DERIVATIVES OF THE DIAMETER AND THE AREA OF A CONNECTED COMPONENT OF THE PSEUDOSPECTRUM*

GORKA ARMENTIA ${ }^{\dagger}$, JUAN-MIGUEL GRACIA ${ }^{\ddagger}$, AND FRANCISCO E. VELASCO ${ }^{\ddagger}$

Abstract. The paper concerns the relation between the following two quantities.
(i) The Hölder condition number of an eigenvalue λ of a square complex matrix.
(ii) The rate of growth of the diameter and the area of the connected component of the ε-pseusospectrum containing λ.

Key words. Matrices, Pseudospectra, Condition number, Eigenvalues, Derivatives.

AMS subject classifications. 15A12, 15A18, 15A60, 65F35.

1. Introduction. By $\Lambda(A)$ we denote the spectrum of any $A \in \mathbb{C}^{n \times n}$. We denote by $\|\cdot\|$ the 2 -norm. Let λ be an eigenvalue of A of algebraic multiplicity m. For $X \in \mathbb{C}^{n \times n}, \operatorname{sv}_{(A, \lambda)}(X)$ denotes the radius of the smallest circle centered at λ containing m of the eigenvalues of X counting multiplicities. The (Hölder) condition number of the eigenvalue λ of order $\omega>0$ is defined as

$$
\operatorname{cond}_{\omega}(A, \lambda):=\lim _{\varepsilon \rightarrow 0^{+}} \max _{0<\|X-A\| \leq \varepsilon} \frac{\operatorname{sv}_{(A, \lambda)}(X)}{\|X-A\|^{\omega}}
$$

The index of an eigenvalue λ of $A, \nu=\nu(\lambda)$, is the size of the largest Jordan block associated with λ. The limit that defines $\operatorname{cond}_{\omega}(A, \lambda)$ is of interest just for $\omega=1 / \nu$.

On the other hand, for $\varepsilon \geq 0$, the ε-pseudospectrum of A consists of the eigenvalues of all matrices X within an ε-neighborhood of A, i.e.,

$$
\Lambda_{\varepsilon}(A):=\bigcup_{\substack{X \in \mathbb{C}^{n \times n} \\ \\ \\\|X-A\|<\varepsilon}} \Lambda(X) .
$$

*Received by the editors on November 15, 2010. Accepted for publication on September 11, 2011. Handling Editor: Michael Tsatsomeros. This paper has been written financed by the MTM2010-19356-C02-01 project of the MICINN Spanish Ministry, and the GIC10/169-IT361-10 aid of the Basque Government.
${ }^{\dagger}$ Department of Mathematical Engineering and Computer Science, The Public University of Navarre, Campus de Arrosadía, 31006 Pamplona, Spain (gorka.armentia@unavarra.es).
${ }^{\ddagger}$ Department of Applied Mathematics and Statistics and R.O., The University of the Basque Country, Faculty of Pharmacy, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain (juanmiguel.gracia@ehu.es, franciscoenrique.velasco@ehu.es).

On the Diameter and the Area of a Connected Component of the Pseudospectrum 1005
For any complex matrix M we denote by $\sigma_{1}(M) \geq \sigma_{2}(M) \geq \cdots$ its singular values arranged in decreasing order. It is well known that

$$
\Lambda_{\varepsilon}(A)=\left\{z \in \mathbb{C}: \sigma_{n}(z I-A) \leq \varepsilon\right\}
$$

The subset $\Lambda_{\varepsilon}(A)$ of the complex plane is a compact set consisting of at most r (disjoint) connected components, one around each eigenvalue, where $\Lambda(A)=\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}$. Denote the connected component of $\Lambda_{\varepsilon}(A)$ around the eigenvalue λ by $\mathcal{K}_{\lambda}(\varepsilon)$, and consider the diameter $\delta(\varepsilon)$ and the area $a(\varepsilon)$ of this component as a function of ε.

We denote by $\partial \mathcal{K}_{\lambda}(\varepsilon)$ the boundary of $\mathcal{K}_{\lambda}(\varepsilon)$. From [6, Proposition 2.6.5], we deduce that

$$
c=\lim _{\varepsilon \rightarrow 0^{+}} \frac{\max _{z \in \partial \mathcal{K}_{\lambda}(\varepsilon)}|z-\lambda|}{\varepsilon^{1 / \nu}}
$$

where c denotes the Hölder condition number $\operatorname{cond}_{1 / \nu}(A, \lambda)$. Thus, calling $\rho(\varepsilon):=$ $\max _{z \in \partial \mathcal{K}_{\lambda}(\varepsilon)}|z-\lambda|$, we see that $\lim _{\varepsilon \rightarrow 0^{+}} \frac{\rho(\varepsilon)}{\varepsilon^{1 / \nu}}=c$. We extend this result to $\delta(\varepsilon)$ and $a(\varepsilon)$ instead of $\rho(\varepsilon)$ in Theorems 4.1 and 6.1.

Remark 1.1. When $\lim _{\varepsilon \rightarrow 0^{+}} \frac{\delta(\varepsilon)}{\varepsilon}=\infty$ (resp., $\lim _{\varepsilon \rightarrow 0^{+}} \frac{a(\varepsilon)}{\varepsilon}=\infty$), strictly speaking the function $\delta(\varepsilon)$ (resp., $a(\varepsilon)$) is not differentiable from the right-hand side at 0 . However, in this case we put $\delta_{+}^{\prime}(0)=\infty$ (resp., $a_{+}^{\prime}(0)=\infty$) in order to grasp the geometric meaning of the results.

The main results of the paper are as follows.

1. $\delta_{+}^{\prime}(0)=2 c$ if $\nu=1$. Otherwise $\delta_{+}^{\prime}(0)=\infty$. Here, δ_{+}^{\prime} denotes the rightderivative of δ. See Theorem 5.2.
2. $a_{+}^{\prime}(0)=0$ if $\nu=1$, and $a_{+}^{\prime}(0)=\pi c^{2}$ if $\nu=2$. Otherwise, $a_{+}^{\prime}(0)=\infty$. See Theorem 7.2.

In Section 2, we work four examples of matrices A for which both the condition number and the geometry of the ε-pseudospectrum are known in detail; this let us corroborate our results. We demonstrate that an important result by Karow [6] allows us bound the ε-pseudospectrum by lower and upper closed disks; see Section 3. By the monotonicity of the diameter function, and its changes under a homothecy, we show how to transfer these inequalities with respect to the inclusion relation between sets to the diameters, in Section 4. In Section 5, we relate the first right-derivative of the diameter at $\varepsilon=0$ with the condition number. In Section 6 , the monotonicity of the area function, and its changes under a homothecy, let us translate the bounds in Section 3 to numeric inequalities. In Section 7, we relate the first right-derivative of the area at $\varepsilon=0$ with the condition number c; moreover, we establish a relation between c and the second right-derivative $a_{+}^{\prime \prime}(0)$ whenever this derivative exists. Finally, in

Section 8 , we formulate a conjecture about the semialgebraicity of the functions $\delta(\varepsilon)$ and $a(\varepsilon)$; if it were true, a de l'Hôpital inverse rule would let us prove the existence of $a_{+}^{\prime \prime}(0)$.
2. Examples. Next, we consider four examples where we compute the condition number of order $1 / \nu$ of an eigenvalue λ and the right-derivatives at $\varepsilon=0$ of the diameter $\delta(\varepsilon)$ and the area $a(\varepsilon)$ of the connected component $\mathcal{K}_{\lambda}(\varepsilon)$.

Example 2.1. Let $A \in \mathbb{C}^{n \times n}$ be a normal matrix. Then the ε-pseudospectrum of A is the union of the closed disks of radius ε centered at the eigenvalues of A. So, for sufficiently small $\varepsilon \geq 0$, we have

$$
\mathcal{K}_{\lambda}(\varepsilon)=\mathcal{D}(\lambda, \varepsilon)
$$

Therefore, $\rho(\varepsilon)=\varepsilon$, and since the eigenvalues of a normal matrix are semisimple (i.e., of index 1),

$$
\operatorname{cond}_{1}(A, \lambda)=\lim _{\varepsilon \rightarrow 0^{+}} \frac{\varepsilon}{\varepsilon}=1
$$

The diameter of $\mathcal{D}(\lambda, \varepsilon)$ is 2ε. So, $\delta^{\prime}(\varepsilon)=2$ and $\delta_{+}^{\prime}(0)=2$. If we denote by $a(\varepsilon)$ the area of this circle, $a(\varepsilon)=\pi \varepsilon^{2}$; hence, $a^{\prime}(\varepsilon)=2 \pi \varepsilon, a^{\prime \prime}(\varepsilon)=2 \pi$. Therefore, $a_{+}^{\prime}(0)=0, a_{+}^{\prime \prime}(0)=2 \pi$.

Example 2.2. Let

$$
J_{2}(\lambda, d)=\left[\begin{array}{ll}
\lambda & d \\
0 & \lambda
\end{array}\right]
$$

be like a Jordan block, with complex numbers λ, d and $d \neq 0$. Karow proved in $[6$, Theorem 5.4.1, p. 74] that for each $\varepsilon \geq 0$,

$$
\Lambda_{\varepsilon}\left(J_{2}(\lambda, d)\right)
$$

is a closed disk centered at λ and with radius $r_{2}(\varepsilon)=\max \left\{r>0 \mid \sigma_{2}\left(J_{2}(r,|d|)\right) \leq \varepsilon\right\}$. As

$$
\sigma_{2}\left(J_{2}(r,|d|)\right)=\sqrt{r^{2}+\frac{|d|^{2}}{2}-\sqrt{r^{2}|d|^{2}+\frac{|d|^{4}}{4}}}
$$

solving the equation in the unknown r

$$
r^{2}+\frac{|d|^{2}}{2}-\sqrt{r^{2}|d|^{2}+\frac{|d|^{4}}{4}}=\varepsilon^{2}
$$

we find that $r_{2}(\varepsilon)=\sqrt{\varepsilon^{2}+|d| \varepsilon}$. This result has also been proved by Cui et al. [4, Proposition 2.1]. So, $\delta(\varepsilon)=2 \sqrt{\varepsilon^{2}+|d| \varepsilon}$. Hence,

$$
\delta^{\prime}(\varepsilon)=\frac{2 \varepsilon+|d|}{\sqrt{\varepsilon^{2}+|d| \varepsilon}}, \text { which implies } \delta_{+}^{\prime}(0)=\infty
$$

It is obvious that $\nu(\lambda)=2$. Let us remark that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0^{+}} \frac{\delta(\varepsilon)}{\varepsilon^{1 / 2}}=2 \sqrt{|d|} \tag{2.1}
\end{equation*}
$$

Now, let us see that $c:=\operatorname{cond}_{1 / 2}\left(J_{2}(\lambda, d), \lambda\right)=\sqrt{|d|}$. We need some previous considerations. For a general matrix $A \in \mathbb{C}^{n \times n}$, let $\Lambda(A)=\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}$. Let

$$
A=\sum_{j=1}^{r}\left(\lambda_{j} P_{j}+N_{j}\right)
$$

be the Jordan decomposition of A, where for each $j \in\{1, \ldots, r\}, P_{j}$ is the Riesz projector onto the root subspace (or generalized eigenspace) $\mathcal{R}_{\lambda_{j}}(A)$ of λ_{j} and along the sum of root subspaces associated with all eigenvalues of A different from λ_{j}; and $N_{j}:=\left(A-\lambda_{j} I_{n}\right) P_{j}$ is the nilpotent matrix corresponding to λ_{j}. By [6, Theorem 5.4.4 (viii), p. 78], if $\nu_{j}:=\nu\left(\lambda_{j}\right)>1$, then

$$
\begin{equation*}
\operatorname{cond}_{1 / \nu_{j}}\left(A, \lambda_{j}\right)=\left\|N_{j}^{\nu_{j}-1}\right\|^{1 / \nu_{j}} \tag{2.2}
\end{equation*}
$$

In our present example, $A=J_{2}(\lambda, d)=\lambda I_{2}+N$, where

$$
N=\left[\begin{array}{ll}
0 & d \\
0 & 0
\end{array}\right]
$$

and thus, $c=\|N\|^{1 / 2}=\sqrt{|d|}$. From (2.1), we have

$$
\lim _{\varepsilon \rightarrow 0^{+}} \frac{\delta(\varepsilon)}{\varepsilon^{1 / 2}}=2 c
$$

The area $a(\varepsilon)$ is given by $\pi\left(\varepsilon^{2}+|d| \varepsilon\right)$. So, $a^{\prime}(\varepsilon)=\pi(2 \varepsilon+|d|)$; hence, $a_{+}^{\prime}(0)=\pi|d|=$ πc^{2}. This concludes Example 2.2.

Before discussing the third example, we need to introduce a result on the pseudospectra of nilpotent matrices of nilpotency index two. Here on, we denote by O_{k} the $k \times k$ zero matrix.

Proposition 2.3 ([5], Theorem 3). Let us assume that q, r are nonnegative integers such that $n=2 q+r$. Let $N \in \mathbb{C}^{n \times n}$ be a matrix such that $N^{2}=O_{n}$, whose nonzero singular values are $\sigma_{1}(N) \geq \cdots \geq \sigma_{q}(N)$. Then there exists a unitary matrix $U \in \mathbb{C}^{n \times n}$ such that

$$
U^{*} N U=\left[\begin{array}{cc}
0 & \sigma_{1}(N) \\
0 & 0
\end{array}\right] \oplus \cdots \oplus\left[\begin{array}{cc}
0 & \sigma_{q}(N) \\
0 & 0
\end{array}\right] \oplus O_{r}
$$

By Example 2.2, or [4, Proposition 2.1] by Cui et al., the ε-pseudospectrum of

$$
\left[\begin{array}{cc}
0 & \sigma_{i}(N) \\
0 & 0
\end{array}\right]
$$

is $\mathcal{D}\left(0, \sqrt{\varepsilon^{2}+\varepsilon \sigma_{i}(N)}\right)$ for $i=1, \ldots, q$. So, by [6 , Propositions 5.2.3 and 5.2.4], we have the following result.

Proposition 2.4. Under the hypotheses of Proposition 2.3 for $\varepsilon \geq 0$,

$$
\begin{aligned}
\Lambda_{\varepsilon}(N) & =\bigcup_{i=1}^{q} \mathcal{D}\left(0, \sqrt{\varepsilon^{2}+\varepsilon \sigma_{i}(N)}\right) \cup \mathcal{D}(0, \varepsilon) \\
& =\mathcal{D}\left(0, \sqrt{\varepsilon^{2}+\varepsilon \sigma_{1}(N)}\right)
\end{aligned}
$$

We will also need that for any $\alpha \in \mathbb{C}, A \in \mathbb{C}^{n \times n}$ and $\varepsilon \geq 0$,

$$
\begin{equation*}
\Lambda_{\varepsilon}\left(\alpha I_{n}+A\right)=\alpha+\Lambda_{\varepsilon}(A) \tag{2.3}
\end{equation*}
$$

Example 2.5. This example is a small generalization of Example 2.2. Let A be any n-by- n complex matrix with a unique eigenvalue λ. Moreover, let us assume that $\nu(\lambda)=2$. Let $N:=A-\lambda I_{n}$; thus, $A=\lambda I_{n}+N$ is the Jordan decomposition of A. Hence, by $(2.2), c=\operatorname{cond}_{1 / 2}(A, \lambda)=\|N\|^{1 / 2}=\sqrt{\sigma_{1}\left(A-\lambda I_{n}\right)}$. By Proposition 2.4 and (2.3) we see that for $\varepsilon \geq 0$,

$$
\Lambda_{\varepsilon}(A)=\mathcal{D}\left(\lambda, \sqrt{\varepsilon^{2}+\varepsilon \sigma_{1}\left(A-\lambda I_{n}\right)}\right)
$$

So, $\delta(\varepsilon)=2 \sqrt{\varepsilon^{2}+\varepsilon \sigma_{1}\left(A-\lambda I_{n}\right)}, a(\varepsilon)=\pi\left(\varepsilon^{2}+\varepsilon \sigma_{1}\left(A-\lambda I_{n}\right)\right)$. Therefore,

$$
\delta^{\prime}(\varepsilon)=\frac{2 \varepsilon+\sigma_{1}\left(A-\lambda I_{n}\right)}{\sqrt{\varepsilon^{2}+\varepsilon \sigma_{1}\left(A-\lambda I_{n}\right)}}, \text { which implies } \delta_{+}^{\prime}(0)=\infty
$$

and

$$
a^{\prime}(\varepsilon)=\pi\left(2 \varepsilon+\sigma_{1}\left(A-\lambda I_{n}\right)\right), \text { which implies } a_{+}^{\prime}(0)=\pi \sigma_{1}\left(A-\lambda I_{n}\right)=\pi c^{2}
$$

Example 2.6. Let λ_{1}, λ_{2} be two different complex numbers. Let $A \in \mathbb{C}^{2 \times 2}$ whose eigenvalues are λ_{1} and λ_{2}. Let us define

$$
d(A):=\sqrt{\operatorname{tr}\left(A^{*} A\right)-\left|\lambda_{1}\right|^{2}-\left|\lambda_{2}\right|^{2}}
$$

The number $d(A)$ is the departure from normality of A. In [6, Proposition 5.5.3, p. 80] was proved that for each $\varepsilon>0$,

$$
\begin{equation*}
\Lambda_{\varepsilon}(A)=\mathcal{D}\left(\lambda_{1}, \varepsilon\right) \cup \mathcal{D}\left(\lambda_{2}, \varepsilon\right) \cup \mathcal{M}_{\lambda_{1}, \lambda_{2}}(d(A), \varepsilon) \tag{2.4}
\end{equation*}
$$

where
(2.5) $\mathcal{M}_{\lambda_{1}, \lambda_{2}}(d, \varepsilon):=\left\{z \in \mathbb{C}:\left(\left|z-\lambda_{1}\right|^{2}-\varepsilon^{2}\right)\left(\left|z-\lambda_{2}\right|^{2}-\varepsilon^{2}\right) \leq \varepsilon^{2} d^{2}\right\}, \quad d \geq 0$.

Let us consider Figure 2.1 that shows the ε-pseudospectrum for the values of $\varepsilon=1.00,1.50,1.75$ of the matrix

$$
A_{1}:=\left[\begin{array}{cc}
1+2 \mathrm{i} & 3 \\
0 & -1-3 \mathrm{i}
\end{array}\right]
$$

So, $\lambda_{1}=1+2 \mathrm{i}, \lambda_{2}=-1-3 \mathrm{i},\left\|A_{1}\right\|_{\mathrm{F}}=\sqrt{|1+2 \mathrm{i}|^{2}+3^{2}+|-1-3 \mathrm{i}|^{2}}=\sqrt{5+9+10}=$ $\sqrt{24}$. Thus, $d\left(A_{1}\right)=\sqrt{24-5-10}=\sqrt{9}=3$.

Fig. 2.1. Pseudospectra of A_{1} for $\varepsilon=1.00,1.50,1.75$.

We see that for sufficiently small values of ε the ε-pseudospectrum of A_{1} has two connected components. Let us fix our attention on $\varepsilon=1.50$. The figure contains a straight line that passes by λ_{1} and λ_{2}. This line intersects the boundary $\partial \Lambda_{\varepsilon}\left(A_{1}\right)$ at the points $z_{1}, z_{2}, z_{3}, z_{4}$. If we consider the eigenvalue λ_{2}, the diameter $\delta(\varepsilon)$ of the connected component $\mathcal{K}_{\lambda_{2}}(\varepsilon)$ is equal to the distance between z_{3} and z_{4}. From (2.4) and (2.5), we can deduce that

$$
\delta(\varepsilon)=\sqrt{1+\varepsilon^{2}+\sqrt{7} \varepsilon}-\sqrt{1+\varepsilon^{2}-\sqrt{7} \varepsilon}
$$

Instead of making a special reasoning for the matrix A_{1}, we are going to find a general expression for the diameter $\delta(\varepsilon)$ of $\mathcal{K}_{\lambda_{2}}(\varepsilon)$ for any matrix $A \in \mathbb{C}^{2 \times 2}$ with eigenvalues λ_{1} and λ_{2}. By (2.5), the boundary $\partial \Lambda_{\varepsilon}(A)$ is formed by quasi-Cassini ovals with foci the points λ_{1} and λ_{2}. In fact, the set $\Lambda_{\varepsilon}(A)$ is symmetric about the straight line that joints λ_{1} and λ_{2}. This is a consequence of (2.4) and (2.5). Moreover, $\delta(\varepsilon)=\left|z_{4}-z_{3}\right|=\left|z_{2}-z_{1}\right|$. Later we will need the condition numbers of λ_{1} and λ_{2} of
order 1. These numbers are equal. In fact, by [6, Proposition 5.5.8, p. 83], we have

$$
\begin{equation*}
\operatorname{cond}_{1}\left(A, \lambda_{k}\right)=\sqrt{1+\left(\frac{d(A)}{\left|\lambda_{2}-\lambda_{1}\right|}\right)^{2}}, \quad k=1,2 \tag{2.6}
\end{equation*}
$$

Thus, let $\varepsilon \geq 0$ be such that $\Lambda_{\varepsilon}(A)$ has two connected components. Now, we compute the intersection points $z_{1}, z_{2}, z_{3}, z_{4}$ of the line $z(t):=(1-t) \lambda_{1}+t \lambda_{2}, t \in \mathbb{R}$ with the curve $\partial \Lambda_{\varepsilon}(A)$. By (2.5), this curve is given by the equation

$$
\begin{equation*}
\left(\left|z-\lambda_{1}\right|^{2}-\varepsilon^{2}\right)\left(\left|z-\lambda_{2}\right|^{2}-\varepsilon^{2}\right)-\varepsilon^{2} d(A)^{2}=0 \tag{2.7}
\end{equation*}
$$

For determining the values of the parameter t that correspond to the points z_{1}, z_{2}, z_{3} and z_{4} we substitute $z(t)$ into (2.7),

$$
\begin{array}{r}
\left|\lambda_{1}-\lambda_{2}\right|^{4} t^{4}-2\left|\lambda_{1}-\lambda_{2}\right|^{4} t^{3}+\left(\left|\lambda_{1}-\lambda_{2}\right|^{4}-2 \varepsilon^{2}\left|\lambda_{1}-\lambda_{2}\right|^{2}\right) t^{2} \\
+2 \varepsilon^{2}\left|\lambda_{1}-\lambda_{2}\right|^{2} t-\varepsilon^{2}\left|\lambda_{1}-\lambda_{2}\right|^{2}+\varepsilon^{4}-\varepsilon^{2} d(A)^{2}=0 .
\end{array}
$$

For simplicity, we write $\theta:=\left|\lambda_{1}-\lambda_{2}\right|$,

$$
\theta^{4} t^{4}-2 \theta^{4} t^{3}+\left(\theta^{4}-2 \varepsilon^{2} \theta^{2}\right) t^{2}+2 \varepsilon^{2} \theta^{2} t-\varepsilon^{2} \theta^{2}+\varepsilon^{4}-\varepsilon^{2} d(A)^{2}=0
$$

With the command solve of Maple 13 we find the roots of this equation in t obtaining

$$
\begin{aligned}
& t_{1}=\frac{1}{2}-\frac{1}{2 \theta} \sqrt{\theta^{2}+4 \varepsilon^{2}+4 \varepsilon \sqrt{\theta^{2}+d(A)^{2}}}, \\
& t_{2}=\frac{1}{2}-\frac{1}{2 \theta} \sqrt{\theta^{2}+4 \varepsilon^{2}-4 \varepsilon \sqrt{\theta^{2}+d(A)^{2}}}, \\
& t_{3}=\frac{1}{2}+\frac{1}{2 \theta} \sqrt{\theta^{2}+4 \varepsilon^{2}-4 \varepsilon \sqrt{\theta^{2}+d(A)^{2}}}, \\
& t_{4}=\frac{1}{2}+\frac{1}{2 \theta} \sqrt{\theta^{2}+4 \varepsilon^{2}+4 \varepsilon \sqrt{\theta^{2}+d(A)^{2}}},
\end{aligned}
$$

where $t_{1}<0<t_{2}<\frac{1}{2}<t_{3}<1<t_{4}$. Hence, $z_{3}=z\left(t_{3}\right)$ and $z_{4}=z\left(t_{4}\right)$. So,

$$
\delta(\varepsilon)=\left|z_{4}-z_{3}\right|=\frac{1}{2} \sqrt{\theta^{2}+4 \varepsilon^{2}+4 \varepsilon \sqrt{\theta^{2}+d(A)^{2}}}-\frac{1}{2} \sqrt{\theta^{2}+4 \varepsilon^{2}-4 \varepsilon \sqrt{\theta^{2}+d(A)^{2}}} .
$$

Therefore,

$$
\begin{gathered}
\delta^{\prime}(\varepsilon)=\frac{2 \varepsilon+\sqrt{\theta^{2}+d(A)^{2}}}{\sqrt{\theta^{2}+4 \varepsilon^{2}+4 \varepsilon \sqrt{\theta^{2}+d(A)^{2}}}}-\frac{2 \varepsilon-\sqrt{\theta^{2}+d(A)^{2}}}{\sqrt{\theta^{2}+4 \varepsilon^{2}-4 \varepsilon \sqrt{\theta^{2}+d(A)^{2}}}}, \\
\delta_{+}^{\prime}(0)=\frac{2 \sqrt{\theta^{2}+d(A)^{2}}}{\sqrt{\theta^{2}}}=2 \sqrt{1+\left(\frac{d(A)}{\theta}\right)^{2}}
\end{gathered}
$$

ELA

On the Diameter and the Area of a Connected Component of the Pseudospectrum 1011
By (2.6), we have $\delta_{+}^{\prime}(0)=2 \operatorname{cond}_{1}\left(A, \lambda_{2}\right)$.
Remark 2.7. As discussed in the introduction, we will see that the results in these examples are not casual. In fact, we will prove that the condition number of λ of order $1 / \nu$ is related with the functions δ and a.
3. Bounds by closed disks. From Theorems 2.6 .6 and 5.4.4 of Karow [6], we infer the following theorem.

Theorem 3.1. Let λ be an eigenvalue of $A \in \mathbb{C}^{n \times n}$ of index ν. For each $\eta \in(0,1]$ there exists an $\varepsilon_{\eta}>0$ such that for every $\varepsilon \in\left(0, \varepsilon_{\eta}\right]$,

$$
\begin{equation*}
\mathcal{D}\left(\lambda,((1-\eta) \varepsilon)^{1 / \nu} c\right) \subset \mathcal{K}_{\lambda}(\varepsilon) \subset \mathcal{D}\left(\lambda,((1+\eta) \varepsilon)^{1 / \nu} c\right) \tag{3.1}
\end{equation*}
$$

c being the condition number of λ of order $1 / \nu$.
From (3.1), we deduce that

$$
\mathcal{D}\left(0,((1-\eta) \varepsilon)^{1 / \nu} c\right) \subset \mathcal{K}_{\lambda}(\varepsilon)-\lambda \subset \mathcal{D}\left(0,((1+\eta) \varepsilon)^{1 / \nu} c\right)
$$

Considering the homothecy

$$
z \mapsto \frac{z}{\varepsilon^{1 / \nu}}, \quad z \in \mathbb{C}
$$

we see

$$
\begin{equation*}
\mathcal{D}\left(0,(1-\eta)^{1 / \nu} c\right) \subset \frac{\mathcal{K}_{\lambda}(\varepsilon)-\lambda}{\varepsilon^{1 / \nu}} \subset \mathcal{D}\left(0,(1+\eta)^{1 / \nu} c\right) \tag{3.2}
\end{equation*}
$$

4. Bounds by diameters. Since the diameter function is monotone increasing with respect to \subset, by (3.2),

$$
\begin{equation*}
2 c(1-\eta)^{1 / \nu} \leq \frac{\delta(\varepsilon)}{\varepsilon^{1 / \nu}} \leq 2 c(1+\eta)^{1 / \nu} \tag{4.1}
\end{equation*}
$$

Thus, we arrive at the following theorem.
THEOREM 4.1. Let ν be the index of λ, and let c be the condition number of λ of order $1 / \nu$. Then

$$
\lim _{\varepsilon \rightarrow 0^{+}} \frac{\delta(\varepsilon)}{\varepsilon^{1 / \nu}}=2 c
$$

Proof. Let us define the functions

$$
\begin{aligned}
& f_{1}(\eta):=1-(1-\eta)^{1 / \nu} \\
& f_{2}(\eta):=(1+\eta)^{1 / \nu}-1
\end{aligned}
$$

ELA

where $\eta \in[0,1]$. If $\nu=1$, then

$$
\begin{aligned}
& f_{1}(\eta):=1-1+\eta=\eta, \\
& f_{2}(\eta):=1+\eta-1=\eta
\end{aligned}
$$

so, $f_{1}(\eta)=f_{2}(\eta)$ on $[0,1]$.
If $\nu \geq 2$, we will deduce that $f_{2}(\eta) \leq f_{1}(\eta)$. This last inequality is equivalent to

$$
\begin{aligned}
& (1+\eta)^{1 / \nu}-1 \leq 1-(1-\eta)^{1 / \nu}, \forall \eta \in[0,1] \\
\Longleftrightarrow & (1+\eta)^{1 / \nu}+(1-\eta)^{1 / \nu} \leq 2, \forall \eta \in[0,1] .
\end{aligned}
$$

Let us define

$$
g(\eta):=(1+\eta)^{1 / \nu}+(1-\eta)^{1 / \nu}, \quad \eta \in[0,1]
$$

Then

$$
g^{\prime}(\eta)=\frac{1}{\nu}\left[(1+\eta)^{1 / \nu-1}-(1-\eta)^{1 / \nu-1}\right] .
$$

Since $x^{\alpha}:=\mathrm{e}^{\alpha \ln x}$, when $\alpha<0$ the function $x \mapsto x^{\alpha}$ is decreasing in $(0, \infty)$; therefore, $x \mapsto x^{1 / \nu-1}$ is decreasing in $(0, \infty)$. Hence, if $0<\eta<1$, we see that $1-\eta<1+\eta$; what implies

$$
(1-\eta)^{1 / \nu-1}>(1+\eta)^{1 / \nu-1}
$$

Thus, $g^{\prime}(\eta)<0$. So, g is decreasing on $[0,1]$. Therefore, $g(\eta)<g(0)=2$. That is, $f_{2}(\eta) \leq f_{1}(\eta)$.

Given that $2 c-2 c f_{1}(\eta)=2 c(1-\eta)^{1 / \nu}$ and $2 c+2 c f_{2}(\eta)=2 c(1+\eta)^{1 / \nu}, \quad$ by (4.1), we have

$$
2 c-2 c f_{1}(\eta) \leq \frac{\delta(\varepsilon)}{\varepsilon^{1 / \nu}} \leq 2 c+2 c f_{2}(\eta)
$$

For every $\nu \geq 1, f_{2}(\eta) \leq f_{1}(\eta)$ for $\eta \in[0,1]$. Then,

$$
\begin{gathered}
2 c-2 c f_{1}(\eta) \leq \frac{\delta(\varepsilon)}{\varepsilon^{1 / \nu}} \leq 2 c+2 c f_{1}(\eta) \\
\Longleftrightarrow \quad-2 c f_{1}(\eta) \leq \frac{\delta(\varepsilon)}{\varepsilon^{1 / \nu}}-2 c \leq 2 c f_{1}(\eta)
\end{gathered}
$$

or

$$
\left|\frac{\delta(\varepsilon)}{\varepsilon^{1 / \nu}}-2 c\right| \leq 2 c f_{1}(\eta)
$$

But $\lim _{\eta \rightarrow 0^{+}} f_{1}(\eta)=0$ and $f_{1}(\eta)>0$ for $\eta>0$. Thus, for a fixed $\eta_{0}>0$, there exists an $\eta_{1}>0$ such that $2 c f_{1}\left(\eta_{1}\right)<\eta_{0}$. For this η_{1}, there is an $\varepsilon_{\eta_{1}}>0$ such that for all $\varepsilon \in\left(0, \varepsilon_{\eta_{1}}\right)$,

$$
\left|\frac{\delta(\varepsilon)}{\varepsilon^{1 / \nu}}-2 c\right| \leq 2 c f_{1}(\eta)<\eta_{0}
$$

So, there exists the limit

$$
\lim _{\varepsilon \rightarrow 0^{+}} \frac{\delta(\varepsilon)}{\varepsilon^{1 / \nu}}
$$

and it is equal to $2 c$.
5. Derivatives of the diameter. In this section, we relate the right-derivative of the diameter δ at 0 with the condition number of the eigenvalue λ, when $\nu=1$. First, we have the following lemma.

Lemma 5.1. Let $A \in \mathbb{C}^{n \times n}$ and λ be an eigenvalue of A of index ν. Let $\delta(\varepsilon)$ be the diameter of the connected component of $\Lambda_{\varepsilon}(A)$ that contains λ. Let c be the condition number of λ of order $1 / \nu$. Then, there exists the limit

$$
\lim _{\varepsilon \rightarrow 0^{+}} \frac{\delta(\varepsilon)}{\varepsilon}
$$

and it is equal to

$$
\begin{cases}2 c & \text { if } \quad \nu=1 \\ \infty & \text { if } \quad \nu \geq 2\end{cases}
$$

Proof. If $\nu=1$, Theorem 4.1 implies

$$
\lim _{\varepsilon \rightarrow 0^{+}} \frac{\delta(\varepsilon)}{\varepsilon}=2 c
$$

If $\nu \geq 2$, from the same Theorem,

$$
\frac{\delta(\varepsilon)}{\varepsilon}=\frac{\delta(\varepsilon)}{\varepsilon^{1 / \nu}} \frac{1}{\varepsilon^{1-1 / \nu}} \rightarrow 2 c \cdot \infty
$$

when $\varepsilon \rightarrow 0^{+}$. \square
From this lemma, the next theorem follows immediately.
Theorem 5.2. Let $A \in \mathbb{C}^{n \times n}$ and λ be an eigenvalue of A of index ν. Let $\delta(\varepsilon)$ be the diameter of the connected component of $\Lambda_{\varepsilon}(A)$ that contains λ. Let c be the condition number of λ of order $1 / \nu$. Then,

$$
\lim _{\varepsilon \rightarrow 0^{+}} \frac{\delta(\varepsilon)}{\varepsilon}= \begin{cases}2 c & \text { if } \quad \nu=1 \\ \infty & \text { if } \quad \nu \geq 2\end{cases}
$$

Therefore, $\delta_{+}^{\prime}(0)=2 c$ if $\nu=1$.

ELA

6. Bounds by areas. Since the area function is monotone increasing with respect to \subset, by (3.2),

$$
\begin{equation*}
\pi c^{2}(1-\eta)^{2 / \nu} \leq \frac{a(\varepsilon)}{\varepsilon^{2 / \nu}} \leq \pi c^{2}(1+\eta)^{2 / \nu} \tag{6.1}
\end{equation*}
$$

where $a(\varepsilon):=$ area or Lebesgue measure of $\mathcal{K}_{\lambda}(\varepsilon)$. Thus, we arrive at the following theorem.

Theorem 6.1. Let ν be the index of λ, and let c be the condition number of λ of order $1 / \nu$. Then

$$
\lim _{\varepsilon \rightarrow 0^{+}} \frac{a(\varepsilon)}{\varepsilon^{2 / \nu}}=\pi c^{2}
$$

Proof. Let us define the functions

$$
\begin{align*}
\varphi_{1}(\eta) & :=1-(1-\eta)^{2 / \nu} \tag{6.2}\\
\varphi_{2}(\eta) & :=(1+\eta)^{2 / \nu}-1 \tag{6.3}
\end{align*}
$$

If $\nu=1$, then

$$
\begin{aligned}
& \varphi_{1}(\eta)=1-(1-\eta)^{2}=2 \eta-\eta^{2} \\
& \varphi_{2}(\eta)=(1+\eta)^{2}-1=2 \eta+\eta^{2}
\end{aligned}
$$

it is obvious that $\varphi_{1}(\eta) \leq \varphi_{2}(\eta)$ when $0 \leq \eta$.
If $\nu=2$, then

$$
\varphi_{1}(\eta)=1-(1-\eta)=\eta=(1+\eta)-1=\varphi_{2}(\eta)
$$

If $\nu \geq 3$, we will see that

$$
\varphi_{2}(\eta) \leq \varphi_{1}(\eta), \quad \eta \in[0,1]
$$

or, equivalently,

$$
\begin{aligned}
& (1+\eta)^{2 / \nu}-1 \leq 1-(1-\eta)^{2 / \nu}, \quad \eta \in[0,1] \\
\Longleftrightarrow & (1+\eta)^{2 / \nu}+(1-\eta)^{2 / \nu} \leq 2, \quad \eta \in[0,1] .
\end{aligned}
$$

Let us define

$$
\psi(\eta):=(1+\eta)^{2 / \nu}+(1-\eta)^{2 / \nu}, \quad \eta \in[0,1]
$$

Then

$$
\psi^{\prime}(\eta)=\frac{2}{\nu}\left[(1+\eta)^{2 / \nu-1}-(1-\eta)^{2 / \nu-1}\right] .
$$

As the function $x \mapsto x^{2 / \nu-1}$ is decreasing in $(0, \infty)$, if $0<\eta<1$, then $1-\eta<1+\eta$ implies $(1-\eta)^{2 / \nu-1}>(1+\eta)^{2 / \nu-1}$ and $\psi^{\prime}(\eta)<0$. In consequence, ψ is decreasing in $[0,1]$. Thus, for $\eta \in(0,1], \psi(\eta)<\psi(0)=2$. Accordingly,

$$
\varphi_{2}(\eta) \leq \varphi_{1}(\eta), \quad \eta \in[0,1] .
$$

By (6.2) and (6.3),

$$
\begin{aligned}
(1-\eta)^{2 / \nu} & =1-\varphi_{1}(\eta) \\
(1+\eta)^{2 / \nu} & =1+\varphi_{2}(\eta)
\end{aligned}
$$

Inequalities (6.1) imply

$$
\begin{equation*}
\pi c^{2}-\pi c^{2} \varphi_{1}(\eta) \leq \frac{a(\varepsilon)}{\varepsilon^{2 / \nu}} \leq \pi c^{2}+\pi c^{2} \varphi_{2}(\eta) \tag{6.4}
\end{equation*}
$$

The $\nu \leq 2$ case. Since $\varphi_{1}(\eta) \leq \varphi_{2}(\eta)$ in $[0,1]$,

$$
-\pi c^{2} \varphi_{2}(\eta) \leq-\pi c^{2} \varphi_{1}(\eta)
$$

Hence, by (6.4),

$$
\pi c^{2}-\pi c^{2} \varphi_{2}(\eta) \leq \frac{a(\varepsilon)}{\varepsilon^{2 / \nu}} \leq \pi c^{2}+\pi c^{2} \varphi_{2}(\eta)
$$

which is equivalent to

$$
\left|\frac{a(\varepsilon)}{\varepsilon^{2 / \nu}}-\pi c^{2}\right| \leq \pi c^{2} \varphi_{2}(\eta)
$$

Bearing

$$
\lim _{\eta \rightarrow 0^{+}} \pi c^{2} \varphi_{2}(\eta)=0
$$

in mind, we deduce that for a fixed $\eta_{0}>0$ there exists an $\eta_{1}>0$ such that $\pi c^{2} \varphi_{2}\left(\eta_{1}\right)<$ η_{0}. For this η_{1} there is an $\varepsilon_{\eta_{1}}>0$ such that for $\varepsilon \in\left(0, \varepsilon_{\eta_{1}}\right]$,

$$
\left|\frac{a(\varepsilon)}{\varepsilon^{2 / \nu}}-\pi c^{2}\right| \leq \pi c^{2} \varphi_{2}\left(\eta_{1}\right)<\eta_{0}
$$

This proves that there exists the limit

$$
\lim _{\varepsilon \rightarrow 0^{+}} \frac{a(\varepsilon)}{\varepsilon^{2 / \nu}}
$$

and it is equal to πc^{2}.
The $\nu \geq 3$ case. As $\varphi_{2}(\eta) \leq \varphi_{1}(\eta)$ in $[0,1]$, from (6.4) we deduce that

$$
\pi c^{2}-\pi c^{2} \varphi_{1}(\eta) \leq \frac{a(\varepsilon)}{\varepsilon^{2 / \nu}} \leq \pi c^{2}+\pi c^{2} \varphi_{1}(\eta)
$$

and, as $\varphi_{1}(\eta)>0$ if $\eta>0$ and

$$
\lim _{\eta \rightarrow 0^{+}} \varphi_{1}(\eta)=0
$$

by a reasoning analogous to the former one we infer that there exists the limit

$$
\lim _{\varepsilon \rightarrow 0^{+}} \frac{a(\varepsilon)}{\varepsilon^{2 / \nu}}=\pi c^{2}
$$

7. Derivatives of the area. In this section, we establish the relation between the first and second right-derivatives of a at 0 and the condition number of the eigenvalue λ of order $1 / \nu$, when $\nu=1$ or 2 . First, we prove the following lemma.

Lemma 7.1. Let $A \in \mathbb{C}^{n \times n}$ and λ be an eigenvalue of A of index ν. Let $a(\varepsilon)$ be the area of the connected component of $\Lambda_{\varepsilon}(A)$ that contains λ. Let c be the condition number of λ of order $1 / \nu$. Then, there exists the limit

$$
\lim _{\varepsilon \rightarrow 0^{+}} \frac{a(\varepsilon)}{\varepsilon}
$$

and it is equal to

$$
\begin{cases}0 & \text { if } \quad \nu=1 \\ \pi c^{2} & \text { if } \quad \nu=2 \\ \infty & \text { if } \quad \nu \geq 3\end{cases}
$$

Proof. First, let us suppose that $\nu=1$. Then Theorem 6.1 implies

$$
\lim _{\varepsilon \rightarrow 0^{+}} \frac{a(\varepsilon)}{\varepsilon^{2}}=\pi c^{2}
$$

Hence,

$$
\lim _{\varepsilon \rightarrow 0^{+}} \frac{a(\varepsilon)}{\varepsilon}=\lim _{\varepsilon \rightarrow 0^{+}} \varepsilon \frac{a(\varepsilon)}{\varepsilon^{2}}=\left(\lim _{\varepsilon \rightarrow 0^{+}} \varepsilon\right)\left(\lim _{\varepsilon \rightarrow 0^{+}} \frac{a(\varepsilon)}{\varepsilon^{2}}\right)=0 \cdot \pi c^{2}=0
$$

Second, let us assume now that $\nu=2$. From Theorem 6.1,

$$
\lim _{\varepsilon \rightarrow 0^{+}} \frac{a(\varepsilon)}{\varepsilon}=\pi c^{2}
$$

Finally, when $\nu \geq 3$, it is obvious, by Theorem 6.1 and

$$
\lim _{\varepsilon \rightarrow 0^{+}} \frac{a(\varepsilon)}{\varepsilon}=\lim _{\varepsilon \rightarrow 0^{+}} \frac{a(\varepsilon)}{\varepsilon^{2 / \nu}} \cdot \frac{1}{\varepsilon^{(\nu-2) / \nu}}
$$

that

$$
\lim _{\varepsilon \rightarrow 0^{+}} \frac{a(\varepsilon)}{\varepsilon}=\infty
$$

Theorem 7.2. Let $A \in \mathbb{C}^{n \times n}$ and λ be an eigenvalue of A of index ν. Let a (ε) be the area of the connected component $\Lambda_{\varepsilon}(A)$ that contains λ. Then, there exists the right-derivative of a at $0, a_{+}^{\prime}(0)$, and

$$
a_{+}^{\prime}(0)=\left\{\begin{array}{lll}
0 & \text { if } & \nu=1 \\
\pi c^{2} & \text { if } & \nu=2 \\
\infty & \text { if } & \nu \geq 3
\end{array}\right.
$$

Proof. By Lemma 7.1 we deduce that
if $\nu=1$,

$$
a_{+}^{\prime}(0)=\lim _{\varepsilon \rightarrow 0^{+}} \frac{a(\varepsilon)-a(0)}{\varepsilon}=\lim _{\varepsilon \rightarrow 0^{+}} \frac{a(\varepsilon)}{\varepsilon}=0
$$

if $\nu=2$,

$$
a_{+}^{\prime}(0)=\lim _{\varepsilon \rightarrow 0^{+}} \frac{a(\varepsilon)-a(0)}{\varepsilon}=\pi c^{2} ;
$$

if $\nu \geq 3$,

$$
a_{+}^{\prime}(0)=\lim _{\varepsilon \rightarrow 0^{+}} \frac{a(\varepsilon)-a(0)}{\varepsilon}=\infty
$$

Theorem 7.3. Let $A \in \mathbb{C}^{n \times n}$ and λ be a semisimple eigenvalue. Let $a(\varepsilon)$ be the area of the connected component $\Lambda_{\varepsilon}(A)$ that contains λ. Let us assume that there exists $a_{+}^{\prime \prime}(0)$. Then

$$
a_{+}^{\prime \prime}(0)=2 \pi c^{2}
$$

Proof. Let us define the function

$$
A(\varepsilon):= \begin{cases}a(\varepsilon) & \text { if } \varepsilon \geq 0 \\ a(-\varepsilon) & \text { if } \varepsilon<0\end{cases}
$$

By Theorem 7.2 , as $\nu=1$, there exists $A^{\prime}(0)$ and $A^{\prime}(0)=0$. If we suppose that there exists the derivative $A^{\prime \prime}(0)$, then

$$
A^{\prime \prime}(0)=\lim _{\varepsilon \rightarrow 0} \frac{A(\varepsilon)-2 A(0)+A(-\varepsilon)}{\varepsilon^{2}}
$$

But, the existence of this limit does not imply the existence of $A^{\prime \prime}(0)$. See [1, Exercise 5-20.].

When $\varepsilon>0, A(\varepsilon)=a(\varepsilon), A(-\varepsilon)=a(-(-\varepsilon))=a(\varepsilon)$; therefore, $A(\varepsilon)+A(-\varepsilon)=$ $2 a(\varepsilon)$.

When $\varepsilon<0, A(\varepsilon)=a(-\varepsilon), A(-\varepsilon)=a(-\varepsilon)$; hence, $A(\varepsilon)+A(-\varepsilon)=2 a(-\varepsilon)$.
Then, by Theorem 6.1,

$$
\begin{gathered}
\lim _{\varepsilon \rightarrow 0^{+}} \frac{A(\varepsilon)-2 A(0)+A(-\varepsilon)}{\varepsilon^{2}}=\lim _{\varepsilon \rightarrow 0^{+}} \frac{2 a(\varepsilon)}{\varepsilon^{2}}=2 \pi c^{2} \\
\lim _{\varepsilon \rightarrow 0^{-}} \frac{A(\varepsilon)-2 A(0)+A(-\varepsilon)}{\varepsilon^{2}}=\lim _{\varepsilon \rightarrow 0^{-}} \frac{2 a(-\varepsilon)}{(-\varepsilon)^{2}}=\lim _{\beta \rightarrow 0^{+}} \frac{2 a(\beta)}{\beta^{2}}=2 \pi c^{2} .
\end{gathered}
$$

Consequently, there exists the limit

$$
\lim _{\varepsilon \rightarrow 0} \frac{A(\varepsilon)-2 A(0)+A(-\varepsilon)}{\varepsilon^{2}}
$$

and is equal to $2 \pi c^{2}$. So, $A^{\prime \prime}(0)=2 \pi c^{2}$, and $a_{+}^{\prime \prime}(0)=2 \pi c^{2}$. \square
8. A conjecture. Let λ be a semisimple eigenvalue of a matrix $A \in \mathbb{C}^{n \times n}$. We need the definition of a semialgebraic set $S \subset \mathbb{R}^{n}$ and of a semialgebraic function $f: S \rightarrow \mathbb{R}$. These concepts can be seen in [6, Chapter 3, p. 39]. A classical reference is [2, Chapter 2, p. 23].

Conjecture 8.1. The functions $\delta, a:[0, \infty) \rightarrow \mathbb{R}$ are semialgebraic.
The following theorem is proved in [3, Lemma 3.1 (ii)].
THEOREM 8.2 (de l'Hôpital inverse rule). If $f, g:[0, \infty) \rightarrow \mathbb{R}$ are semialgebraic functions, $f(0)=g(0)=0$, and there is an $\varepsilon_{0}>0$ such that $g^{\prime}(\varepsilon)>0$ for $\varepsilon \in\left(0, \varepsilon_{0}\right)$, then

$$
\lim _{\varepsilon \rightarrow 0^{+}} \frac{f(\varepsilon)}{g(\varepsilon)}=\ell \in \mathbb{R} \quad \Longrightarrow \quad \lim _{\varepsilon \rightarrow 0^{+}} \frac{f^{\prime}(\varepsilon)}{g^{\prime}(\varepsilon)}=\ell
$$

If Conjecture 8.1 were true, then

$$
\pi c^{2}=\lim _{\varepsilon \rightarrow 0^{+}} \frac{a(\varepsilon)}{\varepsilon^{2}}=\lim _{\varepsilon \rightarrow 0^{+}} \frac{a^{\prime}(\varepsilon)}{2 \varepsilon}=\lim _{\varepsilon \rightarrow 0^{+}} \frac{a^{\prime \prime}(\varepsilon)}{2}
$$

On the Diameter and the Area of a Connected Component of the Pseudospectrum 1019
Thus, the derivative $a_{+}^{\prime \prime}(0)$ would exist and it would be equal to $2 \pi c^{2}$ because $a_{+}^{\prime \prime}(0)=$ $\lim _{\varepsilon \rightarrow 0^{+}} a^{\prime \prime}(\varepsilon)$.

As the area of a region can be expressed by means of a line integral, and taking into account that a parametric integral is differentiable with respect to the parameter when the integrand is, the derivatives $a^{\prime}(\varepsilon)$ and $a^{\prime \prime}(\varepsilon)$ exist for sufficiently small $\varepsilon>0$.

Acknowledgment. The authors thank the referee for the comments and suggestions that let them improve the first and second versions of the paper.

REFERENCES

[1] T.M. Apostol. Mathematical Analysis. Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, 1957.
[2] J. Bochnak, M. Coste, and M.F. Roy. Real Algebraic Geometry. Springer-Verlag, Berlin, 1998.
[3] J. Bolte, A. Daniilidis, and A.S. Lewis. Tame functions are semismooth. Math. Program., 117:5-19, 2009.
[4] J. Cui, V. Forstall, C.K. Li, and V. Yannello. Properties and preservers of the pseudospectrum. Linear Algebra Appl., to appear, 2011, doi:10.1016/j.laa.2011.03.044.
[5] A. George and K.D. Ikramov. Unitary similarity of matrices with quadratic minimal polynomials. Linear Algebra Appl., 349:11-16, 2002.
[6] M. Karow. Geometry of Spectral Value Sets. Ph.D. Thesis, University of Bremen, 2003.

