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GENERALIZED NUMERICAL RANGES OF PERMANENTAL
COMPOUNDS ARISING FROM QUANTUM SYSTEMS OF BOSONS*
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Abstract. Let a = (a1,...,a;) be an m-tuple of integers such that 1 < a3 < -+ < ay < n.
Denote by per (X) the permanent of a square matrix. The permanental range W2 (A) of an nxn com-
plex matrix A associated with « is the set of complex numbers of the form per(X*AX)/per(X*X),
where X is an n X m matrix with columns zq; for j =1,...,m so that (zx,x;) = Ok, the Kronecker
delta. The set W2 (A) is related to quantum system of m bosons lying in single-particle states
specified by a. Geometrical properties of W% (A) are studied and their physical interpretations are
given. Linear operators L on n X n matrices satisfying W2 (L(A)) = W2 (A) are characterized. The
permanental ranges associated with derivations are also discussed.
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1. Introduction. Let m and n be positive integers with n > 2. Denote by
per (X) the permanent of a square matrix. The mth permanental range of A € C™*"
is defined by

W} (A) = {per (X*AX): X € C™*™, per (X*X) =1}.

In quantum physics, the state of a system of m Bosons, i.e., particles with integer
spin, may be described by a matrix X € C™*™ satisfying per (X*X) = 1 whose
columns describe the individual states of the Bosons. If we associate the matrix
A € C™" with the dynamics of the system, then W} (A) is the collection of all
possible average energy values (of the system). In some models, one has to impose
orthogonality conditions on the states of the particles; one then needs to consider the
following variation

er (X*AX nxm
W#L_(A):{W:X:[Z@J”"mam]ec xm, aerm,m(xk:wl):akl},

where Jy; denotes the Kronecker delta, and I'y, ,, denotes the collection of all nonde-
creasing sequences a = (a1, -..,y;,) of integers such that 1 < a; < n for all i. A
further refinement of the model can be obtained by specifying some fixed orthogonal
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relations on the particles determined by a given a € I'y, ,,; we have

per (X*AX)
W) = {m 1 X =[] 2o, ] € CVT, (@hy @) = Ot g -
Denote by k; the number of occurrence of the number j in the sequence a. In physics
terminology, k; is the occupation number of level j, that is, the number of Bosons in
state j. If 1 <m < n, we always set ¢ = (1,...,m) € ', , and

W (A) = {per (X*AX) : X € C™™, X*X = I,,}.

Evidently, W/, (A) represents a system with all m particles lying in mutually distinct
(orthogonal) single-particle states.

When m = 1, all the sets W (A), W1 (A), W2 (A), W! (A) reduce to the classical
numerical range of A defined by

W(A) ={(4z,2) : 2 € C", (z,2) =1},

which has been studied extensively in the last few decades because of its connections
and applications to many pure and applied subjects; see [1, 9, 10, 11, 16].

While the sets W (A), W (A) and W', (A) are quite well studied in the math-
ematical literature [14, 20, 23, 24], there are no results on the natural (from the
physics point of view) object W2 (A). In this paper, we will fill this gap and develop
some techniques to prove results on W% (A) analogous to those on W}, (A). Physical
interpretations of the results will be discussed.

Our paper is organized as follows. Section 2 contains some preliminary results.
Section 3 deals with permanental ranges of 2 x 2 matrices. In Section 4 we study
special classes of matrices whose permanental ranges are more tractable. Section 5
concerns special boundary points of permanental ranges. Section 6 concerns matrices
with degenerate permanental ranges. In Section 7, we study linear operators L on
C™ ™ satisfying W2 (L(A)) = W2 (A) for all A € C™*™. Section 8 is about derivations
of permanental compounds, a concept more relevant to quantum physics.

2. Preliminaries. The mth permanental range can be regarded as the mth
decomposable numerical range of A associated with the symmetric group of degree m
and the constant character x = 1, i.e.,

Wi (A) = {(Pn(A)z*,2") : ° € Cf,, is decomposable, (z*,z") = 1}.

Here P,,(A) is the induced operator of A acting on decomposable vectors z* = x1
- -+ % L, in the mth symmetric space (C?m) over C", according to the formula

Po(A)(z1 % xxp) = (Amq) * -+ - x (Azyy,).-

One may see [17, 20] for the general mathematical background. In fact, if we identify
T* = X1 * - - * Xy, with the n x m matrix X with columns z,...,2,,, then

* * 0k 1 *
le*|” = (z*,2%) = —jper (X*X)
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and
1
(Pm(A)z”,2%) = —per (X*AX).
m!
Note that Cf},) has dimension (mtg_l). Suppose {e1,...,e,} is the standard basis

for C". Denote by ey = €q4, * - - * €, for any o € 'y, ,,. Then

m!
—V~€a: | R
{ () © ae ,}

is the standard orthonormal basis for Cf,,,), where
v(a) =ki!---ky!

such that k; is the number of occurrence of j in the sequence «, i.e., the occupation
number of level j. With this standard basis P, (A) has a matrix representation whose
entry at the positions indexed by the sequences o, 8 € I'y, ,, is given by

_ per (EX AEg) _ per (EXAEg)
P \/per (E4Eq)per (E5Ep) Vr(a)v(B) 7

Pn(4)

where E,, Eg € C"*™ have columns ey, ..., €q,,, and eg,, . . ., €a,, , respectively. One
can also describe W1 (A), W2 (A4), W' (A) in terms of the induced matrix Pp,(A).
Using this formulation, one easily sees that

U Wa(4) = WA(A) C Wi (4) C W (Pa(A)).
a€lm n

We conclude this section with some simple observations about the permanental ranges
that will be used in our subsequent discussion.

PROPOSITION 2.1. Let A € C"*". If a,3 € Ty n have the same sequence of
occupation numbers when the entries are arranged in descending order, then W2 (A) =
W£E(A). By the above observation, we need only consider those a € I'pnn with
occupation numbers k; > --- > kj,.

We shall always let ¢ = (1,...,1) € 'y, ,, in the future discussion.

PROPOSITION 2.2. Let A € C"*". Then WE (A) = {z™:2€ W(A)}.

PROPOSITION 2.3. The sets W2 (A), WL(A), Wi (A), etc. are invariant if
A e C™™ is replaced by U*AU for any unitary matriz U.

This proposition makes perfect physical sense because a change of orthonormal
bases should not affect the measurements on the system. In fact, the physical proper-
ties of any system are intrinsic to the system, which means that they are independent
from the orthonormal bases chosen for their description.

PROPOSITION 2.4. Let A € C™*™. If A is replaced by pA for some nonzero p,
then the sets W2 (A), Wt(A), W} (A) are changed by a factor of u™.

PROPOSITION 2.5. Suppose A = diag(A1,-.-,An) with Ay > --- > X, > 0. Then

Wi (A) C Wi (A) = W(Pn(4)) = A7, A"]-
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3. Permanental ranges of 2 x 2 matrices. In this section, we study the per-
manental range of 2 x 2 matrices. A common technique in the study of numerical
ranges is to reduce the dimension of the given operators to 2 x 2 matrices via compres-
sions; see [18] and [11, Ch. 1]. Thus, the results in this section do not only provide a
description of the permanental ranges for 2 x 2 matrices, but also have potential for
further development.

It is well known [11, Theorem 1.3.6] that the classical numerical range of A € C**?
is an elliptical disk with its eigenvalues: A\; and A2 as foci, and {tr(A*A) — |\1]? —
|A2|?}1/% as the length of minor axis. In the following, we show that W2 (A) is the
image of W (A) under a certain polynomial function.

THEOREM 3.1. Let o € I'y, o have occupation numbers ki > ky. Then

Wia(4) ={f(a) : a e W(A)},

fa) = kz (kl) ( 2 )at(h — @)@ = M) (A + g — @) 2R+

ko t ki —t

is a polynomial of degree ki + ko with leading coefficient (—1)*2 (’“,jl’”).

Proof. Let z; and x5 be a pair of orthonormal vectors in C?, and let X € C2X™
so that the first k; columns equal to z; and the last ks columns equal to x5. Then
per (X*AX)/(kilko!) € W2 (A), and every element in W2(A) can be constructed in
this way. Now X*AX is of the form

aJkl,kl ka1,k2
Csz,kl dJkg,kz ’

where Jp, 4 is the p X ¢ matrix with all entries equal to 1, and a = z7 Az, b = 2] Az,
¢ =z3Ax; and d = 23 Axs. A routine computation shows that

k1
per (X*AX) = kilks! (’“1> ( ks >at(bc)k1—tdk2—k1+t.
t ki —t
t=ki1—ko
Observe that d = trA —a =\ + Ay —a and
be = ad — det(A) = a(trA) — a® — det(A) = (A1 — a)(a — A2).

Thus, the set equality follows.
Note that the highest power of a in

at(,\l - a)h—t(a _ )\2)k1—t()\1 + g — a)kz—kl-i-t

is k1 + k2 and the coefficient is

o £ 0)-or(1)
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The assertion on f follows. O
By Proposition 2.1, there are basically only two types of a € I'y 5, namely, ¢ =
(1,2) and € = (1,1). When « =, the polynomial f(a) reduces to f(a) = 2a(trA —
a) — det A. Using this observation, one can prove the following.
COROLLARY 3.2. [15] Let m =2 and A € C%*2 have eigenvalues A1 and Ay. Set
b= {tr(A*A) — |\]? = |X2*}/2. Then W, (A) is the elliptical disk with foci at A\
and (A2 + 23)/2, and major azis of length |\1 — X\2|?/2 + b2. In particular, W}, (A) is
a line segment if and only if b = 0; in such case, W}, (A) is the line segment with end
points A\ A2 and (A2 + \3)/2.
The situation for W£,(A) is not so simple as shown in the following result.
PROPOSITION 3.3. Let ¢ = (1,1) and A € C**2,
(a) If trA = 0, then WS (A) is an elliptical disk; in particular, W(A) is a circular
disk if and only if WE, (A) is.
(b) The set WE (A) has no interior points if and only if one of the following holds.
(b.i) The matriz A is normal, but not a multiple of a Hermitian matriz, and W, (A)
is part of a parabola.
(b.ii) The matriz A is a multiple of a Hermitian matriz, and WE (A) lies on a half
line with the origin as the end point.
(c) The point (A1 + X2)?2/4 € W (A) NWE(A) C W,E(A), and thus W-(A) is con-
nected.
Proof. (a) If trA = 0, then W(A) is an elliptical disk centered at the origin, and
there exists ¢t € [0,27) such that

W(A) = e{r(acoss +ifsins): 0<r <1, s €[0,2m)}.
Then

WE (A)= e**{r?(a® cos® s — B?sin? s + 2iafBsinscoss) : 0 < r < 1, s € [0,27)}
=e?{(a? — f2)/2 + r[(a® + B%)/2cos2s + iafsin2s] : 0 < r < 1, s € [0,7]},

is an elliptical disk. Clearly, Wg (A) is a circular disk if and only if W(A) is.

(b) If (b.i) or (b.ii) holds, one easily checks that W, (A) has no interior. Now,
suppose WE, (A) has no interior. Then W (A) has no interior, i.e., § = 0. In such case
(see, e.g., [11, 19]), W(A) is a line segment and hence is a normal matrix. If A is not
a multiple of a Hermitian matrix, then there exists ¢ € [0,27) and s; < s2 such that

W(A) = e*{a +si: 5 € [s1, 0]}
Thus
WE(A) = e*{a? — 5% 4+ 2asi : s € [s1,50]},

which is part of a parabola as asserted. If A is a multiple of a Hermitian matrix, then
one readily verifies that W, (A) is a line segment lying on a half line with the origin
as the end point.

(c) Note that p = (A1 +X2)/2 € W(A). Thus u? € WE,(A). Also, p? is the center
of the elliptical disk W}, (A). The assertion follows. O
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By Corollary 3.2 and Proposition 3.3, we see that a variety of shapes is possible
for Wit(A) = Wi(A) U W5 (A). For Wi (A), we have more information. Note that
all vectors in the second symmetric space (Cé) over C? are decomposable. In fact, an

easy computation shows that any vector in C* can be written in the form

V2z129
Z1 T2\ _ 2
(x ) * (w ) = | 7174 + 7273 | € Cfy).
3 4 V2314

Consequently, we have the following result.

PROPOSITION 3.4. Suppose A € C**?. Then W3 (A) = W (P2(A)). In particular,
if A = diag(a,b), then W(Py(A)) = W5(A) is the triangular region with vertices
a?,ab,b?.

4. Special classes of matrices. In general, it is difficult to determine W (A)
for general A. Here we consider some special classes of matrices. First, we show that
the permanental ranges of rank one matrices admit a relatively simple description.

PROPOSITION 4.1. Suppose A € C™*™ has rank one and o € T, ,, has occupation
numbers ky > --- > k,. Then

n

(¢ m' kj = - 1/ *
Wm(A)= mnﬂg P, pn € C Zﬂj:trAa Z'MJ'S trA*A
J J=1

=1 =1

Proof. Suppose A = (ay,...,a,)!(by,...,b,). First, observe that there is a uni-
tary matrix U such that UAU* = (u1,...,un)"(v1,...,v,) if and only if 377, ujv; =
trA and (3°7_; Jui[*) (27—, [v4]?) = trA*A. Furthermore, for a unitary matrix U such

that UAU* = (u1,-..,un) (v1,-.-,vn), if X € C™™*™ is constructed from U by using
its columns with multiplicities according to «, and if D,, = u; & I, B -+ D up @ I,
and D, =v1 ® I, -+ P v, ® I, , then

n
per (X*AX) = per (DyJm,mDy) = m! H(ujvj)kf.
j=1
Hence, W% (A) consists of complex numbers of the form:
b= mjl;[l(ujvj) .

Now, if we set u; = ujv; for j =1,...,n, then p= % H?:1 ,ufj, where
(1) Sy g = trA, and (i) {27, |} < (S fusl?) (Sgm losl?) = trA=A.

Conversely, suppose p = % H?:1 ,uf", where 1, ..., pu, € C satisfy 2?21 wj = trA
and {37, ||} < trA*A. If p; = 0 for all j, then set u; = VtrA*A, v, = 1, and
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O=wu = -+ =up =v1 = -+ =vp_1- If k>0, k < nis the smallest integer
such that pr # 0, set u; = v; = ,u/ for j £k, up = tuk/2 and v = uk /t for a
suitable ¢ > 1 so that the equality in (ii) holds. If £ = n is the smallest integer such
that pp # 0, set up, = vy, =;ﬁ/2, Upol = """ = V] = Up_og = +++ = u1 =0, Up—1 =
/(trA*A — |1n[?) /| pn] s0 that the equality in (ii) holds. Then y = V(a) IT;- l(ujvj)k .
a

By Proposition 4.1, if A is a rank one nilpotent matrix, then W2 (A) is a circular
disk centered at the origin. In fact, we have the following more general result which
follows from [2, 3.2].

PROPOSITION 4.2. If A € C™*" is unitarily similar to a matriz in shift block
form, i.e., a matriz in block form (B;j)i<ij<k such that all the diagonal blocks are
square matrices and B;; = 0 if j # i +1, then all the permanental ranges are circular
disks centered at the origin.

It is easy to construct examples so that W (A) is a circular disk, but A is not in
shift block form. Thus, the converse of the Proposition 4.2 is not true if m = 1. For
m > 1, we have the following result showing that the converse of Proposition 4.2 is
not valid in general.

PROPOSITION 4.3. Let A € C"". Then W5 (4) = {z™ : 2z € W(A)} is a
circular disk centered at the origin if and only if W (A) is.

Proof. The (<) part is clear. To prove the converse, assume that W (A) is not
a circular disk. Then there cannot be more than n points in W(A) attaining the
numerical radius; see [5, Theorem 2.2]. Thus, there cannot be more than n points in
We (A) attaining the maximum modulus. Hence W, (A) cannot be a circular disk
centered at the origin. O

5. Special boundary points. In this section , we study special boundary points
of permanental ranges. Some of these have special physical interpretations. We begin
with the following result.

PROPOSITION 5.1. Suppose A € C™" and a € T, has occupation numbers
ki > -+ > ky. If A has eigenvalues A1, ..., \,, then

AN e e (A).

Proof. By a unitary similarity transform, we can put A in triangular form with
A1,...,An on the diagonal. Then use the standard vectors e, ..., e, to construct X
to get per (X*AX)/per (X*X) = A1 ... Men € W2 (A) as asserted. [0

Note that we can put the eigenvalues in any order we like. The elements in
W2 (A) of the form A¥* ... \f» will be called A-points.

THEOREM 5.2. Suppose A is in upper triangular form with diagonal entries
Aty An. Let o € Ty, have occupation numbers ky > --- 2> kg > 0=k =--- =
kn. If Hj-zl /\fj is nonzero and lies on the boundary of WS (A), then A = A; @ A
with Ay = diag(A1,..., At). Furthermore, if Ay is non-trivial, i.e., t < n, then A; is
not in the interior of W(Az) for any j=1,...,t

Proof. Suppose A = (a,i) is in upper triangular form as asserted. We show that
a;; =0if {i,j}N{1,...,t} # 0; otherwise, H§'=1 /\?j will fail to be a boundary point.
Note that the proof has to be done in a certain order of ¢ and j.
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Suppose 1 < i < j < n. Denote by BJ[i, j] be the submatrix of B € C"*" lying in
the rows and columns indexed by ¢ and j.

We first show that A = 4; ® A, with A; € C*? if t < n. We start with row ¢ of
A. Suppose t < j < n and ay; # 0, then A is an interior point of the elliptical disk
W (A[t, j]). For any u € W(A[t, j]), there exists a 2 x 2 unitary matrix U so that the
(1,1) entry of U*A[t, j]U equals u. Let U be obtained from I,, by replacing I,[t, 5]
with U. Then the leading t x ¢ principal submatrix of U*AU is in upper triangular
form with diagonal entries A1, ..., A;—1 and . Construct X using the first k¥ columns
of U with multiplicities according to a. Then

per (X*AX)/per (X*X) HA’“J e Wa(A).

Hence, H§:1 )\?" is an interior point of
t—1
[1A7uh e WAl ) p € Wi(A),

Jj=1

which is a contradiction. Thus, we see that a¢,; = 0 for j > ¢.

Next, we consider row ¢t — 1 of A. Suppose t < j < n and a;—1,; #0. Then A\
is an interior point of the elliptical disk W (A[t — 1, j]). For any p € W(A[t — 1, j]),
there exists a 2 x 2 unitary matrix U so that the (1, 1) entry of U*A[t — 1, j]U equals
p. Let U be obtained from I,, by replacing I,[t — 1,5] with U. By the fact that
arj = 0 for j > t, we see that the leading ¢ x ¢ principal submatrix of U*AU is in
upper triangular form with diagonal entries Ay, ..., A;_2, p and A¢. Using arguments
similar to those in the preceding paragraph, we conclude that H;:1 2% ig an interior
point of W% (A), which is a contradiction. Thus, we see that a;1,; = 0 for j > ¢.

One can repeat the above arguments to show that for each of the rows i =
t—2,...,1, wehave a;; =0if j > t. Hence A = A; @ A,.

Next, we show that A, is in diagonal form. Again, we have to argue a;; = 0 for
1 <i< j<tin aspecial order of 7 and j.

First, suppose there exists ¢ with 1 <4 < ¢ such that a; ;41 # 0. Then A; is an
interior point of W (A[i,i+1]). For any p € W (A[i, i+ 1]), there exists a 2 x 2 unitary
matrix U so that the (1,1) entry of U*A[i,i + 1)U equals . Let U be obtained from
I, by replacing I,[i,i + 1] with U. Then the leading ¢ x ¢ principal submatrix of
U*AU is almost in upper triangular form except that the (i + 1,4) position may be
nonzero. Construct X using the first ¢ columns of U with multiplicities according to
a. Then

per (X*AX) /per (X*X) H )\ ' f(p) € W2(A),
J#i,i+1

where f(u) is defined as in Theorem 3.1 with respect to the 2 x 2 matrix A[i,i + 1]
and occupation numbers k; and k;11. By the Open Mapping Theorem [6, p. 99],
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we conclude that f(\;) = AF Afﬁl is an interior point of f(W(A[i,i + 1])). Hence

H§':1 )\?j is an interior point of
IT A5 rov(Alii+ 1) € Wa(a),
J#4i+1
which is a contradiction.

Now, using the fact that a;;+1 = 0 for all 1 <4 < ¢, one can show that a;i+2 =0
for all 1 <4 < t—1 by arguments similar to the previous case. Repeating this process,
we conclude that A, is in diagonal form.

Finally, suppose t < n and A, is an interior point of W (A45) for some 1 < r < t.
Then one easily checks that H;:1 /\fj is an interior point of

[T A5 ke e Wiag) 3 c Wa(4),
JET
which is a contradiction. Thus the last assertion of the theorem follows. O

COROLLARY 5.3. Let a € I'y, 5, have occupation numbers ky > -+ > ke > 0 =
kiy1 =--- = ky. Suppose

0 ift>n—1,
g(n,a) = { (n=2)!1/(n—2—-1¢)! otherwise.

If A € C™*™ and there are more than g(n,a) nonzero A-points on the boundary of
W2(A), then A is normal.

Proof. First, let A be in triangular form with diagonal entries A1, ..., A, so that
Hj-:l )\fj is nonzero and lying on the boundary. Then A = diag(\1,...,\;) ® As. If
t > n—1, then A is normal. If not, any (n — 2) x (n — 2) leading principal submatrix
of A can accommodate at most (n — 2)!/(n — 2 —t)! so many nonzero A-points. Thus,
the result follows. O

Recall that a boundary point z of a subset K of C is called a corner if there exists
a sufficiently small € > 0 such that the intersection of K and the circular disk

D={veC:lv—2z|<e}

is contained in a sector of D of degree less than 7.

In physics, corners correspond to particularly important states. For example, the
vacuum state produces a corner in the numerical range (classical or decomposable)
of the energy operator. For the classical numerical range, corners of W (A) must be
reducing eigenvalues of A; see [11]. This result has been extended to other types of
generalized numerical ranges; see [2, 3]. Based on these results, one may guess that
corners of W (A) are A-points. However, it is not true for W% (A) except when o = ¢
as shown in the following result.

PROPOSITION 5.4. Let v € W(A). If v™ is a corner of WE (A), then v is a
corner of W(A) and hence a reducing eigenvalue of A. If o # ¢, then for A =
diag(1,0,...,0), the set WS (A) has a corner which is not a A-point.
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Proof. If z is not a corner of W(A), then there is a smooth curve C' in W(A)
passing through z. Thus ¢ = {u™ : u € C} is a smooth curve in W, (A) passing
through z™. Thus 2™ is not a corner of W5, (A). Consequently, if 2™ is a corner of
We (A), then z is a corner of W(A), and hence Az = Az for some reducing eigenvalue
of A and the first assertion follows.

For the second assertion, note that W (A) is a nondegenerate line segment by
Theorems 6.1 and 6.2 in Section 6, but 0 is the only A-point of W% (A). Thus one of
the end points of the line segment is a corner, which is not a A-point. O

Note that even if v is a corner point of W (A), it does not follow automatically that
v™ is a corner point of WE (A) except for some degenerate cases such as m =n = 2.
For example, if n > 3, A = diag(e’™/3,e~"/3) @ 0,,_5. Then 0 is a corner of W (A),
but 0 is not a corner of W£,(A). In fact, 0 is not even a boundary point if m > 2.

6. Matrices with degenerate permanental ranges. Hu and Tam [14] have
studied those matrices with W} (A) included in a straight line. In the following,
we show that similar results hold for W3 (A). We will first state the results with a
corollary and some remarks, and then present the intricate proofs.

THEOREM 6.1. Let A € C™" and a € Ty . Then W2(A) = {u} if and only if
A = M such that A™ = p.

THEOREM 6.2. Let A € C™*", and o € T, , be such that a # 1. The following
conditions are equivalent.

(a) The set W2 (A) is a line segment.

(b) The set W% (A) is a line segment lying on o straight line passing through the
oTigin.

(c) e A is a Hermitian matriz for some t € [0,27).

Several remarks are in order in connection with Theorems 6.1 and 6.2. First,
Theorem 6.2 is also true for a@ = ¢ except when n = m = 2 as shown in [15]. Second,
one can deduce the corresponding theorems for W} (A) and WL (A). Third, we can
deduce the following corollary from Theorem 6.2.

COROLLARY 6.3. Let A € C™"*". Suppose a € Ty, ,, where v # a, has occupation
numbers ki > --- > ky, so that at least one of them is odd. Then W(A) C (0,00)
(respectively, [0,00) ) if and only if pA is positive (semi-)definite for some complex
number p such that p™ = 1.

Proof. We prove the positive definite case. The positive semi-definite case follows
from a continuity argument.

The (<) part is clear. For the converse, we prove the result by induction on
n > 2. First of all, by Theorem 6.2 there exists some p € C with |u| = 1 such that
A is Hermitian with eigenvalues A\; > --- > \,. Since all the A-points are positive,
we see that A\; # 0 for all j.

Suppose A; > 0. Otherwise, replace p by —u. If n = 2, the result follows readily
from Theorem 3.1. Now consider n > 2, and assume that the result is true for
matrices of sizes smaller than n. Consider the occupation numbers k; > --- > k,, of
a. If k; =0, then ki =m is odd. We have p~™A7" is positive for all j, and the result
follows.

Suppose k> > 0 and k; is odd. Since a # ¢, we see that k; > 1. As n > 3, we can
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construct & from a be removing k. with r # ¢ and r # 1. Then & # ¢+ and k; is one
of the occupation numbers of @. Let 7 = m — k, and let A; be the diagonal matrix
obtained from pA by deleting the jth row and column. Then

{u N2 2 € WE(A))} € Wi (4) € (0,00).

By the induction assumption and the fact that A\; > 0, we see that A, and A; are
positive definite matrices. It is then easy to check that u™ = 1. The result follows. O

We remark that our proof of Corollary 6.3 can handle the case a = ¢ if n > 3. In
such case, the induction has to start from n = 3.

The rest of this section is devoted to proving Theorems 6.1 and 6.2. We divide
the proofs into several lemmas.

LEMMA 6.4. Suppose f(z) is a non-constant function analytical on the entire
plane. Then for any b > 0, the set S = {f(be®) : t € [0,27)} cannot be a subset of a
line segment in C.

Proof. By contradiction. The derivative of f(e®) is equal to i f'(z)z, where z = €.
Derivation is in the sense of complex derivation. If the image of the circle belongs to
some line, hence f'(z)z = Zr(z), where Z is some constant nonzero complex number
and r(2) is real. Thus, by the Cauchy-Riemann equations, f'(z)z is constant on the
entire plane. Since f and f’ are analytical on the entire plane, we have only the
possibility f'(z) = 0 everywhere, which contradicts the hypothesis. Thus, the set S
cannot have points with constant slope, and hence cannot lie on a straight line. O

The next lemma generalizes the result in [14, Lemma 4].

LEMMA 6.5. Suppose A € C"*" and a € Ty . If W2(A) is a subset of a line
segment, then A is normal.

Proof. We prove the lemma by induction on n > 2. If n = 2, by Theorem 3.1,
We(A) = f(W(A)) for a degree m polynomial. Now, W% (A) C C has empty interior,
and so must W(A). It follows that W (A) is a subset of a line segment, and hence A
is normal.

Now, suppose n > 2, and the lemma, is true for matrices of sizes less than n. Let
A e C™"™ with W2 (A) contained in a line segment.

By a suitable unitary similarity transform, we may assume that A is in upper
triangular form with diagonal entries A1,..., A, so that |A1| > --- > |A,].

If the occupation number k;,, of a is zero, then one may assume that a € I'y; 1
and consider W2 (A;), where A; is obtained from A by deleting the jth row and jth
column. Clearly, we have

Wi (4;) € Wi (4),

and hence W2 (A;) is contained in a line segment for j = 1,...,n. By the induction
assumption, A; is normal, and hence is a diagonal matrix for all j. Thus A is a
diagonal matrix.

Now suppose k, > 0. We continue to use the convention that A; is obtained from
A by deleting the jth row and column. Let m = m — k; and let & € I'y;, ,—1 have
occupation numbers ks > --- > k,. Then

Wi ={\j'z:2 € Wa(4;)} C Wi (4)
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for all j. If A\; # 0, one can conclude that W2 (A4;) is contained in a line segment,
and hence A; is normal by the induction assumption. We consider several situations.
First, if A3 # 0, then A;, A; and A3 are all normal. It follows that A is normal.
Second, if |Az] > 0 = A3, then A; and A, are normal matrices and hence A =

()(\)1 /\b ) ® 0,—2. We may replace A by A/\; and assume that Ay = 1. Then
2

W2 (A) is the collection of points of the form
p=v(a) tper (X*(ere} + Aaezel + bejel) X)

for some X € C™™™ generated from a unitary matrix U using its columns with
multiplicities according to . Let U be a unitary matrix such that the first row of U
is (1,...,1)/4/n and the second row of U is (v1,...,v,) so that v; # 0 for all j. Then
1 can be written in the form

Y Y f5(v)
7=0

for some polynomial f;(v) on the real parts and imaginary parts of the entries of v
for j =0,...,m. In particular,

fm(U):per( mmD /\/—) m' Hﬁ

where D, = 11y, @ -+ ® 0,1y, . For each t € [0,27) if we replace v by e~ v, the
value p will change to

m

IZ ztb

Jj=0

By Lemma 6.4, these points in W% (A) cannot all lie in a line segment, unless b = 0,
i.e., A is normal.

Third, if |A\| > 0 = Az, then Ay is normal. Thus A is rank one and A =
Aeiel + bejel by a suitable unitary similarity transform. It is normal if and only if
b=0. Suppose b # 0. Let u = (1,...,1)t/y/n and v = (v1,...,v,)t be a unit vector
in {u}* such that v; # 0 for all j. Then there exists a unitary U such that UAU* =
Muu* + buv*. Construct X € C™™™ from U using its columns with multiplicities
according to a. Then pu = per (X*AX)/per (X*X) = v(a)~" 372, ¥ f;(v), for some
polynomial f;(v) on the real parts and imaginary parts of the entries of v for j =
0,...,m. In particular,

17
1

fm(v) :per( mmD /\/—) m‘

J

n
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where D, = v11y, @ --- ® 0,1y, . For each t € [0,27) if we replace v by e~ v, the
value per (X*AX)/per (X*X) will change to

lm ztbjf

By Lemma 6.4, these points cannot lie on a line in C. Thus W2 (A) is not a subset
of a line segment, which is a contradiction. So, A must be normal.
Finally, suppose A; = 0 for all j. Assume that A is not normal, then we may
assume (see [19]) that A is in upper triangular form with the (1,2) entry equal to
B C
b#0. Let A= 0 D
We can decompose a into 1 € I'j,, 2 and B2 € 'y, n—2 so that $; has occupation
numbers k; > ko and B has occupation numbers k3 > --- > k,. Then

so that B is 2 x 2. If D is not normal, then D # 0,_2.

W ={z122: 21 € WE' (B), 22 € W (D)}

is a subset of W2 (A). By the induction assumption, none of W/ (B) or W/2 (D) is
contained in a line segment, and neither is W, which is a contradiction. Thus, we see
that D must be zero. If n > 4, one can find a unitary matrix V € C(n=2)x(n=2) gych
that CV only has nonzero entries in the (1,1), (2,1) and (2, 2) entries. Replacing A
by (I ® V*)A(I» @ V), we may assume that

A = bere; + cere; + diese; + daesey.

If n = 3, we can use the same representation with da = 0. Let {u;,uz2,uz} be an
orthonormal set in C" so that u; = (1,...,1)t/y/n and (bud + cu})/+\/|b]2 +|c|? =

(v1,...,vy,) is a unit vector with nonzero entries. Then there exists a unitary matrix
U so that

U*AU = bujuj + cugui + diugul + dauguy,

where u} is the fourth row of U if n > 4 and the term dsusu} does not exist if n = 3.
Let X € C™™™ be generated from U according to a. Then W2 (A) contains the point

pu=per (X*AX)/per (X*X)
= v(a) tper (X*(e1 (bes + ce}) + diezel + daese})X)

m

=v(a) 1 Y (B° + e £,

=0

for some polynomial expression f;(U) involving the real parts and imaginary parts of
the entries of U. In particular, we have

fm(U):per( mmD /\/_) H f 750.

Jj=1



ELA

86 N. Bebiano, C.K. Li and J. da Providéncia

If we replace u; by e uq, then pu will change to

m

=D (€ (P + [c)! /%) £;U).

Jj=0

By Lemma 6.4, these points in W% (A) cannot all lie in a line segment, which is a
contradiction. Hence, A must be normal. 0

REMARK 6.6. Note that if A; # 0 for all j, then Lemma 6.5 follows easily from
Corollary 5.3. If A is singular, then the situation is complicated. One cannot just
prove the result for invertible matrices and deduce the result by continuity because of
the following reason: if A is singular such that W3 (A) is a subset of a line segment,
it is unclear how to construct a sequence of invertible matrices {4;} to approach A
so that each W% (A;) is a subset of a line segment.

We finish the proof of Theorem 6.1 and 6.2 by the following lemma.

LEMMA 6.7. Suppose A = diag(Ai,...,A\n) and o € Ty . If WS(A) = {p},
then A = X with X™ = pu. If a # ¢ and if W2 (A) is a subset of a line segment, then
all \; lie in a line passing through the origin.

Proof. The result can be proved by induction on n > 2. When n = 2, the result
follows from Theorem 3.1. If k, = 0, the induction is easy. If k, # 0, one can show
that any two eigenvalues of A lie on a line passing through the origin. For example,
to prove this for A\; and A2, we consider U so that the jth column of U is e; for j > 3.
We get a subset of W% (A) lying on a line and from Theorem 3.1 we can conclude
that A\; and As lie on a line passing through the origin. O

7. Linear preservers. In [23] and [24], it was shown that a linear operator L
on C™*" satisfies W (L(A)) = W (A) for all A € C™*" if and only if there exist an
mth root of unity p and a unitary matrix U such that L is of the form A — pUAU*
or A — pUA'U*. The same result is true for W), (A) except when m = n = 2 (see
[15]); in the special case, there are additional linear preservers for W}, (A) (see [8],
and note that the statement in [15] is not accurate). The purpose of this section is to
show that the same result holds for W, (A) for all other a.

THEOREM 7.1. Let a € T'y, , be such that a # 1. A linear operator L on C™*"
satisfies W2 (L(A)) = W2(A) for all A € C™™" if and only if there exist an mth
root of unity p and o unitary matriz U such that L is of the form A — pUAU* or
A pUAtU*.

Proof. The (<) part is clear. We prove the converse in the following. First of
all, if L(A) = 0, then {0} = W2(L(A)) = W2 (A). By Theorem 6.1, A =0. Thus L
is invertible.

Next, note that {1} = W2 (I) = W2 (L(I)). By Theorem 6.1, we see that L(I) =
pl for some p with p™ = 1.

Replace L by p1L. Then the modified operator L preserves I and W2 (A). We
shall show that this modified operator L will map the set of positive definite matrices
onto itself. Thus, the modified operator L will map the set of positive definite matrices
onto itself. To this end, let A be positive definite. Then W2 (L(4)) = W2(A) C
(0,0) by Proposition 2.5. By Theorem 6.2, et L(A) is Hermitian for some ¢ € [0, 27).
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If et # +1, then I + L(A) is not Hermitian. However, W2 (I + A) = W2(L(I+ A)) =
W (I+L(A)) is areal line segment, which is impossible. So, L(A) must be Hermitian.
Suppose L(A) is not positive definite. Then there exists r > 0 so that rI + L(A) is
singular. By Proposition 5.1, we have 0 € W2 (rl + L(A)) = WE(L(rI + A)) =
We(rl + A). However, rI + A is positive definite, and hence W2 (rI + A) C (0, 00)
by Proposition 2.5. Thus, L(A) must be positive definite.

Notice that L~! also preserves I and W2(A). Thus L' also maps the set of
positive definite matrices into itself. Consequently, L maps the set of positive definite
matrices onto itself.

Now, by a result of Schneider [22], there exists an invertible matrix U such that
the modified operator L is of the form A — UAU* or A — UA'U*. Since L(I) = I,
we see that UU* = 1.

Consequently, the original operator L is of the asserted form. O

As mentioned in Section 2, unitary similarity transforms that correspond to a
change of the reference frames of the state spaces will not change the permanental
ranges W2 (A), WE(A), W} (A). By Theorem 6.1, we see that these are basically
the only transforms that will preserve the permanental ranges - the ranges of possible
average values.

The following physical interpretation for A* occurs. Physically relevant operators
are Hermitian and so A® = A. The transformation A — A is associated with time
reflexion. Invariance under time reflexion implies A* = A = A.

8. Derivations of Permanental Compounds. In physics, the concept of
derivation is more relevant than the concept of induced operator, although the study
of the trace of a particular (positive definite) induced operator may be recognized in
the statistical mechanics of independent Bose (or Fermi) systems [4, 21].

In the context of induced operators, the kth derivation P (A) of A € CV"
acting on Cf, ) is determined by the formula

(I + tA) = Z t* PR (4

and the decomposable numerical range of the kth derivation is defined by
o (A) ={(P, (5) (A)z*,2*) : 2* € C{n) is decomposable, (z*,z*) = 1}.

Similarly, one can define WT# 1 (A) and W2  (A). When k = m, these sets reduce to

W (A), Wt(A) and W2 (A), respectively. These sets are related to an m—particle
Boson system in which any k particles interact according to A, and we have

U

a€lm x

Some physical interpretations are presented in the following. Suppose there are
m particles (obeying Bose-Einstein statistics) in the system with (normalized) state
vectors &1, . .., %, such that {z1,...,z,} is an orthonormal set. Assume there are m;
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particles in the state z;, for j = 1,...,n, where m; +--- 4+ m, = m. Then their joint
state is represented by o = To(1)** * *¥To(m), Where a € I'y, , has occupation numbers
mai,...,My. In physics, first derivations are particularly relevant. For instance, the
energy of a collection of photons is the sum of the energies of individual photons, not
the product. Observable quantities of an additive nature, such as the kinetic energy,
linear momentum or angular momentum, frequently occur. If A € C™*" represents
such a quantity for a one-particle system, then the corresponding quantity for an
m-particle system is represented by P,Szl ) (A). The average value of measurements of
such a quantity in the state zo = 24, * --- * Z,,,, Where a € I'y;, ;, has occupation
numbers myq, ..., My, is computed by

(Pr(nl)(A)JUa;ﬂfa) Zm:(ﬂ?al*---*A;L'ai*-"*flfam,xa)

(Ta,Ta) =1 (Ta,Ta)
(1) = i(Amanxai) = imz(szaxz)

Recall that for ¢ = (c1,...,c,) € R", the c-numerical range of A is defined by
n
W.(A) = ch (Azj,x;) : {x1,...,2,} is an orthonormal basis
j=1

Thus the collection of all possible average values of measurements of Py (A) for the
system characterized by the occupation numbers my, - - - , m,, is the c-numerical range
of A with ¢ = (mq,...,my).

The energy operator of a system of independent Bosons, being the sum of the
energy operator of each Boson, is the first derivation of a single Boson energy operator.
An important physical effect characteristic of Bose Systems is the well known Einstein
condensation, see [4, 21] for some interesting treatments of the standard quantum
formalisms. In terms of the matrix model, this fact is equivalent to the inclusion

m(A) € W5, 1(A). This, and Proposition 2.5, suggests that the following inclusion
occurs, at least for A positive semi-definite,

2) i (A) € W 1 (A).

m,k
Whether (2) holds for a general A is an open problem. Nonetheless, we have the
following result confirming the set equality in (2) when k& = 1.
ProrosITION 8.1. Let A € C"*". We have
1 (A) = W5 1 (4) = mW(A).

m,1 m,l

Proof. The equality mW (A) = WE ,(A) follows readily from (1). Also, the

m,1
inclusion mW (A) C Wy, 1(A) is clear. We consider the reverse inclusion. Let

(1) * ok
® s(at) = ) e ),
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where the decomposable tensor £* = x; *- - - * £, need not have unit length. Consider
the n x n complex matrix C' = [cyy ]

1 .
Cuv = peﬁ izj(Evuwjawi)PerZ(la]);

where Z = [(z;,2;)] € C™*™ and Z(i,j) denotes the submatrix obtained from Z
deleting the ith row and the jth column. Since C depends on z*, the notation C(z*)
will occasionally be used for clarity. It is straightforward to prove that trC = m. We
observe that the matrices C(z*) and C(z.) are positive semidefinite. The argument
is based on the following fact: If tr(AC) > 0 for any positive semidefinite A, then C
is positive semidefinite.

Since

(P (A)a*,z*) = Z(ij,:vi)(per (Z(i,5))),

and

Z Qv Z(ENV'Tja mi)(per (Z(l,J))) = tI‘(AC),
pv ij
from (3) we conclude that z(z*) = tr(AC). Analogously, we have that Wy, ;(A) =
WC(zE) (A) .
Recall that mW(A) = Wy, ;(A). The n-tuple of the eigenvalues of C(z*) is ma-
jorized by the n-tuple of the eigenvalues of C(z.) which is equal to (m,0,---,0). Now,
by a result in [7]

2(z*) € We(e,)(A) = mW (A).

The proof is complete. O

We close with a description of the physical interpretation of the decomposable
numerical range of W,ﬂ;,k(A). Quantities of an interactive nature, such as a 2-body,
3-body or many-body interactions (or many-body operators), also occur in physics.
A E-particle interaction is only effective in an m-particle system if m > k and, in
some simple circumstances, may be described as a derivation i (A). (Under more
complex circumstances it may be necessary to consider different operators Ay, ..., 4;
acting simultaneously on different particles, or linear combinations of derivations.)
Denote by M(mj,---,m!;m,---,my) the matrix which is obtained from M by re-
peating row j, m;- times for j = 1,...,n. The average value of measurements of

P,(,f) (A) in the state 4 = Zq, * -+ - * Z,,,, Where a € [y, , has occupation numbers
mi,..., My, is then computed by

(P (A)z o, 24) _ Z (y1 % - % Ayy1) * - % Alu(q) ** * Yp> Tar)

(T, Ta) WEQu.m (T, Ta)

n
m; 1
= > T () sooes (Aot ),

(m, - sm? ) E€Q(ma -+ ;mn ) =1 i
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where (Y1,-.-,Ym) = (Tay,---»Ta,. ), Qk,m denotes the set of increasing sequences of
k integers between 1 and m and Q(maq,---,my) is the set of sequences (mj,---,m})

such that mf < mj for j = 1,...,n, such that m} + --- +mj, = k. Thus W . (4)
can be regarded as the collection of all possible average values of measurements of
PP (A) in the state z, of such a system and is very useful in the study of it.
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