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DERIVATIVES OF THE DIAMETER AND THE AREA OF A
CONNECTED COMPONENT OF THE PSEUDOSPECTRUM*

GORKA ARMENTIAT, JUAN-MIGUEL GRACIAf, AND FRANCISCO E. VELASCO#

Abstract. The paper concerns the relation between the following two quantities.

(i) The Holder condition number of an eigenvalue A of a square complex matrix.
(ii) The rate of growth of the diameter and the area of the connected component of the
e-pseusospectrum containing A.
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1. Introduction. By A(A) we denote the spectrum of any A € C**". We
denote by | - || the 2-norm. Let A be an eigenvalue of A of algebraic multiplicity m.
For X € C"*™, sv(4,)(X) denotes the radius of the smallest circle centered at A
containing m of the eigenvalues of X counting multiplicities. The (Hdlder) condition
number of the eigenvalue A of order w > 0 is defined as

SV(A,A)(X)

du(A,A) = li .
condy(4,4) = lim, o< x-Al<e [ X — A~

The index of an eigenvalue A of A, v = v(\), is the size of the largest Jordan block
associated with A. The limit that defines cond, (A, \) is of interest just for w = 1/v.

On the other hand, for € > 0, the e-pseudospectrum of A consists of the eigen-
values of all matrices X within an e-neighborhood of A4, i.e.,

Ac(A) = U A(X).
X e Ccnxn
X —Al<e
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For any complex matrix M we denote by o1(M) > oo(M) > --- its singular
values arranged in decreasing order. It is well known that

A(A)={z€C:o,(zI - A) <e}.

The subset A (A) of the complex plane is a compact set consisting of at most r (dis-
joint) connected components, one around each eigenvalue, where A(A) = {A1,..., A\ }.
Denote the connected component of Ac(A4) around the eigenvalue A by Xy (¢), and
consider the diameter §(¢) and the area a(e) of this component as a function of e.

We denote by 90Ky (e) the boundary of Xy (g). From [6, Proposition 2.6.5], we
deduce that
max |z — A
c— lim z€0XK A (e)
0t gl/v

where ¢ denotes the Hélder condition number cond;/, (A4, ). Thus, calling p(e) :=

max.cox, (e) |2 — Al, we see that lim,_,o+ 51(/53 = ¢. We extend this result to J(e) and
a(e) instead of p(g) in Theorems 4.1 and 6.1.

REMARK 1.1. When lim,_,y+ @ = oo (resp., lim,_,o+ a(:) = 00), strictly speak-

ing the function d(¢) (resp., a(e)) is not differentiable from the right-hand side at 0.
However, in this case we put ¢, (0) = oo (resp., a/ (0) = o0) in order to grasp the
geometric meaning of the results.

The main results of the paper are as follows.

1. ¢,(0) = 2cif v = 1. Otherwise ¢/, (0) = oo. Here, ¢, denotes the right-
derivative of §. See Theorem 5.2.

2. a,(0) =0if v =1, and a/, (0) = mc? if v = 2. Otherwise, @/, (0) = co. See
Theorem 7.2.

In Section 2, we work four examples of matrices A for which both the condition
number and the geometry of the e-pseudospectrum are known in detail; this let us
corroborate our results. We demonstrate that an important result by Karow [6] allows
us bound the e-pseudospectrum by lower and upper closed disks; see Section 3. By
the monotonicity of the diameter function, and its changes under a homothecy, we
show how to transfer these inequalities with respect to the inclusion relation between
sets to the diameters, in Section 4. In Section 5, we relate the first right-derivative of
the diameter at ¢ = 0 with the condition number. In Section 6, the monotonicity of
the area function, and its changes under a homothecy, let us translate the bounds in
Section 3 to numeric inequalities. In Section 7, we relate the first right-derivative of the
area at € = 0 with the condition number ¢; moreover, we establish a relation between
c and the second right-derivative a{ (0) whenever this derivative exists. Finally, in
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Section 8, we formulate a conjecture about the semialgebraicity of the functions d()
and a(e); if it were true, a de I'Hopital inverse rule would let us prove the existence
of a’} (0).

2. Examples. Next, we consider four examples where we compute the condition
number of order 1/v of an eigenvalue A and the right-derivatives at ¢ = 0 of the
diameter §(¢) and the area a(e) of the connected component K (¢).

EXAMPLE 2.1. Let A € C™*™ be a normal matrix. Then the e-pseudospectrum
of A is the union of the closed disks of radius € centered at the eigenvalues of A. So,
for sufficiently small € > 0, we have

Ka(e) = DX, ).

Therefore, p(e) = €, and since the eigenvalues of a normal matrix are semisimple (i.e.,
of index 1),

cond; (A, \) = lim fo1

e—0t €

The diameter of D(A,€) is 2. So, ¢'(e) = 2 and ¢/ (0) = 2. If we denote by a(e)
the area of this circle, a(e) = we?; hence, a'(¢) = 2me,a’(¢) = 2m. Therefore,
a’, (0) = 0,a/.(0) = 27.

EXAMPLE 2.2. Let
A d
A d) =
JQ( ) ) |: 0 )\ :|

be like a Jordan block, with complex numbers A, d and d # 0. Karow proved in [6,
Theorem 5.4.1, p. 74] that for each € > 0,

AE(JZ(Aa d))

is a closed disk centered at A and with radius r3(¢) = max{r > 0| o2 (J2(r,|d|)) < e}.

As
d|? d|4
JQ(Jz(T7 |d|)) = \/7“2 + % —1\/r2]d|? + %,

solving the equation in the unknown r

2 @ — 2|2 @ — 2
e+ 5 r2|d|? + TR
we find that r3(g) = /€2 + |d|e. This result has also been proved by Cui et al. [4,
Proposition 2.1]. So, d(¢) = 24/€2 + |d|e. Hence,

2e + |d|

NEESNE

§(e) = which implies &', (0) = oco.
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It is obvious that v(A) = 2. Let us remark that

.0
(2.1) lim gg—f; =2/1d).

e—0t

Now, let us see that ¢ := condyj2(J2(A,d),\) = /|d|. We need some previous
considerations. For a general matrix A € C"*", let A(A) = {A1,..., A\ }. Let

A= Z()\jpj + Nj)
j=1

be the Jordan decomposition of A, where for each j € {1,...,r}, P; is the Riesz
projector onto the root subspace (or generalized eigenspace) R, (A) of A; and along
the sum of root subspaces associated with all eigenvalues of A different from A;; and
N; := (A—\;I,,)P; is the nilpotent matrix corresponding to A;. By [6, Theorem 5.4.4
(viil), p. 78], if v; ;= v(A;) > 1, then

(2.

ii)
vi—1 Ui
2) condy ., (A4, A;) = [N 7|/

In our present example, A = Jo(\,d) = Aly + N, where

0 d
N =
o)

and thus, ¢ = | N||*/? = y/|d|. From (2.1), we have
6(¢)

—= = 2¢.
0+ g1/2

The area a(e) is given by m(e? + |d|e). So, a/(¢) = 7(2¢ + |d|); hence, o/ (0) = 7|d| =
mc?. This concludes Example 2.2.

Before discussing the third example, we need to introduce a result on the pseu-
dospectra of nilpotent matrices of nilpotency index two. Here on, we denote by Oy
the k X k zero matrix.

PROPOSITION 2.3 ([5], Theorem 3). Let us assume that q,r are nonnegative
integers such that n = 2q +r. Let N € C"*" be a matriz such that N> = O,,, whose
nonzero singular values are 01(N) > --- > 04(N). Then there exists a unitary matriz
U e C"™" such that

U*NU = {8 UlgN) } . {8 "‘IE)N) } ©0,.

By Example 2.2, or [4, Proposition 2.1] by Cui et al., the e-pseudospectrum of

o
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is D(O7 e+ sai(N)) fori =1,...,q. So, by [6, Propositions 5.2.3 and 5.2.4], we
have the following result.

PROPOSITION 2.4. Under the hypotheses of Proposition 2.3 for e > 0,

D(0, /g2 +e0;(N)) UD(0,¢)
i=1
=D(0,/e2 +e01(N)).

H
C»Q

We will also need that for any o € C, A € C"*™ and ¢ > 0,

(2.3) Ac(al, + A) = a + A(A).

ExAMPLE 2.5. This example is a small generalization of Example 2.2. Let A be
any n-by-n complex matrix with a unique eigenvalue A. Moreover, let us assume that
v(A) = 2. Let N := A — Al,; thus, A = A, + N is the Jordan decomposition of A.
Hence, by (2.2), ¢ = condy/s(A,\) = ||N||'/? = \/o1(A — AI,,). By Proposition 2.4
and (2.3) we see that for e > 0,

Ac(A) = D(\, Ve +e01(A - AIL)).

So, 8(e) = 2/e2 + e01(A — A,), a(e) = m(e? + e01(A — AI,,)). Therefore,

2e + O'l(A - )\In)

o) = V2t eo (A=)

which implies &', (0) = oo,

and

d'(e) = m(2e + 01(A — AL,)), which implies d/, (0) = 7 01(A — A,,) =

EXAMPLE 2.6. Let A, A2 be two different complex numbers. Let A € C2*2
whose eigenvalues are A\; and \o. Let us define

= V(A A) — M2 — Dol

The number d(A) is the departure from normality of A. In [6, Proposition 5.5.3, p.
80] was proved that for each ¢ > 0,

(2.4) A (A) = D(A1,e) UD(Ag, ) UMy, 2, (d(A),€)
where

(2.5) M,z (dye) i={z€C: (|2 = M =€) (]2 — o> — &%) <°d®}, d=>0.



Electronic Journal of Linear Algebra ISSN 1081-3810

A publication of the International Linear Algebra Society
Volume 22, pp. 1004-1019, October 2011

On the Diameter and the Area of a Connected Component of the Pseudospectrum 1009

Let us consider Figure 2.1 that shows the e-pseudospectrum for the values of
e = 1.00,1.50,1.75 of the matrix

1421 3

Av=1 0 g |

So, At = 142, Ao = —1-3i, [[A1][r = /|1 + 22+ 32+ |- 1-3i2=v5+9+ 10 =
V24, Thus, d(A;) = /24 —5—-10 =9 = 3.

F1a. 2.1. Pseudospectra of A1 for e = 1.00,1.50,1.75.

We see that for sufficiently small values of € the e-pseudospectrum of A; has two
connected components. Let us fix our attention on £ = 1.50. The figure contains a
straight line that passes by A1 and As. This line intersects the boundary dA.(A;)
at the points z1, 29, 23, 24. If we consider the eigenvalue Ag, the diameter () of the
connected component Xy, (¢) is equal to the distance between z3 and z4. From (2.4)
and (2.5), we can deduce that

5(6)2\/1-1-624-\/?6—\/1—"-62—\/?8.

Instead of making a special reasoning for the matrix A;, we are going to find
a general expression for the diameter d(¢) of Ky, (¢) for any matrix A € C**? with
eigenvalues A\; and Ay. By (2.5), the boundary dA.(A) is formed by quasi-Cassini
ovals with foci the points A\; and A2. In fact, the set A.(A) is symmetric about the
straight line that joints A; and As. This is a consequence of (2.4) and (2.5). Moreover,
d(e) = |z4 — 23] = |22 — z1]. Later we will need the condition numbers of A\; and Ay of
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order 1. These numbers are equal. In fact, by [6, Proposition 5.5.8, p. 83], we have

(2.6) cond; (A, \) = \/1 + (%) , k=1,2.

Thus, let € > 0 be such that A.(A) has two connected components. Now, we compute
the intersection points z1, 22, 23, 24 of the line z(t) := (1 — t)\; + tAa,t € R with the
curve OA.(A). By (2.5), this curve is given by the equation

(2.7) (|z—>\1\2 —52)(\27)\2|2 *62) —e%d(A)? =0.
For determining the values of the parameter ¢ that correspond to the points
21, 22, 23 and z4 we substitute z(t) into (2.7),

A1 = AoMt = 2|A0 = A" + (|A1 — Ao]! — 27| A1 — Ag]?) £
422N — X2t — %A — Mof? + & — £2d(A)% = 0.

For simplicity, we write 6 := |A\; — Ao,
0t —20%° + (0% — 26°0%) 17 +26°0%t — %67 + &' — £2d(A)* = 0.

With the command solve of MAPLE 13 we find the roots of this equation in ¢
obtaining

t) = % - 2—16\/92 +4e2 + 4e+/02 + d(A)2,
tr= 3 — 5502 462 — 4T T LA,
t3 = % + 2—10\/92 + 42 — 4e+/0% + d(A)2,
ty = % + %\/92+452+45\/m,

where t; <0 <ty < % <tz <1<ty Hence, z3 = z(t3) and z4 = z(t4). So,

1 1
3(e) = lea — 25| = 5 /62 + 4 + 4o/ ¥ d(A)E — 21/62 + 4e2 — der/7 4 d(A)

Therefore,

S - EAVPRAAR e P AP
V0?42 1 4e ST ACAR \J02 + 422 — e /O 1 d(A)?

5, (0) = 2—v92\/;_2d(14)2 — o1+ <@) .
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By (2.6), we have ¢, (0) = 2cond; (A4, A2).

REMARK 2.7. As discussed in the introduction, we will see that the results in
these examples are not casual. In fact, we will prove that the condition number of A
of order 1/v is related with the functions ¢ and a.

3. Bounds by closed disks. From Theorems 2.6.6 and 5.4.4 of Karow [6], we
infer the following theorem.

THEOREM 3.1. Let A be an eigenvalue of A € C"*™ of index v. For eachn € (0,1]
there exists an €, > 0 such that for every e € (0,¢&,],

(3.1) D(A, (1 —n)e) " ¢) € Ka(e) € DN, (1 +n)e) " e)
¢ being the condition number of \ of order 1/v.

From (3.1), we deduce that
9(07 ((1 - 77)5)1/'/0) CXKale) = A C @(0’ ((1 + 77)5) 1/Vc).

Considering the homothecy

Z 51%, z € C,
we see
Ka(e) — A
(3.2) D(0, (1 —n)"c) C % c D(0, (1 +n)""e).

4. Bounds by diameters. Since the diameter function is monotone increasing
with respect to C, by (3.2),

0(e) < 2¢(1+ 77)1/”.

v
(4.1) 2e(l—m)/'" < S S

Thus, we arrive at the following theorem.

THEOREM 4.1. Let v be the index of A, and let ¢ be the condition number of A
of order 1/v. Then

lim 0(e) = 2c.

ot el/v

Proof. Let us define the functions

filn) =1—(1—n)'",
fo(m) == (L+n)" =1,



Electronic Journal of Linear Algebra ISSN 1081-3810

A publication of the International Linear Algebra Society
Volume 22, pp. 1004-1019, October 2011

1012 G. Armentia, J.M. Gracia, and F.E. Velasco
where n € [0,1]. If v = 1, then

i) =1-1+n=n,
fa(n) =1+n—1=n;

so, f1(n) = fa(n) on [0,1].

If v > 2, we will deduce that fo(n) < f1(n). This last inequality is equivalent to

LT+ —1<1— (1 -, ¥pelo,1]

= 1+ +A-n" <2 Ynelo1]
Let us define
g(m) =L+ + 1=, nelo1].
Then

g = [+ = =g,

Since z® := e*In®

1/v—1

, when o < 0 the function z +— x is decreasing in (0, 00); therefore,
T is decreasing in (0,00). Hence, if 0 < n < 1, we see that 1 —n < 1+ n;

what implies
Q= > 14t/

Thus, ¢’'(n) < 0. So, g is decreasing on [0, 1]. Therefore, g(n) < ¢g(0) = 2. That is,
fa(n) < fi(n)-

Given that 2c¢ —2cfi(n) = 2¢(1 — )" and 2¢+ 2cfa(n) = 2¢(1 +n)Y¥, by
(4.1), we have

<,

()

2c —2cfi(n) < i/

< 2c+ 2cf2(n).

For every v > 1, fa(n) < fi(n) for n € [0,1]. Then,
d(e

el/v

~—

2c —2cf1(n) < <2c+2cfi(n)

—2¢ < 2¢f1(n),

or
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But lim, o+ fi(n) = 0 and fi(n) > 0 for n > 0. Thus, for a fixed 79 > 0, there exists
an 1, > 0 such that 2¢fi(n1) < no. For this n, there is an €,, > 0 such that for all
e € (0,ep,),

o(e)

el/v

- 2(:‘ < 2ef,(1) < 0.

So, there exists the limit

lim 0(e)

e0+ gl/v

and it is equal to 2¢. O

5. Derivatives of the diameter. In this section, we relate the right-derivative
of the diameter ¢ at 0 with the condition number of the eigenvalue A\, when v = 1.
First, we have the following lemma.

LEMMA 5.1. Let A € C™ ™ and X be an eigenvalue of A of index v. Let 6(¢)
be the diameter of the connected component of A.(A) that contains X. Let ¢ be the
condition number of X of order 1/v. Then, there exists the limit

§
lim @
e—0t €
and it is equal to
2¢ if v=1,
o if v>2

0
lim ﬁ =2c
e—0t €
If v > 2, from the same Theorem,
o(e) () 1
e gl/vgl-1/v — 2¢- 00,

when ¢ — 0*. 0O
From this lemma, the next theorem follows immediately.

THEOREM 5.2. Let A € C"*™ and X be an eigenvalue of A of index v. Let 6(g)
be the diameter of the connected component of A:(A) that contains X. Let ¢ be the
condition number of A of order 1/v. Then,

lim®= 2c Zf v=1
em0t+ € oo if v>2.

Therefore, 0, (0) = 2c if v = 1.
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6. Bounds by areas. Since the area function is monotone increasing with res-
pect to C, by (3.2),
a(e)
(6.1) e (1= )" < 55 <me(1+ )",
where a(e) := area or Lebesgue measure of X (g). Thus, we arrive at the following
theorem.

THEOREM 6.1. Let v be the index of A, and let ¢ be the condition number of A
of order 1/v. Then

lim ale) = mc?

= TC .
e—0+ 52/V

Proof. Let us define the functions

p1(n) ==1—(1—n)*",
@a(n) = (L+n)*" — 1.

If v =1, then

e1(n)=1—(1-n)?*=2n-—1n
@2(n) = (1+n)?—1=2n+n%

it is obvious that ¢1(n) < ¢2(n) when 0 < 7.

If v = 2, then
pr(n) =1—(1—n)=n=(1+n)—1=pn).
If v > 3, we will see that
pa(n) < er(n), nel01],
or, equivalently,

L+ —1<1-(1-n)*", nelo1]

= 1+ + 1= <2, nelo1].
Let us define

() =1+ +1-n)*", nelo1]
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Then
2 2/v—1 2/v—1
W)= [t = =

As the function z + 22V~ is decreasing in (0,00), if 0 <n < 1,then 1 —n < 1+7
implies (1 —7)%*~! > (14+1)?*~! and ¢'(n) < 0. In consequence, v is decreasing
in [0,1]. Thus, for n € (0,1],%(n) < ¥ (0) = 2. Accordingly,

e2(n) < ¢1(n), ne0,1].
By (6.2) and (6.3),

(1—n)*" =1—-¢1(n),
(1+n)*" =1+ ¢a(n).

Inequalities (6.1) imply

a(e
() < e 4+ mta(n).

(6.4) mc? — w1 (n) < o/ S

The v < 2 case. Since ¢1(n) < pa(n) in [0, 1],
—mc*pa(n) < —mct ().
Hence, by (6.4),
a(e)

e2/v

7c? — 7r02g02(77) <

<7+ 7T02<p2 (n);

which is equivalent to

Bearing

. 2 o
Jim, e p2(n) =0
in mind, we deduce that for a fixed 19 > 0 there exists an 17; > 0 such that 7c2pa (1) <
7o. For this n; there is an €, > 0 such that for ¢ € (0,¢,, ],

a(e)

0 nc?| < wctpa(n) < no.

This proves that there exists the limit

. ale)
L, g2/v
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and it is equal to mc2.

The v > 3 case. As ¢3(n) < p1(n) in [0,1], from (6.4) we deduce that

a(e
et — 7r02¢1(77) < 52(/3 < e 4+ Wc2<p1(77)
and, as ¢1(n) > 0if n > 0 and
lim ¢4 (n) =0,

n—0+

by a reasoning analogous to the former one we infer that there exists the limit

lim ale) =rc?

=mc”. 0O
0+ g2/v

7. Derivatives of the area. In this section, we establish the relation between
the first and second right-derivatives of ¢ at 0 and the condition number of the eigen-
value A of order 1/v, when v =1 or 2. First, we prove the following lemma.

LEMMA 7.1. Let A € C"*™ and X be an eigenvalue of A of index v. Let a(e) be
the area of the connected component of Ac(A) that contains \. Let ¢ be the condition
number of A of order 1/v. Then, there exists the limit

lim @
e—0t &

and it is equal to

lim —5 =T
e—0t €

Hence,

lim —= = «w¢”.
e—0t+ €
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Finally, when v > 3, it is obvious, by Theorem 6.1 and

. ale) . ale) 1
elirélJr e slgg+ g2/v ev=2)/v’
that
lim @ =o00. 0O

e—0t €
THEOREM 7.2. Let A € C™" "™ and X be an eigenvalue of A of index v. Let a(e)

be the area of the connected component A.(A) that contains X. Then, there exists the
right-derivative of a at 0, @/, (0), and

Proof. By Lemma 7.1 we deduce that

ifv=1,
a’, (0) = lim a(e) — a(0) = lim —a(E) =0;
+ e—0+ £ e—0t &
if v =2,
a(0) = lim, M — e,
if v > 3,
—a(0
a/, (0) = El_if(% M =o0. O

THEOREM 7.3. Let A € C"™™ and X be a semisimple eigenvalue. Let a(e) be

the area of the connected component Ac(A) that contains X. Let us assume that there
exists a'y (0). Then

a’ (0) = 2mc?.

Proof. Let us define the function

~ Jal(e) ife >0,
Ale) = {a(—s) if e <.
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By Theorem 7.2, as v = 1, there exists A’(0) and A’(0) = 0. If we suppose that there
exists the derivative A”(0), then

20 = tiy M =240 + A0

But, the existence of this limit does not imply the existence of A”(0). See [1, Exercise
5-20.].

When € > 0, A(e) = a(e), A(—e) = a(—(—¢)) = a(e); therefore, A(e) + A(—¢) =
2a(e).

When e < 0, A(e) = a(—¢), A(—¢) = a(—¢); hence, A(e) + A(—¢) = 2a(—e¢).

Then, by Theorem 6.1,

lim AE) = 2A<§> +ACE) _ iy 2“25) = 21c?,

e—0+ € e—0t €
lim A(e) —2A(0) + A(—¢) ~ lim 2a(—¢) L 2a(B) o
e—0- €2 c—0- (—€)2 g0+ 32

Consequently, there exists the limit
lim Ale) — 2A((2)) + A(—¢)
e—0 £

and is equal to 2mc?. So, A”(0) = 2rc?, and /] (0) = 2mwc?. O

8. A conjecture. Let A\ be a semisimple eigenvalue of a matrix A € C"*". We
need the definition of a semialgebraic set S C R™ and of a semialgebraic function
f: S — R. These concepts can be seen in [6, Chapter 3, p. 39]. A classical reference
is [2, Chapter 2, p. 23].

CONJECTURE 8.1. The functions §, a: [0, 00) — R are semialgebraic.
The following theorem is proved in [3, Lemma 3.1 (ii)].

THEOREM 8.2 (de 'Hopital inverse rule). If f,g:[0,00) — R are semialgebraic
functions, f(0) = ¢g(0) =0, and there is an g9 > 0 such that ¢’'(e) > 0 for e € (0,¢¢),

then
f(e) f'(e)

lim —~=¢eR — li = /.
sir(r)l+ g(e) sir(l)1+ J'(e)

If Conjecture 8.1 were true, then
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Thus, the derivative a’{ (0) would exist and it would be equal to 2mc? because a’} (0) =
lim, _ o+ a”’(e).

As the area of a region can be expressed by means of a line integral, and taking
into account that a parametric integral is differentiable with respect to the parameter
when the integrand is, the derivatives a’(¢) and a”(¢) exist for sufficiently small £ > 0.
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