \text { and } \quad X Y=0 \quad \Longrightarrow \quad\langle L(X), Y\rangle:=\operatorname{trace}(L(X) Y) \leq 0 .
$$

(Here $X \succeq 0$ means X is symmetric and positive semidefinite.) Significances of \mathbf{Z} transformations (especially in mathematical programming) can be found in [2]. An important result on \mathbf{Z}-transformations is the following:

[^0]THEOREM 1.1 (Theorem $6[2]$). Let $L: \mathbb{S}^{n \times n} \rightarrow \mathbb{S}^{n \times n}$ be a Z-transformation. Then the following are equivalent.

1. There exists a $X \succ 0$ such that $L(X) \succ 0$.
2. For every $Q \succeq 0$, there exists a unique $X \succeq 0$ such that $L(X)=Q$.
3. For every $Q \in \mathbb{S}^{n \times n}$, there exists a $X \succeq 0$ such that $Y:=L(X)+Q \succeq 0$ and $X Y=0$.

We will say that a transformation S (defined on $\mathbb{S}^{n \times n}$) has the property (c) if:

$$
X \succeq 0 \Longrightarrow S(X) \succeq 0
$$

Transformations of the type $I-S$, where I is the identity transformation on $\mathbb{S}^{n \times n}$ and S is a linear transformation with property (c) are called Stein-type transformations. These transformations are important examples of Z-transformations. For a Stein-type transformation it is known that all the statements of Theorem 1.1 are equivalent to the condition $\rho(S)<1$, where $\rho(S)$ is the spectral radius of S (see [3]).

A transformation $L: \mathbb{S}^{n \times n} \rightarrow \mathbb{S}^{n \times n}$ is said to have the P-property if the following condition is satisfied:

$$
X L(X)=L(X) X \quad \text { and } \quad X L(X) \preceq 0 \quad \Longrightarrow \quad X=0 .
$$

One of the unsolved problem on Z-transformations (see [2]) is to show that all the items in Theorem 1.1 are equivalent to the condition that L has the P-property. Even for the Stein-type transformations, the problem remains unsolved. More precisely, if $I-S$ is a Stein-type transformation such that $\rho(S)<1$, then the problem of determining whether $I-S$ has the P-property has no answer. It is natural to consider the simplest case, when $\rho(S)=0$. In other words, assuming S is nilpotent, we ask whether the Stein-type transformation $I-S$ has the P-property. First, we settle this question in this paper.

If S is a Z-transformation satisfying any of the items in Theorem 1.1, we find that S^{-1} has property (c). We now ask whether $I-S^{-1}$ has the P-property if S is a Z-transformation with property (c) and such that $\rho\left(S^{-1}\right)<1$. One of the wellstudied Z-transformations is the Lyapunov transformation for which we know that all the items of Theorem 1.1 are equivalent to the fact that A is a positive stable matrix (See the definitions below for Lyapunov transformation and positive stable matrix). If $S=L_{A}^{-1}$, where L_{A} is the Lyapunov transformation corresponding to a positive stable matrix A with the property $\rho\left(L_{A}^{-1}\right)<1$, then for the Stein-type transformation $I-L_{A}^{-1}$, we show that $I-L_{A}^{-1}$ has the P-property.
2. Preliminaries. All the matrices appearing here are assumed to be real. The following notations and definitions will be useful in the sequel.

- Definition 2.1. Let A be a square matrix. Then A is said to be positive stable if every eigenvalue of A has a positive real part.
- Definition 2.2. For a square matrix A, the corresponding Lyapunov transformation $L_{A}: \mathbb{S}^{n \times n} \rightarrow \mathbb{S}^{n \times n}$ is defined by $L_{A}(X):=A X+X A^{T}$.
- If Q is an $n \times n$ matrix, and $\alpha=\{1, \ldots, k\}(k<n), Q_{\alpha \alpha}$ will denote the $k \times k$ leading principal submatrix of Q.
- Definition 2.3. Let $L: \mathbb{S}^{n \times n} \rightarrow \mathbb{S}^{n \times n}$ be a linear transformation. For any $\alpha=\{1, \ldots, k\}$, we define a linear transformation $L_{\alpha \alpha}: \mathbb{S}^{k \times k} \rightarrow \mathbb{S}^{k \times k}$ by

$$
L_{\alpha \alpha}(Z):=[L(X)]_{\alpha \alpha}\left(Z \in \mathbb{S}^{k \times k}\right)
$$

where corresponding to $Z \in \mathbb{S}^{k \times k}, X \in \mathbb{S}^{n \times n}$ is the unique matrix such that

$$
X_{i j}= \begin{cases}Z_{i j} & (i, j) \in \alpha \times \alpha \\ 0 & \text { else }\end{cases}
$$

We call $L_{\alpha \alpha}$ the principal subtransformation corresponding to α.

- If $\beta \in \mathbb{R}$, then we define $\beta^{+}:=\max (\beta, 0)$ and $\beta^{-}:=\max (-\beta, 0)$. Suppose D is a diagonal matrix with diagonal entries d_{i}. Then D^{+}will denote the diagonal matrix whose diagonal entries are d_{i}^{+}. Similarly, D^{-}will denote the diagonal matrix whose entries are d_{i}^{-}.
- If $X \in \mathbb{S}^{n \times n}$, then there exists an orthogonal matrix U such that $U X U^{T}=D$, where D is diagonal. Now we define $X^{+}:=U D^{+} U^{T}$ and $X^{-}:=U D^{-} U^{T}$. It is easy to see that for every $X \in \mathbb{S}^{n \times n}, X=X^{+}-X^{-} ; X^{+}$and X^{-}are positive semidefinite.
- We will use the fact that if T is a linear transformation on $\mathbb{S}^{n \times n}$ with property (c), then its spectral radius is an eigenvalue of T (see Theorem 0 in [4]).
- Let $T: \mathbb{S}^{n \times n} \rightarrow \mathbb{S}^{n \times n}$ be a linear transformation. Then T is a nilpotent transformation if there exists a positive integer m such that $T^{m}=0$.

3. Results. We prove our main results now.
3.1. Case 1. We intend to show that $I-S$ has the P-property if S is nilpotent and has property (c). The result is trivial if $S=0$ and so in the rest of the discussion, we assume S is nonzero. Let ν be the least positive integer satisfying

$$
\begin{equation*}
S^{\nu}=0, \quad \text { and } \quad S^{\nu-1} \neq 0 \tag{3.1}
\end{equation*}
$$

First we prove the following basic lemma.
Lemma 3.1. Let S be a nilpotent transformation. Assume that S has property (c). Then the following are true:
(a) If $Q \succ 0$, then $Q \notin \operatorname{Image}(S)$.
(b) If $\operatorname{rank} S(X)=m$, then there exists a $P \succeq 0$ such that $\operatorname{rank} S(P) \geq m$. In fact, if $X \in \mathbb{S}^{n \times n}$, then

$$
\operatorname{rank} S(X) \leq \operatorname{rank} S(|X|)
$$

where $|X|:=X^{+}+X^{-}$.
Proof. Let S satisfy (3.1). Suppose $S(P)=Q$ for some $Q \succ 0$. If $X \succeq 0$, then there exists $\epsilon>0$ such that $Q-\epsilon X \succ 0$. Since S has the property (c) and satisfies (3.1), we have:

$$
\begin{gather*}
S^{\nu-1}(Q-\epsilon X)+S^{\nu-1}(\epsilon X)=0 \tag{3.2}\\
S^{\nu-1}(Q-\epsilon X) \succeq 0, \quad \text { and } \quad S^{\nu-1}(\epsilon X) \succeq 0 . \tag{3.3}
\end{gather*}
$$

In view of (3.2) and (3.3), $S^{\nu-1}(X)=0$. Therefore for any $Y \in \mathbb{S}^{n \times n}$,

$$
S^{\nu-1}(Y)=S^{\nu-1}\left(Y^{+}\right)-S^{\nu-1}\left(Y^{-}\right)=0
$$

and so $S^{\nu-1}=0$ which is a contradiction to (3.1). This proves (a).
For any two positive semidefinite matrices U and V in $\mathbb{S}^{n \times n}$,

$$
\begin{equation*}
\operatorname{rank}(U-V) \leq \operatorname{rank}(U+V) \tag{3.4}
\end{equation*}
$$

The above inequality can be proved as follows. Let $x \in \mathbb{R}^{n}$ be an element in the null space of $U+V$. This gives $U x=-V x$ and thus, $x^{T} U x=-x^{T} V x$. Since U and V are symmetric and positive semidefinite, we get $U x=0=V x$ and thus,

$$
\text { nullity }(U+V) \leq \text { nullity }(U-V)
$$

By rank nullity theorem, (3.4) follows.
By setting $U=S\left(X^{+}\right)$and $V=S\left(X^{-}\right)$in (3.4), we find from the property (c) of S that the positive semidefinite matrix $P:=X^{+}+X^{-}$satisfies $m \leq \operatorname{rank} S(P)$. This proves (b).

We now prove the first main result.
THEOREM 3.2. Suppose $S: \mathbb{S}^{n \times n} \rightarrow \mathbb{S}^{n \times n}$ is a nilpotent transformation with property (c). Then $I-S$ has the P-property.

Proof. We prove the result by induction on n. If $n=2$, the result is true (see Theorem 13 in [2]). For $k<n$, we will assume that the result holds and now we prove for $k=n$. Let $Q_{0} \in \mathbb{S}^{n \times n}$ be such that

$$
\operatorname{rank} S\left(Q_{0}\right) \geq \operatorname{rank} S(Q) \quad \text { for all } Q \in \mathbb{S}^{n \times n}
$$

In view of Item (b) in Lemma 3.1, without any loss of generality, we assume $Q_{0} \succeq 0$. If $\widehat{k}=\operatorname{rank} S\left(Q_{0}\right)$, then Item (a) of Lemma 3.1 implies $\widehat{k}<n$. There exists an orthogonal matrix U such that

$$
U S\left(Q_{0}\right) U^{T}=\left[\begin{array}{ll}
D & 0 \\
0 & 0
\end{array}\right]
$$

$D \in \mathbb{S}^{\widehat{k} \times \widehat{k}}$ being diagonal and nonsingular. Define $\widetilde{S}: \mathbb{S}^{n \times n} \rightarrow \mathbb{S}^{n \times n}$ by

$$
\widetilde{S}(X):=U S\left(U^{T} X U\right) U^{T}
$$

If $\widehat{Q}_{0}=U Q_{0} U^{T}$, then

$$
\widetilde{S}\left(\widehat{Q}_{0}\right)=\left[\begin{array}{cc}
D & 0 \\
0 & 0
\end{array}\right]
$$

By an easy verification, we find that \widetilde{S} is nilpotent and has property (c). Further,

$$
\begin{equation*}
\operatorname{rank} \widetilde{S}\left(\widehat{Q_{0}}\right) \geq \operatorname{rank} \widetilde{S}(Q) \quad \text { for all } Q \in \mathbb{S}^{n \times n} \tag{3.5}
\end{equation*}
$$

We now claim that for any $X \in \mathbb{S}^{n \times n}$,

$$
\widetilde{S}(X)=\left[\begin{array}{cc}
E & 0 \tag{3.6}\\
0 & 0
\end{array}\right], \quad \text { for some } E \in \mathbb{S}^{\hat{k} \times \widehat{k}}
$$

Let $Q \succeq 0$ and $F:=\widetilde{S}(Q)$. As $F=\left[f_{i j}\right] \succeq 0, f_{i i}=0$ if and only if the i th column of F is zero. Suppose $f_{i i}>0$ for some $i>\widehat{k}$. Then

$$
\operatorname{rank} \widetilde{S}\left(\widehat{Q_{0}}+Q\right)=\operatorname{rank}\left(\widetilde{S}\left(\widehat{Q}_{0}\right)+\widetilde{S}(Q)\right) \geq \widehat{k}+1>\widehat{k}
$$

Thus, we have $\operatorname{rank} \widetilde{S}\left(\widehat{Q}_{0}+Q\right)>\operatorname{rank} \widetilde{S}\left(\widehat{Q}_{0}\right)$ which is a contradiction to (3.5). So, for any $Q \succeq 0$,

$$
\widetilde{S}(Q)=\left[\begin{array}{cc}
E^{\prime} & 0 \\
0 & 0
\end{array}\right], \quad E^{\prime} \in \mathbb{S}^{\widehat{k} \times \widehat{k}}
$$

Since for any $X \in \mathbb{S}^{n \times n}, \widetilde{S}(X)=\widetilde{S}\left(X^{+}\right)-\widetilde{S}\left(X^{-}\right)$, using the c-property of \widetilde{S}, we see that (3.6) holds.

Let $X=\left[\begin{array}{ll}X_{1} & X_{2} \\ X_{2}^{T} & X_{3}\end{array}\right]\left(X_{1} \in \mathbb{S}^{\widehat{k} \times \widehat{k}}\right)$ be such that $X(X-\widetilde{S}(X)) \preceq 0$. If

$$
\widetilde{S}(X)=\left[\begin{array}{cc}
F & 0 \\
0 & 0
\end{array}\right]
$$

Then from

$$
\left[\begin{array}{ll}
X_{1} & X_{2} \tag{3.7}\\
X_{2}^{T} & X_{3}
\end{array}\right]\left(\left[\begin{array}{ll}
X_{1} & X_{2} \\
X_{2}^{T} & X_{3}
\end{array}\right]-\left[\begin{array}{cc}
F & 0 \\
0 & 0
\end{array}\right]\right) \preceq 0
$$

it follows that $X_{2}^{T} X_{2}+X_{3}^{2} \preceq 0$, and therefore, X_{2} and X_{3} are zero matrices. So, $F=\widetilde{S}_{\alpha \alpha}\left(X_{1}\right)$, where $\alpha=\{1, \ldots, \widehat{k}\}$. From (3.7) we now have

$$
\begin{equation*}
X_{1}\left(X_{1}-\widetilde{S}_{\alpha \alpha}\left(X_{1}\right)\right) \preceq 0 . \tag{3.8}
\end{equation*}
$$

We next claim that $\widetilde{S}_{\alpha \alpha}$ has the property (c). Let $X_{0} \in \mathbb{S}^{\widehat{k} \times \widehat{k}}$ be positive semidefinite and

$$
Y_{0}=\widetilde{S}\left(\left[\begin{array}{cc}
X_{0} & 0 \\
0 & 0
\end{array}\right]\right)
$$

Since \widetilde{S} has property $(c), Y_{0}$ is a positive semidefinite matrix. Noticing that $\widetilde{S}_{\alpha \alpha}\left(X_{0}\right)$ is a leading principal submatrix of Y_{0}, we conclude $\widetilde{S}_{\alpha \alpha}\left(X_{0}\right)$ is positive semidefinite. This proves our claim.

Now we assert that $\widetilde{S}_{\alpha \alpha}$ is nilpotent. Since $\widetilde{S}_{\alpha \alpha}$ has property $(c), r:=\rho\left(\widetilde{S}_{\alpha \alpha}\right)$ is an eigenvalue of $\widetilde{S}_{\alpha \alpha}$. Let $X_{0} \in$ be a nonzero matrix in $\mathbb{S}^{\widehat{k} \times \widehat{k}}$ such that

$$
\widetilde{S}_{\alpha \alpha}\left(X_{0}\right)=r X_{0}
$$

In view of (3.6) and the definition of $\widetilde{S}_{\alpha \alpha}$,

$$
\widetilde{S}\left(\left[\begin{array}{cc}
X_{0} & 0 \\
0 & 0
\end{array}\right]\right)=\left[\begin{array}{cc}
r X_{0} & 0 \\
0 & 0
\end{array}\right]
$$

Hence, r is an eigenvalue of \widetilde{S}. Since \widetilde{S} is nilpotent, $r=0$. Thus, $\widetilde{S}_{\alpha \alpha}$ is nilpotent.
By our induction assumption, $I-\widetilde{S}_{\alpha \alpha}$ must have P-property and hence from (3.8), $X_{1}=0$; thus, $X=0$. This proves that $I-\widetilde{S}$ has the P-property. It is easy to see that $I-S$ has the P-property if and only if $I-\widetilde{S}$ has the P-property. The proof is now complete.

Corollary 3.3. Let $\left\{A_{1}, \ldots, A_{\nu}\right\}$ be a finite set of $n \times n$ nilpotent matrices. Assume that $A_{i} A_{j}=A_{j} A_{i}$ for all i and each A_{i} is nilpotent. Then the transformation $X-\sum_{i=1}^{\nu} A_{i} X A_{i}^{T}$ has the P-property.

Proof. Let $M_{A_{i}}(X)=A_{i} X A_{i}^{T}$. Then, using $A_{i} A_{j}=A_{j} A_{i}$, we verify that $M_{A_{i}} M_{A_{j}}=M_{A_{j}} M_{A_{i}}$. Now it is easy to see that $\sum_{i=1}^{n} M_{A_{i}}$ is nilpotent, and hence, $X-\sum_{i=1}^{\nu} A_{i} X A_{i}^{T}$ has the P-property.
3.2. Case 2. Now we shall show that if a matrix A is positive stable and $\rho\left(L_{A}^{-1}\right)<1$, then $I-L_{A}^{-1}$ has the P-property. Note that by Lyapunov theorem (cf. Theorem $6[3]$), L_{A}^{-1} will have the property (c). Hence, $I-L_{A}^{-1}$ is a Stein-type transformation and satisfy all the items in Theorem 1.1. Before proving the main result, we will prove some intermediate lemmas.

Lemma 3.4. Let A be a positive stable matrix of order n and $\rho\left(L_{A}^{-1}\right)<1$. Then

1. trace $A>\frac{n}{2}$.
2. If there exist a nonsingular X and $Y:=X-L_{A}^{-1}(X)$ such that $X Y=Y X$ and $X Y \preceq 0$, then X must be indefinite.

Proof. If λ is an eigenvalue of A, then it is straightforward to verify that $\lambda+\lambda^{*}$ is an eigenvalue of L_{A}. In other words, $2 \operatorname{Re}(\lambda)$ is an eigenvalue of the linear transformation L_{A}. Our assumptions on A now imply that

$$
0<\frac{1}{2 \operatorname{Re}(\lambda)}<1
$$

and hence, $\operatorname{Re}(\lambda)>\frac{1}{2}$. As A is a real matrix, we now deduce that the sum of all the eigenvalues of A is greater than $\frac{n}{2}$. This proves 1 .

Suppose $X \succeq 0$ is a nonsingular matrix such that $X Y \preceq 0$. Because $X Y=Y X$, there exists an orthogonal matrix U such that $X=U D U^{T}$ and $Y=U E U^{T}$, where D and E are diagonal matrices and now $X Y \preceq 0$ implies that

$$
\begin{equation*}
D E \preceq 0 . \tag{3.9}
\end{equation*}
$$

The matrix D must be positive definite as X is a nonsingular positive semidefinite matrix and by (3.9), we conclude $E \preceq 0$; hence,

$$
Y \preceq 0 .
$$

This means that $X-L_{A}^{-1}(X) \preceq 0$. The matrix A is positive stable, and hence by Lyapunov theorem $I-L_{A}^{-1}$, is a \mathbf{Z}-transformation. From the assumption $\rho\left(L_{A}^{-1}\right)<1$, it follows from Item 2 of Theorem 1.1 that

$$
\left(I-L_{A}^{-1}\right)(X) \preceq 0 \quad \Longrightarrow \quad X \preceq 0 .
$$

Therefore, X cannot be positive semidefinite. This is a contradiction.
In a similar manner, it follows that X cannot be negative semidefinite. This proves 2 .

Lemma 3.5. If A is positive stable and $\rho\left(L_{A}^{-1}\right)<1$, then

1. There does not exist a nonsingular matrix X commuting with $Y:=X-$ $L_{A}^{-1}(X)$, such that $X Y \preceq 0$.
2. If X is either positive semidefinite or negative semidefinite and if $Y:=X-$ $L_{A}^{-1}(X)$ is such that $X Y=Y X$, then

$$
X Y \preceq 0 \Rightarrow X=0
$$

Proof. Let X be a nonsingular matrix such that $X Y=Y X$ and $X Y \preceq 0$, where $Y:=X-L_{A}^{-1}(X)$. In view of previous lemma, X must be indefinite.

As $X Y=Y X$ and $X Y \preceq 0$, there is an orthogonal matrix U such that

$$
U X U^{T}=\left[\begin{array}{cc}
D & 0 \\
0 & -E
\end{array}\right], \quad U Y U^{T}=\left[\begin{array}{cc}
-F & 0 \\
0 & G
\end{array}\right]
$$

where the matrices D and E are positive definite; F and G are positive semidefinite. Further D, E, F, and G are diagonal. Note that $X-Y=L_{A}^{-1}(X)$, and thus, $X=L_{A}(X-Y)$. We now have

$$
\left.\begin{array}{rl}
{\left[\begin{array}{cc}
D & 0 \\
0 & -E
\end{array}\right]=U X U^{T}} & =U L_{A}(X-Y) U^{T} \\
& =U L_{A}\left(U^{T}\left(U(X-Y) U^{T}\right) U\right) U^{T} \\
& =U L_{A}\left(U^{T}\left[\begin{array}{cc}
D+F & 0 \\
0 & -E-G
\end{array}\right] U\right) U^{T} \cdot \tag{3.10}\\
& =L_{U A U^{T}}\left(\left[\begin{array}{cc}
D+F & 0 \\
0 & -E-G
\end{array}\right]\right)
\end{array}\right\}
$$

Let d_{i}, e_{i}, f_{i} and g_{i} be the diagonal entries of D, E, F and G, respectively. Assume that the order of D and F is ν. If $\alpha_{11}, \alpha_{22}, \ldots, \alpha_{n n}$ are the diagonal entries of $U A U^{T}$, then we find from the above equations that

$$
\alpha_{k k}= \begin{cases}\frac{d_{k}}{2\left(d_{k}+f_{k}\right)} & \text { if } k=1, \ldots, \nu \\ \frac{e_{k}}{2\left(e_{k}+g_{k}\right)} & \text { if } k=\nu+1, \ldots, n\end{cases}
$$

Thus, $\operatorname{trace} A=\operatorname{trace}\left(U A U^{T}\right) \leq \frac{n}{2}$. This contradicts Lemma 3.4. Therefore item 1 is proved.

The proof of item 2 follows easily by replacing $E=0$ in the above.
THEOREM 3.6. Let A be an $n \times n$ positive stable matrix with real entries. If L_{A} is the corresponding Lyapunov transformation then the following are equivalent:
(i) $\rho\left(L_{A}^{-1}\right)<1$.
(ii) $I-L_{A}^{-1}$ has the P-property.

Proof. Since $I-L_{A}^{-1}$ is a Stein-type-transformation, (ii) \Rightarrow (i) follows immediately from the fact that $\rho\left(L_{A}^{-1}\right)$ is an eigenvalue of L_{A}^{-1}. We now prove (i) \Rightarrow (ii).

Let X be such that

$$
X\left(X-L_{A}^{-1}(X) \preceq 0 .\right.
$$

Put $Y:=X-L_{A}^{-1}(X)$. In view of Lemma 3.4 and Lemma 3.5, we see that X must be indefinite and X is singular. Since X and Y commute and $X Y \preceq 0$, there is an orthogonal matrix U such that

$$
U X U^{T}=\left[\begin{array}{ccc}
D & 0 & 0 \\
0 & -E & 0 \\
0 & 0 & 0
\end{array}\right], \quad U Y U^{T}=\left[\begin{array}{ccc}
-F & 0 & 0 \\
0 & G & 0 \\
0 & 0 & L
\end{array}\right]
$$

where the matrices D and E are positive definite; F and G are positive semidefinite. Further, D, E, F, G and L are diagonal. Assume that D and E are of order ν_{1} and ν_{2}, respectively.

Now working similarly as in (3.10) of previous lemma, it is easy to show that

$$
\left[\begin{array}{ccc}
D & 0 & 0 \tag{3.11}\\
0 & -E & 0 \\
0 & 0 & 0
\end{array}\right]=L_{U A U^{T}}\left(\left[\begin{array}{ccc}
D+F & 0 & 0 \\
0 & -E-G & 0 \\
0 & 0 & -L
\end{array}\right]\right)
$$

Put $\widetilde{A}=U A U^{T}$. It is straightforward to verify that $\rho\left(L_{\tilde{A}}\right)=\rho\left(L_{A}\right)$. First we consider the case $L=0$. We now define two diagonal matrices of order $\nu_{1}+\nu_{2}$ viz.

$$
\widetilde{D}:=\left[\begin{array}{cc}
D & 0 \\
0 & -E
\end{array}\right], \quad \widetilde{E}:=\left[\begin{array}{cc}
D+F & 0 \\
0 & -E-G
\end{array}\right]
$$

It is easy to note that \widetilde{D} and \widetilde{E} are nonsingular.
Let $\widetilde{A}=\left[\begin{array}{ll}A_{1} & A_{2} \\ A_{3} & A_{4}\end{array}\right]$, where A_{1} is of order $\nu_{1}+\nu_{2}$. Since $L=0$, from (3.11), we have

$$
\left[\begin{array}{cc}
\widetilde{D} & 0 \\
0 & 0
\end{array}\right]=L_{\widetilde{A}}\left(\left[\begin{array}{cc}
\widetilde{E} & 0 \\
0 & 0
\end{array}\right]\right)
$$

From the above equation, we have

$$
\left[\begin{array}{cc}
\widetilde{D} & 0 \tag{3.12}\\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
A_{1} \widetilde{E}+\widetilde{E} A_{1}^{T} & \widetilde{E} A_{3}^{T} \\
A_{3} \widetilde{E} & 0
\end{array}\right]
$$

hence, $A_{3} \widetilde{E}=0$. The matrix \widetilde{E} must be nonsingular and therefore $A_{3}=0$. Thus, every eigenvalue of A_{1} must be an eigenvalue of A and so A_{1} is positive stable. We
claim that $r:=\rho\left(L_{A_{1}}^{-1}\right)<1$. Since A_{1} is positive stable, $L_{A_{1}}^{-1}$ will have the property (c) (by Lyapunov theorem) and so r is an eigenvalue of $L_{A_{1}}^{-1}$. Let V be such that $L_{A_{1}}^{-1}(V)=r V$. Let \widetilde{V} be the $n \times n$ matrix defined by

$$
\widetilde{V}=\left[\begin{array}{ll}
V & 0 \\
0 & 0
\end{array}\right]
$$

It is easy to see that $L_{\widetilde{A}}^{-1}(\widetilde{V})=r \widetilde{V}$ and since $\rho\left(L_{A}^{-1}\right)=\rho\left(L_{\widetilde{A}}^{-1}\right)<1$, we deduce $r<1$.
From (3.12), we have $\widetilde{D}=A_{1} \widetilde{E}+\widetilde{E} A_{1}^{T}$, and thus, $L_{A_{1}}^{-1}(\widetilde{D})=\widetilde{E}$. Now we have

$$
\begin{aligned}
\widetilde{D}\left(\widetilde{D}-L_{A_{1}}^{-1}(\widetilde{D})\right) & =\widetilde{D}(\widetilde{D}-\widetilde{E}) \\
& =\left[\begin{array}{cc}
D & 0 \\
0 & -E
\end{array}\right]\left[\begin{array}{cc}
-F & 0 \\
0 & G
\end{array}\right] \\
& \preceq 0
\end{aligned}
$$

Thus, \widetilde{D} is a nonsingular matrix such that \widetilde{D} and $\widetilde{D}-L_{A_{1}}^{-1}(\widetilde{D})$ commute and $\widetilde{D}\left(\widetilde{D}-L_{A_{1}}^{-1}(\widetilde{D})\right) \preceq 0$. This contradicts the previous lemma.

We now consider the case where L is nonzero. First assume L is nonsingular. Since L is a diagonal matrix, the diagonal entries of L must be nonzero now. In this case using (3.11), we compute the diagonal entries $\alpha_{k k}$ of \widetilde{A} :

$$
\alpha_{k k}= \begin{cases}\frac{d_{k}}{2\left(d_{k}+f_{k}\right)} & \text { if } k=1, \ldots, \nu_{1} \\ \frac{e_{k}}{2\left(e_{k}+g_{k}\right)} & \text { if } k=\nu_{1}+1, \ldots, \nu_{1}+\nu_{2} \\ 0 & \text { if } k>\nu_{1}+\nu_{2}\end{cases}
$$

Now it is easy to see that trace $\widetilde{A} \leq \frac{1}{2}\left(\nu_{1}+\nu_{2}\right)<\frac{n}{2}$ which contradicts Lemma 3.4.
Finally, we consider the case L is singular but nonzero. In this case, we can write $U X U^{T}$ and $U Y U^{T}$ as follows:

$$
U X U^{T}=\left[\begin{array}{cccc}
D & 0 & 0 & 0 \\
0 & -E & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \quad U Y U^{T}=\left[\begin{array}{cccc}
-F & 0 & 0 & 0 \\
0 & G & 0 & 0 \\
0 & 0 & L_{1} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

where the matrix L_{1} is nonsingular. Suppose the order of L_{1} is ν_{3}. Let the matrix \widetilde{A} be partitioned conformally (as above in $U X U^{T}$ and $U Y U^{T}$) into

$$
\widetilde{A}=\left[\begin{array}{llll}
A_{11} & A_{12} & A_{13} & A_{14} \\
A_{21} & A_{22} & A_{23} & A_{24} \\
A_{31} & A_{32} & A_{33} & A_{34} \\
A_{41} & A_{42} & A_{43} & A_{44}
\end{array}\right]
$$

Following the same arguments as above, we see that A_{41}, A_{42}, and A_{43} are zero matrices. Further if \widehat{A} is the $\left(\nu_{1}+\nu_{2}+\nu_{3}\right) \times\left(\nu_{1}+\nu_{2}+\nu_{3}\right)$ leading principal submatrix of A, then we see that

$$
\left[\begin{array}{ccc}
D & 0 & 0 \tag{3.13}\\
0 & -E & 0 \\
0 & 0 & 0
\end{array}\right]=L_{\widehat{A}}\left(\left[\begin{array}{ccc}
-F & 0 & 0 \\
0 & G & 0 \\
0 & 0 & L_{1}
\end{array}\right]\right)
$$

\widehat{A} is positive stable and $\rho\left(L_{\widehat{A}}^{-1}\right)<1$. Invoking Lemma 3.4, we find that

$$
\operatorname{trace} \widehat{A}>\frac{1}{2}\left(\nu_{1}+\nu_{2}+\nu_{3}\right) .
$$

However, calculating the trace of \widehat{A} by finding the sum of all the diagonal entries of \widehat{A} from (3.13), we see that

$$
\text { trace } \widehat{A} \leq \frac{1}{2}\left(\nu_{1}+\nu_{2}\right)
$$

This is a contradiction. The proof is now complete.

REFERENCES

[1] R.B. Bapat and T.E.S. Raghavan. Nonnegative Matrices and Applications. Cambridge University Press, Cambridge, 1997.
[2] M. Seetharama Gowda and Jiyuan Tao. Z-transformations on proper and symmetric cones: Z-transformations. Math. Program., 117:195-221, 2009.
[3] M. Seetharama Gowda and T. Parthasarathy. Complementarity forms of theorems of Lyapunov and Stein, and related results. Linear Algebra Appl., 320:131-144, 2000.
[4] H. Schneider. Positive operators and an inertia theorem. Numer. Math., 7:11-17, 1965.

[^0]: *Received by the editors on April 29, 2011. Accepted for publication on October 4, 2011. Handling Editor: Michael Tsatsomeros.
 ${ }^{\dagger}$ Department of Mathematics, Indian Institute of Technology-Madras, Chennai-36, India (balaji5@iitm.ac.in).

