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STRUCTURE OF NILPOTENT MATRICES OVER FIELDS∗

NATALIE CAMPBELL† , KEVIN N. VANDER MEULEN† , AND ADAM VAN TUYL‡

Abstract. A zero-nonzero pattern A is said to be potentially nilpotent over a field F if there ex-

ists a nilpotent matrix with entries in F having zero-nonzero pattern A. We explore the construction

of potentially nilpotent patterns over a field. We present classes of patterns which are potentially

nilpotent over a field F if and only if the field F contains certain roots of unity. We then introduce

some sparse patterns of order n ≥ 4 which are spectrally arbitrary over C but not over R. We also

identify all irreducible patterns of order four which are potentially nilpotent over R or C.

Key words. Nonzero pattern, Spectrum, Potentially nilpotent, Spectrally arbitrary, Nilpotent-

Jacobian method.
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1. Introduction. In this paper, we explore properties of the combinatorial

structure of nilpotent matrices over various fields. In particular, we consider pos-

sible patterns of nonzero entries in nilpotent matrices. A (zero-nonzero) pattern A

is a square matrix whose entries come from the set {∗, 0} where ∗ denotes a nonzero

entry. Fix a field F. We then set

Q(A,F) = {A ∈ Mn(F) | ai,j 6= 0 ⇔ Ai,j = ∗ for all i, j}.

The set Q(A,F) is often denoted Q(A) when F is known. An element A ∈ Q(A,F) is

called a matrix realization of A. A pattern A is potentially nilpotent (PN) over F if

there exists A ∈ Q(A,F) such that A is nilpotent, i.e., Ak = 0 for some integer k ≥ 1.

Identifying potentially nilpotent patterns is partially motivated by the study of

spectrally arbitrary patterns (see for example [1, 3, 11, 13]). An n × n pattern A is

said to be a spectrally arbitrary pattern over F if for every degree n monic polynomial

q(x) with coefficients in F, there is a realization of A whose characteristic polynomial

equals q(x). The Nilpotent-Jacobian Method (see [2]), one of the main techniques for

determining whether a pattern A is spectrally arbitrary over R or C, relies on finding a

nilpotent realization ofA. The need for constructions of potentially nilpotent patterns
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was also identified in [7]. The paper [3] summarizes much of the current knowledge

about potentially nilpotent patterns over R, while the more recent paper [1] introduces

some new constructions for patterns associated with trees.

Much of the research on spectrally arbitrary patterns and potentially nilpotent

patterns has focused upon the situation that F = R. However, over the last couple

of years, this hypothesis has been relaxed, and as a consequence, we have seen that

questions about patterns are dependent on the properties of F. The papers [10, 12,

14, 16] give examples of this approach. Our goal is to explore how the structure

of a potentially nilpotent pattern over a field F relates to properties of the F, and

provide further examples of patterns that are potentially nilpotent over various fields,

including R and C.

We have structured our paper as follows. After we review necessary conditions

for nilpotence in Section 2, in Section 3 we describe some new constructions of poten-

tially nilpotent patterns. In Section 4 we identify some patterns which are potentially

nilpotent over a field F precisely when F contains certain roots of unity. In Section 5,

we show that some of the sparse patterns, including some patterns described in Sec-

tion 4, are spectrally arbitrary over C but not R, making use of work developed in

Section 4. In our last section, we identify all the irreducible patterns of order four

that are potentially nilpotent over R and C. The results of this section can be seen

as an extension of the work of Corpuz and McDonald [4], who identified some of

the potentially nilpotent irreducible patterns of order four over R (namely those that

are spectrally arbitrary) and Yielding [16], who considered the same problem over C.

Nilpotent patterns of order 3 are characterized over R by Eschenbach and Li [8] and

over other fields by Vander Meulen and Van Tuyl [14]. The observations of Section 6

are the result of an exhaustive computer search. The output of our search is included

in the appendix which contains a nilpotent realization for all irreducible patterns of

order four over R or C.

2. Necessary conditions. The property of being potentially nilpotent is in-

variant under transposition and permutation similarity. Two patterns are equivalent

if one can be obtained from the other via transposition and/or permutation similar-

ity. If a pattern A is reducible, that is, if A is equivalent to a block upper triangular

matrix B, then A is potentially nilpotent if and only if each of the diagonal blocks of

B are potentially nilpotent. Thus, we focus our attention on irreducible patterns.

One way to analyze the combinatorial structure of a pattern is to associate a

digraph with the pattern. In particular, the digraph D(A) of an n × n pattern A is

defined to be a digraph on the vertex set V = {1, . . . , n}, whose edge set consists of
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the arcs (i, j) whenever (A)i,j 6= 0. For example, the digraph of the pattern









0 0 0 ∗

∗ 0 ∗ 0

0 0 0 ∗

0 ∗ 0 0









is the digraph in Figure 3.1. A cycle in a pattern A (or in a matrix A ∈ Q(A))

corresponds to a cycle in the digraph D(A). For k ≥ 1, we say a (simple) k-cycle of A

is a nonzero product ai1,i2ai2,i3 · · ·aik−1,ikaik,i1 with k distinct indices {i1, i2, . . . , ik}.

We call a 1-cycle a loop. A composite k-cycle is a product of disjoint (simple) cycles

of A using nonzero entries from exactly k rows (and corresponding columns) of A. A

walk from i1 to ik is a nonzero product ai1,i2ai2,i3 · · · aik−1,ik where the indices are not

necessarily distinct. A walk with distinct indices is called a path and is often denoted

i1 → i2 → · · · → ik.

The sign of a simple k-cycle is (−1)k−1. The sign of a composite cycle is the

product of the signs of its simple cycles. The next observation has been useful in

analyzing the implications of the combinatorial structure of a matrix A. The charac-

teristic polynomial of A is of the form

pA(x) = xn − E1x
n−1 + E2x

n−2 − · · ·+ (−1)nEn(2.1)

where Ek is the sum of all signed k-cycles (simple and composite). When A is nilpo-

tent, then pA(x) = xn, a fact that will exploited throughout this paper.

We end this section by highlighting two necessary conditions for a pattern to be

potentially nilpotent, as originally observed in [8]:

Lemma 2.1. Suppose A is potentially nilpotent. Then

1. whenever D(A) has one k-cycle of length k, then it must have more than one

k-cycle,

2. D(A) cannot have a pair of vertices {i, j} such that there is exactly one walk

from i to j of length n.

We refer to Lemma 2.1.1 as the cycle condition and Lemma 2.1.2 as the walk

condition.

Example 2.2. Let D(B) be the graph

Then B satisfies the cycle condition, but not the walk condition. Hence, B is not

potentially nilpotent. In particular, D(B) has exactly one walk of length 4 from
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vertex 1 to vertex 4 (label the vertices clockwise, starting from the top left vertex).

It follows that if A ∈ Q(B), then the entry in position (1, 4) of A4 is nonzero.

3. Constructions. In this section, we introduce a construction for building po-

tentially nilpotent patterns, thereby adding to the list of known constructions. We

also introduce a way to add nonzero entries to a potentially nilpotent pattern that

preserves the property of being potentially nilpotent over select fields.

Examples of constructions over R can be found in Eschenbach and Li [8]. They

note that if A or B is potentially nilpotent, then A⊗B is potentially nilpotent, where

⊗ is the tensor product. Likewise, they note that potential nilpotence is closed under

direct sums. Other constructions are explored in various papers (see for example [9,

11]), as well as the many papers which give constructions of spectrally arbitrary

patterns. Eschenbach and Li [8] also consider the class of digraphs called Cr-cockades.

One property of a Cr-cockade is that every simple cycle in the digraph is an r-cycle.

Figure 3.1 is an example of a C3-cockade. Eschenbach and Li prove that if D(A) is

an order n Cr-cockade with n < 2r, then A is potentially nilpotent over R if and only

if A satisfies the cycle condition.

Fig. 3.1. A potentially nilpotent C3-cockade.

A graph with at least one cycle is said to have a center vertex v if every simple

cycle in the the graph includes the vertex v. The C3-cockade in Figure 3.1 has two

center vertices.

Example 3.1. Figure 3.2 illustrates a construction of a digraph with a center

vertex, having m ≥ 2 (in the figure m = 4) cycles of length a+ b+ c and m cycles of

length b + c + d, with a, b, c and d nonzero. Such a digraph represents a potentially

nilpotent pattern over R. For example, one can obtain a nilpotent realization by

assigning each arc the value 1 except for two arcs: one of the outside arcs correspond-

ing to the ma arcs should be assigned value −(m − 1) and one of the outside arcs

corresponding to the md arcs should be assigned value −(m− 1).

We describe a way to build potentially nilpotent patterns using patterns with a

center vertex. We first introduce a definition. Given two graphs (or digraphs), say G

and H , having one commonly labelled vertex vm (e.g. V (G) = {v1, v2, . . . , vm} and

V (H) = {vm, vm+1, . . . , vn}) we say the merge of G and H at vm is the graph G∪H

having vertex set V = {v1, v2, . . . , vn} and edgeset (or arcset) E(G) ∪ E(H). We use

the notation A[i] to denote the submatrix of A obtained by deleting row i and column
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a
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d

d

d

d
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c

c

b

b

b

b

Fig. 3.2. A graph with a center vertex and cycles of length a+ b+ c and b+ c+ d.

i of A.

Theorem 3.2. Let F be any field. Suppose A and B are potentially nilpotent

patterns over F such that D(A) has a center vertex v. Label any vertex of D(B) as v.

Then the pattern obtained by merging D(A) with D(B) at v is potentially nilpotent

over F.

Proof. Let A ∈ Q(A) and B ∈ Q(B) be nilpotent matrices of order n and m,

respectively. Note that a potentially nilpotent pattern with a center vertex will have

no nonzero diagonal entries. If it did, it would have exactly one diagonal entry (at the

center vertex), in which case the trace of the pattern would be nonzero. Assume that

the nth row and column of A corresponds to a center vertex. By (2.1), pA[n] = xn−1.

The merge of A and B will result in the matrix M of the form

M =





A[n] v 0

uT b yT

0 w B[1]





for some v,u ∈ Fn−1 y,w ∈ Fm−1, and b ∈ F. Observe that

pM (x) =

∣

∣

∣

∣

∣

∣

xI −A[n] −v 0

−uT x− b −yT

0 −w xI −B[1]

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

xI −A[n] −v 0

−uT x 0T

0 −w xI −B[1]

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

xI −A[n] −v 0

0T x− b −yT

0 −w xI −B[1]

∣

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

∣

xI − A[n] −v 0

0T x 0T

0 −w xI −B[1]

∣

∣

∣

∣

∣

∣

= pA(x)pB[1](x) + pA[n](x)pB(x) − xpA[n](x)pB[1](x)
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= xnpB[1](x) + xm+n−1 − xnpB[1](x)

= xn+m−1.

Thus, M is nilpotent.

We say that B is a superpattern of A if Aij 6= 0 implies Bij 6= 0. In general,

one cannot expect a superpattern of a potentially nilpotent pattern to be potentially

nilpotent. For example, adding a nonzero diagonal entry to the pattern of a Jordan

block produces a superpattern that is not potentially nilpotent. We conclude this

section by observing a way of constructing a potentially nilpotent superpattern from

a potentially nilpotent pattern that contains a directed path consisting of two or more

center vertices.

We first note that if a digraph D has exactly k > 1 center vertices, then the

subgraph of D induced by these vertices will be a directed path on k vertices and

D will have no directed cycles of length k or less. Note that in the statement of the

following theorem, the digraph D(A) might have more than m center vertices.

We say a field F contains the mth roots of unity if the polynomial xm − 1 factors

into linear forms over F. That is, xm − 1 = (x− 1)(x− ζ1)(x− ζ2) · · · (x− ζm−1) for

some ζ1, . . . , ζm−1 ∈ F. Note that if we let ζ0 = 1 and

Sk =
∑

0≤i1<···<ik≤m−1

ζi1ζi2 · · · ζik(3.1)

then Sk = 0 for 1 ≤ k ≤ m− 1 and Sm = (−1)m−1.

Theorem 3.3. Let m ≥ 2 and F be a field containing the mth roots of unity. Let

A be a potentially nilpotent pattern over F having a digraph with m ≥ 2 center vertices

v1, v2, . . . , vm corresponding to the first m rows of A, such that v1 → v2 → · · · → vm

is a directed path in the digraph of D(A). Let A′ be a superpattern of A obtained by

introducing nonzero entries in positions (1, 1), (2, 2), . . . , (m,m) and (m, 1). Then A′

is potentially nilpotent over F.

Proof. Note that the digraph D(A′) is formed from D(A) by making an induced

cycle on v1, v2, . . . , vm with loops at each vertex. Let A ∈ Q(A) be a nilpotent matrix.

Let B ∈ Q(A′) be obtained from A by inserting zi in position (i, i) for 1 ≤ i ≤ m

and w in position (m, 1). Note that D(A) has no cycles of length m or smaller. Since

every cycle of D(A) includes all the center vertices of D(A), there can be no composite

cycles of D(A′) which contain both a cycle of D(A) as well as an arc not in D(A). It

follows that

pB(x) = pA(x)− f1x
n−1 + f2x

n−2 + · · ·+ (−1)m−1fm−1x
n−m+1 + fmxn−m

where

f1 = z1 + z2 + · · ·+ zm
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f2 = z1z2 + · · ·+ zm−1zm

...

fm−1 = z1z2 · · · zm−1 + · · ·+ z2z3 · · · zm and

fm = (−1)mz1z2 · · · zm − wa1,2a2,3 · · · am−1,m.

Set z1, z2, · · · , zm to be the mth roots of unity and w = −(a1,2a2,3 · · · am−1,m)−1.

Then pB(x) = pA(x) = xn.

Example 3.4. Consider the pattern corresponding to the C3-cockade in Figure

3.1. This graph has two center vertices. The field R has both second roots of unity,

i.e., x2− 1 factors into linear forms over R. If we add loops to the two center vertices,

and add on additional edge to make the direct path connecting the two centers a

cycle, we obtain the digraph in Figure 3.3. It follows from Theorem 3.3 that this

Fig. 3.3. A potentially nilpotent superpattern of a C3-cockade.

superpattern of the C3-cockade is potentially nilpotent over R. In fact, the C3 cockade

is potentially nilpotent over every field (see the realization in the Appendix which only

requires that 1 ∈ F). Thus, the superpattern represented in Figure 3.3 is potentially

nilpotent over every field since x2 − 1 factors into linear forms over every field.

4. Potentially nilpotent patterns over fields requiring roots of unity.

Let An be the pattern of order n ≥ 3 whose digraph is an n-cycle with a loop at each

vertex. The pattern An is equivalent to the n× n pattern

An =

























∗ 0 · · · · · · 0 ∗

∗ ∗ 0 0

0 ∗
. . .

. . .
...

...
. . .

. . .
. . . 0 0

...
. . . ∗ ∗ 0

0 · · · · · · 0 ∗ ∗

























.

As observed in [14], An is potentially nilpotent over a field F if and only if xn−1 factors

into linear forms over F. An important theorem from [14] that helped demonstrate

this observation was the Loop Theorem:

Theorem 4.1 (“Loop Theorem”). Suppose A has m ≥ 2 nonzero entries on the

diagonal, and suppose that D(A) has no simple k-cycles with 2 ≤ k ≤ m− 1. If A is
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PN over F, then xm − 1 factors into m linear forms over F (and the diagonal entries

of any nilpotent realization of A will be the roots of xm − 1).

In this section, we describe some further patterns which are potentially nilpotent

over a field F characterized by the availability of roots of unity in F. In particular,

we start by asking under what conditions the Loop Theorem has a converse.

Question 4.2. Suppose A is irreducible and A satisfies the cycle conditions.

Suppose further that A has exactly m ≥ 2 nonzero entries on the diagonal and D(A)

has no k-cycles with 2 ≤ k ≤ m− 1. If xm − 1 factors into linear forms over F, does

it follow that A is potentially nilpotent?

Considering An, we see the answer is ‘yes’ when m = n, since, up to isomorphism

D(An) is the only digraph with m = n satisfying the cycle conditions. When m =

n−1, then there are three classes of graphs to consider: we will show that the answer

is ‘yes’ for first case, that the answer is also ‘yes’ for the second case if we add the

condition that F 6= Z2 and that the answer for the third class is ‘yes’ under the extra

hypothesis that not all the roots of xm − 1 are equal in F.

Lemma 4.3. Suppose A is irreducible of order n ≥ 4, m = n− 1 and A satisfies

the cycle conditions. Suppose further that A has exactly m ≥ 2 nonzero entries on

the diagonal and D(A) has no k-cycles with 2 ≤ k ≤ m − 1. Then, ignoring loops,

the digraph of A is one of the three digraphs in Figure 4.1. More specifically, D(A)

is one of the following:

• G1 with one of its n− 1 loops at w.

• G2 with any n− 1 of the vertices having a loop.

• G3 with a loop at each of x and y, as well as any n− 3 other vertices.

w x

y

x

y

Fig. 4.1. Digraphs G1, G2 and G3.

Proof. Suppose A has a simple n-cycle C. Then A must have a second (simple

or composite) n-cycle in order to satisfy the cycle conditions. Thus, C must have a

chord e. Since A has no k-cycle with 2 ≤ k ≤ n − 2, any chord of C must induce a

3-cycle in the underlying graph of A. To avoid a 3-cycle in the digraph D(A), e must

be oriented to create an (n − 1)-cycle in A as in G1 in Figure 4.1. Thus, if C has

exactly one chord, then D(A), ignoring loops, must be G1. In order to satisfy the
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cycle conditions, in particular, since A has one n-cycle, one of the loops of A must

be at vertex w in G1 to obtain a composite n-cycle. The one vertex that is loopless

in the digraph D(A) can be any one of the remaining vertices of D(A).

If C has two or more chords, then any two chords must cross (assuming C is

drawn as a circle in the plane), otherwise A will have a k-cycle with k < n− 1. Thus,

if C has more than one chord, it must have exactly two chords. In this case, ignoring

loops, D(A) is G2 in Figure 4.1. Any arrangement of the n− 1 loops will result in a

digraph satisfying the cycle conditions.

Suppose A has no simple n-cycle. Then since A has a composite (n − 1)-cycle

composed of loops, and A has no k-cycles with k < n− 1, it follows that A must have

an (n− 1)-cycle C = v1 → v2 → · · · → vn−1 → v1. Let vn be the vertex of D(A) that

is not on C. Since A is irreducible, there must be some i and j with 1 ≤ i, j ≤ n− 1

such that vi → vn and vn → vj . Further, since A has no k-cycles with k < n− 1, it

follows that j ≡ i + 2 (modn − 1). Thus, ignoring loops, D(A) is G3 in Figure 4.1.

As for the placement of loops, there must be loops at both vertices x and y so that

there is not exactly one (composite) n-cycle in D(A). The placement of the remaining

loops can be on any of the remaining vertices of D(A).

The proof above indicates that, ignoring transposition, there will be n − 1 non-

equivalent patterns that satisfy the conditions of the lemma whose underlying graph

is G1, n nonequivalent patterns for G2 and n− 2 nonequivalent patterns for G3. We

will show that each of these graphs are potentially nilpotent (and in the next section

that each of these graphs are spectrally arbitrary) over fields which contain roots of

unity. We will introduce a definition of loop-equivalent along with Lemma 4.5 below

in order to reduce the number of cases we need to consider.

Suppose D1 is a digraph with a directed path P = v1 → v2 → · · · → vm such

that, ignoring loops, the degree of each vi is exactly 2 for 2 ≤ i ≤ m − 1 (for each

vertex that is not an endpoint of P ). We say a simple directed cycle C of D1 is an

endpoint cycle of P if an endpoint of P is on C but no arc of P is part of C. We say

a vertex of P is open if it is either not an endpoint of P , or as an endpoint, if it is

not contained in any endpoint k-cycle with k > 1. We say that a digraph D2 is a loop

shift of D1 if D2 is obtained from D1 by moving a loop from an open vertex on P to

another open vertex on P that did not have a loop. For example, if

D1 = and D2 =

then D2 is a loop shift of digraph D1 (and vice versa).

Lemma 4.4. Suppose D(A) is a loop shift of D(B). If A ∈ Q(A), then there
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exists a matrix B ∈ Q(B) such that pA(x) = pB(x).

Proof. Suppose D(A) is a loop shift of D(B). Let A ∈ Q(A). Let B ∈ Q(B) be

a matrix whose nonzero entries are the same as the corresponding nonzero entries in

A. Let a be the nonzero diagonal position of A which has no match in B. Let b be

the nonzero diagonal position of B which has no match in A. For every simple or

composite k-cycle in A not using a, there is a corresponding k-cycle in B not using b.

Likewise, for every simple or composite k-cycle in A using a, there is a corresponding

k-cycle in B using b. Thus, if we set the entry of B in position b to have the same

value as the entry of A in position a, then Ek(A) = Ek(B) for 1 ≤ k ≤ n. Hence,

pA(x) = pB(x).

If D(A) can be obtained from D(B) by a sequence of loop shifts, then we say that

A is loop equivalent to B. The next result is a consequence of Lemma 4.4.

Lemma 4.5. If A is loop equivalent to a potentially nilpotent pattern B, then A

is potentially nilpotent.

Theorem 4.6. Suppose n ≥ 4 and the digraph G1 in Figure 4.1 has m = n− 1

loops, including a loop at w. If D(A) = G1, then A is potentially nilpotent over F if

and only if xm − 1 splits into linear factors.

Proof. Assume that x(n−1) − 1 = (x− 1)(x − ζ1)(x − ζ2) · · · (x− ζn−2). Suppose

D(A) = G1. Note that A is loop equivalent to the nonzero pattern of the matrix

A =







































ζn−2 0 · · · · · · 0 −1

1 1 0
. . . 0

1 1 ζ1 0
...

0 0 1 ζ2
. . .

...
. . . 0 1

. . .
. . .

...
. . .

. . . ζn−4 0 0
... 0 1 ζn−3 0

0 · · · · · · 0 1 0







































.(4.1)

Then, using the notation of (3.1) with m = n− 1,

pA = xn − S1x
n−1 + S2x

n−2 + · · ·+ (−1)m−1Sm−1x
2 + (1 + (−1)mSm)x = xn

and so A is nilpotent. Since A is nilpotent, Lemma 4.5 implies that A is potentially

nilpotent. The converse direction of the theorem follows from Theorem 4.1.

Theorem 4.7. Suppose n ≥ 4 and the digraph G2 in Figure 4.1 has m = n− 1

loops. If D(A) = G2, then A is potentially nilpotent over F if and only if xm − 1
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splits into linear factors and F 6= Z2.

Proof. We will consider two cases.

Case 1: Suppose D(A) is G2 with loops at x and y and n − 3 of the remaining

vertices. Suppose A is potentially nilpotent. Let A be a nilpotent realization of A.

By Theorem 4.1, we know that xm−1 splits into linear forms and the diagonal entries

of A are the roots 1, ζ1, . . . , ζn−2 of xm − 1. Via scaling, we can assume the (2, 2)

entry of A is 1. By signature similarity, and loop equivalence, we can assume A is of

the form







































ζn−2 0 · · · · · · 0 c

1 1 0
. . . 0

a 1 ζ1 0
...

0 b 1 ζ2
. . .

...
. . . 0 1

. . .
. . .

...
. . .

. . . ζn−4 0 0
... 0 1 ζn−3 0

0 · · · · · · 0 1 0







































where a, b, and c are nonzero. Then, using the notation of (3.1) with m = n− 1,

pA = xn−S1x
n−1+ · · ·+(−1)m−1Sm−1x

2+(−c(a+ b)+(−1)mSm)x+ c(a+ bζ1−1).

Since En(A) has three nonzero summands, and En(A) = 0 (because A is nilpotent),

it follows that F 6= Z2. Conversely, if we set a = 1− bζ1, c = −(a+ b)−1, and choose

b such that a 6= 0 and (a + b) 6= 0, then pA(x) = xn and A is nilpotent. Hence,

Lemma 4.5 implies that A is potentially nilpotent.

Case 2: Suppose that D(A) is G2 with loops at all vertices except x or y. Observe

that the pattern with a loop at x and not y is equivalent, via transposition, to the

pattern with a loop at y and not x. (One way to see this is to observe that the graph

of the transpose of the pattern is obtained from the original by reversing all the arcs.)

Thus, we need only consider the case where A has a loop at y and not at x.

Suppose A is potentially nilpotent. Let A be a nilpotent realization of A. By

Theorem 4.1, we know that xm − 1 splits into linear forms and the diagonal entries of

A are the roots 1, ζ1, . . . , ζn−2 of xm−1. Via scaling, we can assume the (n−1, n−1)

entry of A is 1. By signature similarity, and loop equivalence, we can assume A is of
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the form

































ζ1 0 · · · · · · 0 a 1

1 ζ2 0
. . . 0

0 1 ζ3
. . . 0

0 0
. . .

. . .
. . .

...
. . .

. . . ζn−2 0 0
... 0 1 1 0

0 · · · · · · 0 b c 0

































where a, b, and c are nonzero. Using the notation of (3.1) with m = n− 1,

pA = xn − S1x
n−1 + · · ·+ (−1)m−1Sm−1x

2 + (−(a+ b) + (−1)mSm)x + (b− c).

Since En−1(A) has three nonzero summands, and En−1(A) = 0 (because A is nilpo-

tent), it follows that F 6= Z2. Conversely, if we choose a 6= −1, and set c = b = −a−1,

then A is nilpotent and Lemma 4.5 implies A is potentially nilpotent.

Theorem 4.8. Suppose n ≥ 4 and digraph G3 in Figure 4.1 has m = n−1 loops,

including one on x and one on y. If D(A) = G3, then A is potentially nilpotent over

F if and only if xm − 1 splits into linear factors, not all equal, over F.

Proof. Suppose A is potentially nilpotent. Let A be a nilpotent realization of A.

By Theorem 4.1, we know that the diagonal entries of A are the roots 1, ζ1, . . . , ζn−2 of

xm − 1. Via scaling, we can assume the (2, 2) entry of A is 1. By signature similarity,

and loop equivalence, we can assume A is of the form







































ζn−2 0 · · · · · · 0 1

a 1 0
. . . 0

b 0 ζ1 0
...

0 1 1 ζ2
. . .

0 0 0 1
. . .

. . .
...

...
. . .

. . .
. . . ζn−4 0 0

...
. . . 0 1 ζn−3 0

0 · · · · · · 0 0 1 0







































.(4.2)

where a and b are nonzero entries. Then, using the notation of (3.1) with m = n− 1,

pA = xn − S1x
n−1 + · · ·+ (−1)m−1Sm−1x

2 + (−(a+ b) + (−1)mSm)x+ (b+ aζ1).
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Note that if ζ1 = 1, then En(A) = 0 implies En−1(A) 6= 0. Thus, since A is nilpotent,

ζ1 6= 1. Therefore, not all the roots of xm − 1 are equal. Conversely, assuming that

not all the roots of xm − 1 are equal, we can arrange the diagonal entries so that

ζ1 6= 1. In this case, set b = −aζ1 and a = −(1− ζ1)
−1 to obtain pA(x) = xn and A

nilpotent. Thus, by Lemma 4.5, A is potentially nilpotent.

The Loop Theorem does not have a converse when m = n−2. In particular, there

are some n× n patterns that satisfy the cycle conditions (and the path conditions),

have m = n − 2 loops, and have no k-cycles with 2 ≤ k ≤ m − 1, but which fail

to be potentially nilpotent over every field. In particular, let n ≥ 6 and consider

an n × n pattern A having the digraph in Figure 4.2 with loops at n − 2 vertices

including vertices 1, 2, 3 and n. Let A ∈ Q(A). By signature similarity we can

assume ai,i+1 = 1 for i = 1, . . . , n − 1. Suppose further that a2,2 = b, an−2,n = a,

an,1 = t, and a1,3 = c, with b, a, t and c nonzero. We will observe that if En(A) = 0,

then En−1(A) 6= 0, and hence A cannot be nilpotent. Specifically, by reflecting on

the cycle structure of the pattern, we note that En(A) = (−1)n−1t+ (−1)n−2bct and

En−1(A) = (−1)n−2(at + ct) + (−1)n−3abct. If En(A) = 0, then b = c−1, in which

case En−1(A) = (−1)n−2ct 6= 0. Therefore, even though the pattern A, which has

m = n− 2 loops, satisfies the cycle conditions, A is not potentially nilpotent over any

field.

vn−1 a

vn
t

v1

v2

b

c

v3

vn−2

Fig. 4.2. A digraph with no k-cycles, 2 ≤ k ≤ n− 3.

5. Spectrally arbitrary patterns over C. In this section, we describe some

sparse n × n patterns which are spectrally arbitrary over C but are not spectrally

arbitrary over R. In [16], Yielding showed that A3 and A4 are spectrally arbitrary

over C but not over R, and demonstrated that if a pattern has a sufficient number

of nonzero entries, it is necessarily spectrally arbitrary over C. Below, we show that

the sparse pattern An is spectrally arbitrary over C for all n ≥ 3 and that the sparse

potentially nilpotent patterns in Section 4 corresponding to the graphs G1, G2 and

G3 are spectrally arbitrary over C. All superpatterns of the these patterns are also

spectrally arbitrary over C.

The main technique for determining if a pattern is spectrally arbitrary is known

as the Nilpotent-Jacobian method (see Britz et al. [2, Lemma 2.1]). Introduced by

Drew et al. [6] for real matrices, it was observed to be valid over C in [16]. Starting

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 22, pp. 931-958, September 2011



ELA

944 N. Campbell, K.N. Vander Meulen, and A. Van Tuyl

with a nilpotent realization N , the technique involves showing that an associated

Jacobian matrix is non-singular. Making use of work of Pereira [13], Bergsma et

al. [1] have shown that determining that the associated Jacobian matrix is nonsingular

is equivalent to finding an independent set of n polynomials in adj(xI − N)T , in n

positions corresponding to nonzero positions of N . These observations give us the

following theorem.

Theorem 5.1. Suppose N is a nilpotent realization of an n × n pattern A. If

n of the entries in adj(xI − N)T , corresponding to n nonzero positions of A, form

a linearly independent set of polynomials, then every superpattern of A is spectrally

arbitrary.

As noted in Section 4, the pattern An is known to be potentially nilpotent over

F if and only if F contains the nth roots of unity. Suppose xn − 1 = (x − ζ1)(x −

ζ2) · · · (x− ζn), where ζn = 1 in F. It was observed in [14] that a particular nilpotent

realization of An is the matrix N with

Ni,j =















ζi if i = j, 1 ≤ i ≤ n

1 if i = j + 1 and 1 ≤ j ≤ n− 1

−1 if i = 1 and j = n

0 otherwise.

Theorem 5.2. For n ≥ 3, every superpattern of An is spectrally arbitrary over

C.

Proof. Observe that the n diagonal entries of adj(xI − N)T form a linearly

independent set. In particular, note that [adj(xI −N)]k,k =
∏

i6=k(x− ζi) for 1 ≤ k ≤

n. Further

P =







∏

i6=1

(x− ζi),
∏

i6=2

(x − ζi), . . . ,
∏

i6=n

(x− ζi)







is a set of n linearly independent polynomials because P consists of scaled Lagrange

polynomials (and ζi 6= ζj if i 6= j, 1 ≤ i < j ≤ n). The result follows from Theo-

rem 5.1.

Theorem 5.3. Suppose n ≥ 4 and A has digraph G1 in Figure 4.1 with m = n−1

loops, including a loop at w. Then every superpattern of A is spectrally arbitrary over

C.

Proof. Let N be the matrix of (4.1) with xn−1−1 = (x−ζ0)(x−ζ1) · · · (x−ζn−2)

and ζ0 = 1. Let W = adj(xI−N)T and P = {W1,1,,W2,2, . . . ,Wn−1,n−1,W2,1} . Note
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that

W1,1 = x

n−3
∏

i=0

(x− ζi), W2,2 = x

n−2
∏

i=1

(x− ζi) + 1, and Wk,k = x

n−2
∏

i=0

i6=k−2

(x − ζi)

for 3 ≤ k ≤ n− 1. Further, W2,1 = −1. Thus,

span(P ) = span











x
∏

i6=0

(x − ζi), x
∏

i6=1

(x− ζi), . . . , x
∏

i6=n−2

(x − ζi), 1









 .

Therefore dim(span(P )) = n and P is a linearly independent set. The result follows

from Theorem 5.1 and Theorem 4.6.

Note that the patterns described in Theorem 4.7 (corresponding to the graph G2)

are superpatterns of those in Theorem 4.6 (corresponding to the graph G1). Therefore

these patterns too are spectrally arbitrary over C. Finally we consider the patterns

associated with the graph G3.

Theorem 5.4. Suppose n ≥ 4 and A has digraph G3 in Figure 4.1 with m = n−1

loops, including a loop at w. Then every superpattern of A is spectrally arbitrary over

C.

Proof. Let N be the matrix of (4.2) where b = −aζ1 and a = −1
1−ζ1

. For con-

venience, we let ζ0 = 1. Let W = adj(xI − N)T and consider the set of n + 1

polynomials

P = {W1,1,,W2,2, . . . ,Wn−1,n−1,W3,1,W1,n} .

Note that

W1,1 = x

n−3
∏

i=0

(x− ζi), W2,2 = x

n−2
∏

i=1

(x− ζi) + b, W3,3 = x

n−2
∏

i=0

i6=1

(x− ζi) + a

and, for 4 ≤ k ≤ n− 1,

Wk,k = x

n−2
∏

i=0

i6=k−2

(x− ζi).

Further, W3,1 = x−1 and W1,n = a(x−ζ1)+b(x−1) = −x. It follows that span(P ) =

span ({W1,1,,W2,2 − b,W3,3 − a,W4,4, . . . ,Wn−1,n−1, x, 1}). In fact, dim(span(P )) =

n since

span(P ) = span











x
∏

i6=0

(x − ζi), x
∏

i6=1

(x− ζi), . . . , x
∏

i6=n−2

(x − ζi), 1









 .

Thus, P contains a set of n linearly independent polynomials. The result now follows

from Theorem 5.1 and Theorem 4.6.
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6. Potentially nilpotent patterns of order 4. The goal of this section is

to describe which irreducible patterns of order four are potentially nilpotent over R

or C. This section builds upon the work of Corpuz and McDonald [4], who identi-

fied the irreducible patterns of order four that are spectrally arbitrary over R, and

Yielding [16], who considered the same problem over C (see also [12]).

To investigate the question of which patterns are potentially nilpotent, we initi-

ated a computer search to find all 4 × 4 irreducible patterns that satisfied both the

cycle and walk conditions. The Appendix of this paper contains the matrices found

in this computer search.

We quickly describe how the Appendix is divided. We have grouped together the

irreducible patterns A that satisfy both the cycle and walk conditions according to

their graph D(A), ignoring loops. Each row of the table then corresponds to a matrix

realization of A that is nilpotent. The entries of the matrices belong to either R or

C (except in some special cases, which is explained below, where entries are denoted

by ∗) and complex entries are only present if needed (see Observation 6.2). The last

column contains an R or a C if the corresponding pattern was already known to

be spectrally arbitrary over R or C (and hence, potentially nilpotent) by the work of

either [4] or [15]. The last column contains anN if the pattern is potentially nilpotent,

but not spectrally arbitrary over R or C.

This exhaustive computer search enables us to observe a number of interesting

results. First, we have identified all the 4× 4 irreducible patterns which satisfy both

the walk and cycle conditions, but which are not potentially nilpotent over any field.

There are only three patterns that have this property; these patterns are represented

in the tables with ∗’s in the matrix.

Observation 6.1. Suppose A is an irreducible 4× 4 pattern that satisfies both

the cycle and walk conditions. Then there is no field over which A is potentially

nilpotent if and only if D(A) is in Figure 6.1.

Fig. 6.1. Not potentially nilpotent over any field.

In particular, if A is an irreducible order four pattern satisfying the cycle and

walk conditions, and if D(A) is not in Figure 6.1, then A, along with a nilpotent

realization over R or C, appears in the table in Appendix. It would suffice to show

that none of the patterns with a digraph in Figure 6.1 can be potentially nilpotent.

Let us consider the first graph D(A) in Figure 6.1. If this pattern were nilpotent, we
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would be able to find nonzero elements a, b, c, d, e, f, g, h, i in some field F such that

the matrix

A =









a b 0 c

d e 0 f

0 g 0 0

0 h i 0









is nilpotent. The characteristic polynomial of A is given by

pA(x) = x4+(−a−e)x3+(−bd+ae−fh)x2+(−cdh−fgi+afh)x+(−cdgi+afgi).

Since A is nilpotent, pA(x) = x4, so the coefficient of xk is zero for k = 0, . . . , 3. In

particular, gi(−cd+af) = 0, and because gi 6= 0, cd = af . But if cd = af , this means

−cdh− fgi+ afh = −fgi = 0,

i.e., f = 0 or g = 0 or i = 0, which is not permissible. The arguments for the other

two patterns in Figure 6.1 are similar; we omit the details.

A number of the realizations in the Appendix contain entries in C. As the next

result demonstrates, these matrices are precisely the matrices that are potentially

nilpotent over C, but not over R.

Observation 6.2. Let A be a 4× 4 irreducible pattern that satisfies both the

walk and cycle conditions. Then A is potentially nilpotent over C but not over R if

and only if D(A) is one of the following graphs:

(i)

(ii)

(iii)

In particular, if D(A) is not one of the above graphs, then a nilpotent realization

for A over R is given in the Appendix. To see the converse, we first note that each

pattern given above is potentially nilpotent over C as realized in the Appendix. (In

fact, each of the patterns in Observation 6.2 are spectrally arbitrary over C.) It

therefore would suffice to show that the patterns are not potentially nilpotent over R.

We actually have stronger results for the patterns of Observation 6.2(i). By

Theorems 4.6 and 4.7, the first four patterns of (i) are potentially nilpotent over a
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field F if and only if x3 − 1 factors into linear forms over F. Further, by Theorem 4.8,

the last pattern represented in (i) is potentially nilpotent over a field F if and only if

x3 − 1 factors into linear forms, not all equal, over F.

The patterns with digraphs in Observation 6.2(ii) all fail to be nilpotent over R

since they do not contain a 2-cycle (e.g., see [5, Lemma 3.2] or Theorem 4.1).

The pattern A with digraph in Observation 6.2(iii) is an oddity since it does not

fit under either (i) or (ii). Suppose A ∈ Q(A) is a nilpotent matrix. By scaling, we

can assume one of the diagonal entries of A is 1 and by signature similarity (see for

example [2, Lemma 2.3]) we can assume that A has the form

A =









0 a 0 b

1 c 0 0

0 1 d 0

0 0 1 1









with characteristic polynomial

pA(x) = x4 + (−1− d− c)x3 + (d+ c+ dc− a)x2 + (−dc+ a+ da)x+ (−b− da).

Since A is nilpotent, pA(x) = x4. It follows from the coefficient of x3 that c = −1−d,

and from the coefficient of x2 that a = d + c + dc. Thus, the coefficient of x is

−1 − d − d2 − d3. This implies that d ∈ {−1, i,−i}. But d 6= −1 otherwise c = 0.

Therefore, d 6∈ R.

By work of Corpuz and McDonald [4], we already know a large class of potentially

nilpotent irreducible patterns of order four over R, namely, those that are spectrally

arbitrary. Therefore, to classify all potentially nilpotent irreducible patterns of order

four over R, we only need to determine which patterns are not covered in [4]. The

desired patterns correspond to all entries in the Appendix with an N or C in the last

column. We summarize our findings as follows:

Observation 6.3. Suppose that A is an irreducible 4× 4 pattern that satisfies

both the cycle and walk conditions, and furthermore, suppose A is not spectrally

arbitrary over R. Then A is potentially nilpotent over R if and only if D(A) is in

Figure 6.2 or Figure 6.3.

It is interesting to note that for many of the patterns of Observation 6.3 it is

quite easy to see that the pattern is not spectrally arbitrary. Indeed, for a pattern A

to be spectrally arbitrary, then D(A) must have at least two loops. The majority of

the digraphs in Figure 6.2 fail to have this property.

Finally, we can identify the irreducible patterns of order four which are potentially

nilpotent over C by using the fact that Yielding [16] has already identified all the

spectrally arbitrary patterns over C.
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Fig. 6.2. Potentially nilpotent over R; not spectrally arbitrary over R or C.

Fig. 6.3. Potentially nilpotent over R; spectrally arbitrary over C but not R

Observation 6.4. Suppose that A is an irreducible 4× 4 pattern that satisfies

both the cycle and walk conditions, and furthermore, suppose A is not spectrally

arbitrary over C. Then A is potentially nilpotent over C if and only if D(A) is one

of the graphs of Figure 6.2.

We do not have any examples of patterns A for which A is potentially nilpotent

over C but not over R, and A is not spectrally arbitrary over C.
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Appendix: Potentially nilpotent patterns of order 4 over C and R. This

appendix lists the order 4 irreducible patterns, up to equivalence, that satisfy both the

cycle condition and the walk condition. For each digraph in the first column, there are

a number of nonequivalent patterns having that digraph when ignoring loops: each

row beside the digraph represents a pattern with a placement of loops that satisfies

the walk and cycle conditions. The rows with asterisks represent irreducible patterns

that satisfy the walk and cycle conditions but are not potentially nilpotent in any

field. Those with numbers indicate a nilpotent realization over R except those that

contain i ∈ C. In the latter case, the patterns are potentially nilpotent only over C,

but not R. The last column contains an R if the corresponding pattern is known to

be spectrally arbitrary over R by [4, Theorem 1.2]. The last column contains a C if

the corresponding pattern is known to be spectrally arbitrary over C by [15, Theorem

3.5.1]. Rows that contain an N correspond to patterns that are potentially nilpotent

(over R or C), but not spectrally arbitrary over C.

For graphs labeled with an A (resp., B), the vertices are ordered clockwise 1234

(resp., 1324) starting at the top left vertex.

1 [0 0 0 1; 0 0 0 1; 0 0 0 −2; 1 1 1 0] N

A [1 0 0 −1; 0 0 0 1; 0 0 0 1; 1 −1 1 −1] N

[1 0 0 1
4
; 0 −3 0 − 81

20
; 0 0 2 − 16

5
; 1 1 1 0] R

[1 0 0 1
3
; 0 −2 0 − 4

3
; 0 0 2 −4; 1 1 1 −1] R
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2 [1 0 0 a1; 0 −1 a1 0; 0 1 0 a2; 1 0 1 0] R

A [0 0 0 −2; 0 −2 −2 0; 0 1 1 1; 1 0 1 1] R

[1 0 0 −1; 0 1 −1 0; 0 1 0 −1; 1 0 1 −2] R

[1 0 0 − 1
2
; 0 −1 − 1

2
0; 0 1 1

4
− 1

16
; 1 0 1 − 1

4

]

R

where a1 = 1 +
√
2 and a2 = −3 − 2

√
2

3 [0 0 0 1; 0 1 -1 0; 0 0 0 1; −1 1 0 −1] N

A [1 0 0 1; 0 a1 1 0; 0 0 a2 1; a3 a4 0 0] R

[1 0 0 −9; 0 4
3

− 256
27

0; 0 0 4
3

1; 1 1 0 − 11
3

]

R

where a1 = − 1
2
+ 1

2

√

3 + 2
√
5, a2 = − 1

2
− 1

2

√

3 + 2
√
5, a3 = − 3

2
−

√
5

2
, a4 = 2 +

√
5

4 [1 0 0 a2; 0 0 a5 a6; 0 1 −1 0; 1 0 1 0] R

A [0 0 0 −4; 0 1 1 −8; 0 1 1 0; 1 0 1 −2] R

[1 0 0 a1; 0 0 −2
√
2 a6; 0 1 −2 0; 1 0 1 1] R

[1 0 0 a2; 0 1 a3 a4; 0 1 −2 0; 1 0 1 0] R

[2 0 0 −1; 0 −1 −4 −9; 0 1 −2 0; 1 0 1 1] R

where a1 = −3 + 2
√
2, a2 = − 3

2
+

√
5

2
, a3 = − 3

2
−

√
5

2
, a4 = 2 −

√
5, a5 = 1

2
−

√
5

2
, a6 = 8 − 8

√
2

5 [0 0 0 1; 0 1 1 −2; 0 0 0 1; 1 1 0 −1] N

A [1 0 0 − 1
2
; 0 0 1

2
− 1

2
; 0 0 −1 1; 1 1 0 0] R

[0 0 0 1; 0 0 −1 1; 0 0 1 1; −2 1 0 −1] N

[1 0 0 1; 0 0 −16 −8; 0 0 2 1; 1 1 0 −3] R

[1 0 0 1
4
; 0 −3 −16 − 29

4
; 0 0 2 1; 1 1 0 0] R

[1 0 0 − 1
4
; 0 −1 1

2
− 7

4
; 0 0 −1 1; 1 1 0 1] R

6 [0 0 0 −1; 0 1 −1 1; 0 1 −1 1; 1 1 0 0] R

A [1 0 0 − 1
2
; 0 0 −1 1

2
; 0 1 0 − 1

2
; 1 1 0 −1] R

[1 0 0 −1; 0 0 1 −1; 0 1 −1 2; 1 1 0 0] R

[1 0 0 −1; 0 −1 1 −1; 0 1 0 1; 1 1 0 0] R

[0 0 0 − 3
8
; 0 1 − 1

2
1
8
; 0 1 − 1

2
1
2
; 1 1 0 − 1

2

]

R

[−2 0 0 1; 0 0 1 1; 0 −2 1 1; −2 1 0 1] R

[1 0 0 −1; 0 1 −1 −1; 0 1 0 −1; 1 1 0 −2] R

[−2 0 0 1; 0 1 1 1; 0 1 1 1; −2 −2 0 0] R

[1 0 0 1; 0 −1 1 −4; 0 1 1 −8; 1 1 0 −1] R

7 [1 0 0 − 1
2
; 0 0 1

2
1
2
; 0 0 −1 −1; 1 1 1 0] R

A [1 0 0 − 1
3
; 0 0 − 2

3
− 2

3
; 0 0 −2 −2; 1 1 1 1] R

[1 0 0 1
4
; 0 2 − 61

4
− 25

4
; 0 0 −3 −1; 1 1 1 0] R

[1 0 0 − 1
4
; 0 −1 − 1

2
− 3

4
; 0 0 −1 −1; 1 1 1 1] R

8 [0 0 0 −2; 0 1 −1 1; 0 1 −1 1; 1 1 1 0] R

A [1 0 0 − 1
3
; 0 0 −1 8

9
; 0 2 0 4

9
; 1 1 1 −1] R

[1 0 0 − 1
3
; 0 0 1 2

3
; 0 −1 −1 − 1

3
; 1 1 1 0] R

[0 0 0 − 9
8
; 0 1 −2 1

4
; 0 1 −2 − 1

8
; 1 1 1 1] R

[1 0 0 −1; 0 0 1 − 2
3
; 0 −1 1 − 1

3
; 1 1 1 −2] R

[1 0 0 1
2
; 0 1 2 7

4
; 0 1 −2 − 29

4
; 1 1 1 0] R

[1 0 0 1; 0 1 1 −2; 0 1 −1 −2; 1 1 1 −1] R

9 [1 0 0 −1; 1 i 0 0; 0 1 −i 0; 0 0 1 −1] C

A

10 [0 0 −1 −1; 0 1 1 0; 1 0 0 0; 0 1 0 −1] N

B [0 0 −i −1; 0 1 1 0; 1 0 −1 − i 0; 0 1 0 i] C

[1 0 −2 −1; 0 1 1 0; 1 0 −1 0; 0 1 0 −1] C

11 [0 0 − 4
3

− 5
3
; 0 1 3

5
0; 1 0 1 0; 1 1 0 −2] R

B [1 0 1
4

−1; 0 − 1
2

1
16

0; 1 0 0 0; 1 1 0 − 1
2

]

R

[1 0 −1 −1; 0 1 1 0; 1 0 −1 0; 1 1 0 −1] R

12 [0 0 1 −1; 0 0 1 −1; 0 1 0 0; 1 0 0 0] N

B [0 0 1
4

− 1
2
; 0 0 − 1

2
1; 0 1 1 0; 1 0 0 −1] R

[0 0 1
4

− 1
2
; 0 1 − 1

2
1; 0 1 0 0; 1 0 0 −1] R

[0 0 −1 1; 0 1 −2 1; 0 1 −1 0; 1 0 0 0] N

[0 0 4 −2; 0 1 −1 1; 0 1 1 0; 1 0 0 −2] R

[1 0 −4 −3; 0 1 1 1; 0 1 −1 0; 1 0 0 −1] R
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13 [0 0 1 1; 0 0 1 1; 1 1 0 0; −2 0 0 0] N

B [0 0 1
2

− 1
2
; 0 0 −1 1; 1 1 1 0; 1 0 0 −1] R

[0 0 1 −1; 0 1 −1 2; 1 1 0 0; 1 0 0 −1] R

[1 0 1 −1; 0 0 −1 1; 1 1 −1 0; 1 0 0 0] N

[0 0 − 1
3

− 2
3
; 0 1 −2 −1; 1 1 −2 0; 1 0 0 1] R

[1 0 2 − 3
2
; 0 0 − 7

2
− 7

8
; 1 1 1 0; 1 0 0 −2] R

[1 0 −4 1; 0 −1 1 1; 1 1 −1 0; 1 0 0 1] R

14 [0 0 −1 −1; 0 0 1 1; 1 1 0 0; 1 1 0 0] N

B [0 0 1
2

1
2
; 0 0 −1 −1; 1 1 1 0; 1 1 0 −1] R

[0 0 2 −1; 0 1 −1 1; 1 1 0 0; 1 −1 0 −1] R

[0 0 −1 −2; 0 1 − 1
3

1
3
; 1 1 1 0; 1 1 0 −2] R

[1 0 1 −1; 0 2 −1 −4; 1 1 −1 0; 1 1 0 −2] R

15 [1 0 0 a1; 1 −a1 0 0; 0 1 −a1 0; 0 a2 1 0] C

A [0 0 0 1; a1 1 0 0; 0 1 −a1 0; 0 a6 1 −a1] C

[1 0 0 a3; 1 a4 0 0; 0 1 a4 0; 0 a5 1 1] C

where a1 = 1
2
+ 1

2

√
3i, a2 = − 2

1+
√

3i
, a3 = 7 + 4

√
2i, a4 = −1 +

√
2i, a5 = − 4

7+4
√

2i
, a6 = − 1+

√
3i

−1+
√

3i

16 [0 −1 0 0; 0 0 0 1; 0 1 0 0; 1 0 1 0] N

A [−a1 a3 0 0; 0 1 0 a2; 0 1 −a1 0; 1 0 1 0] C

[i −1 0 0; 0 1 0 − i

2
; 0 1 −i 0; 1 0 1 −1] C

where a1 = 1
2
+ 1

2

√
3i, a2 = −3+

√
3i

6
, a3 = −1+

√
3i

1+
√

3i

17 [1 0 −1 1; 0 0 1 0; 1 0 0 1; 0 1 0 −1] R

B [1 0 −1 1; 0 −1 1 0; 1 0 0 1; 0 1 0 0] R

[0 0 −3 − 6
5
; 0 1 5 0; 1 0 1 1; 0 1 0 −2] R

[1 0 −3 1; 0 0 −1 0; 1 0 −2 1; 0 1 0 1] R

[1 0 −3 − 1
5
; 0 1 5 0; 1 0 0 1; 0 1 0 −2] R

[1 0 −3 1; 0 1 −1 0; 1 0 −2 1; 0 1 0 0] R

[1 0 −2 7
4
; 0 −1 4 0; 1 0 1 1; 0 1 0 −1] R

18 [0 0 −1 −1; 0 1 1 0; 1 0 −1 0; 0 1 1 0] R

B [1 0 −1 1; 0 −1 −1 0; 1 0 0 0; 0 1 1 0] R

[0 0 −3 5; 0 1 − 1
5

0; 1 0 1 0; 0 1 1 −2] R

[1 0 −3 5; 0 1 − 1
5

0; 1 0 0 0; 0 1 1 −2] R

[1 0 −3 −1; 0 1 1 0; 1 0 −2 0; 0 1 1 0] R

[1 0 −2 4; 0 −1 − 1
4

0; 1 0 1 0; 0 1 1 −1] R

19 [0 0 1 1; 0 0 0 1; −1 −1 1 0; 0 0 − 1
2

−1] N

B [0 0 −1 1; 0 1 0 −1; 1 1 0 0; 0 0 1 −1] R

[1 0 −1 1
2
; 0 −1 0 1

2
; 1 1 0 0; 0 0 1 0] R

[0 0 −3 −3; 0 1 0 −1; 1 1 −2 0; 0 0 1 1] R

[1 0 −3 − 1
3
; 0 −2 0 16

3
; 1 1 0 0; 0 0 1 1] R

[1 0 −3 8
3
; 0 −2 0 16

3
; 1 1 1 0; 0 0 1 0] R

[1 0 −2 7
2
; 0 −1 0 1

2
; 1 1 1 0; 0 0 1 −1] R

20 [0 0 1 0; 0 0 −1 0; 0 0 −1 −1; 1 1 1 1] N

B [1 0 1
2

0; 0 −1 − 1
2

0; 0 0 0 −1; 1 1 1 0] R

[1 0 − 1
7

0; 0 2 16
7

0; 0 0 0 −7; 1 1 1 −3] R

[1 0 1
4

0; 0 −1 − 1
4

0; 0 0 1 −2; 1 1 1 −1] R

21 [0 0 ∗ 0; 0 ∗ 0 ∗; 0 ∗ 0 ∗; ∗ 0 ∗ ∗] ∗
B [1 0 1 0; 0 −1 0 1; 0 1 0 −1; 1 0 1 0] C

[0 0 − 2
3

0; 0 1 0 −3; 0 1 1 −3; 1 0 1 −2] R

[1 0 1 0; 0 1 0 −1; 0 1 0 −3; 1 0 1 −2] R

[−6 0 1 0; 0 2 0 1; 0 4
5

3 1; 180 0 −25 1] R

22 [0 0 −2 1; 0 1 −
√
2 0; 1 0 0 a1; 1 1 0 −1] R

B [1 0 −2 1; 0 0 4 0; 1 0 0 1; 1 1 0 −1] R

[1 0 a2

√
3; 0 −1 a3 0; 1 0 0 1; 1 1 0 0] R

[0 0 a4 −
√
3; 0 1 1 0; 1 0 1 a5; 1 1 0 −2] R

[1 0 −1 −2; 0 1 1
2

0; 1 0 0 −2; 1 1 0 −2] R

[1 0 −1 −1; 0 1 1 0; 1 0 −1 1; 1 1 0 −1] R

where a1 = −1 +
√

2

2
, a2 = −1 −

√
3, a3 = 2 +

√
3, a4 = −3 +

√
3, a5 = −(−6 + 4

√
3)/a4
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23 [0 0 − 1
2

− 1
2
; 0 1 0 2; 1 1 0 1; 1 0 0 −1] R

B [1 0 1 −2; 0 −1 0 −1; 1 1 0 1; 1 0 0 0] R

[0 0 1 −4; 0 1 0 −1; 1 1 1 −7; 1 0 0 −2] R

[1 0 −1 −2; 0 1 0 1; 1 1 0 −1; 1 0 0 −2] R

[−1 0 1 1; 0 1 0 1; −1 1 −1 2; −1 0 0 1] R

24 [0 0 1 1; 0 0 1 1; −1 1 0 0; 0 0 1 0] N

B [0 0 1 2; 0 0 −2 −1; 1 1 1 0; 0 0 1 −1] R

[0 0 −2 2; 0 1 1 −3; 1 1 0 0; 0 0 1 −1] R

[0 0 −4 8; 0 1 1 −4; 1 1 1 0; 0 0 1 −2] R

[1 0 −1 − 1
3
; 0 −2 −2 − 2

3
; 1 1 0 0; 0 0 1 1] R

[1 0 −3 4; 0 2 −4 −8; 1 1 −3 0; 0 0 1 0] R

[1 0 −1 3
2
; 0 −1 −1 1

2
; 1 1 1 0; 0 0 1 −1] R

25 [0 0 −2 −2; 0 1 1 0; 1 1 0 −1; 0 1 0 −1] R

B [1 0 1 3
2
; 0 0 −2 0; 1 1 0 1

2
; 0 1 0 −1] R

[1 0 −2 1; 0 0 1 0; 1 1 −1 1; 0 1 0 0] R

[1 0 −2 3; 0 −1 1 0; 1 1 0 3; 0 1 0 0] R

[1 0 −2 −5; 0 0 −1 0; 1 1 1 −7; 0 1 0 −2] R

[1 0 −1 1
2
; 0 1 −2 0; 1 1 0 − 5

2
; 0 1 0 −2] R

[1 0 −4 −1; 0 1 1 0; 1 1 −2 −1; 0 1 0 0] R

[1 0 1 − 1
2
; 0 −1 1 0; −1 −1 −1 1; 0 −2 0 1] R

26 [0 0 −3 −2; 0 0 1 2
3
; 0 1 1 1; 1 0 0 −1] R

B [0 0 −3 −2; 0 1 1 5
3
; 0 1 0 1; 1 0 0 −1] R

[1 0 3 −2; 0 0 1 − 2
3
; 0 1 −1 1; 1 0 0 0] R

[1 0 −3 1; 0 −1 −2 − 1
3
; 0 1 0 1; 1 0 0 0] R

[0 0 −1 1; 0 1 1 − 1
2
; 0 −2 −2 1; −1 0 0 1] R

[1 0 4 −2; 0 0 −1 3
4
; 0 1 −2 1; 1 0 0 1] R

[1 0 1 −2; 0 1 −1 1; 0 1 0 1; 1 0 0 −2] R

[1 0 1 −1; 0 1 −2 1; 0 1 −2 1; 1 0 0 0] R

[1 0 8 −3; 0 1 −3 1; 0 1 1 1; 1 0 0 −3] R

27 [0 0 − 2
5

−2; 0 1 1 0; 0 1 0 −5; 1 1 0 −1] R

B [0 0 −1 −2; 0 1 1 0; 0 1 −1 −4; 1 1 0 0] R

[1 0 −10 1; 0 −1 −2 0; 0 1 0 1
4
; 1 1 0 0] R

[0 0 −2 −2; 0 1 −1 0; 0 1 −2 −1; 1 1 0 1] R

[1 0 − 17
29

−8; 0 2 1 0; 0 1 0 −29; 1 1 0 −3] R

[1 0 1 −1; 0 1 −1 0; 0 1 −1 1; 1 1 0 −1] R

28 [0 0 − 4
3

2
3
; 0 1 −1 0; 1 0 0 1

3
; 0 1 1 −1] R

B [0 0 −2 −2; 0 1 1 0; 1 0 −1 1; 0 1 1 0] R

[1 0 −2 1; 0 0 2 0; 1 0 0 1; 0 1 1 −1] R

[∗ 0 ∗ ∗; 0 0 ∗ 0; ∗ 0 ∗ ∗; 0 ∗ ∗ 0] ∗
[1 0 −2 1; 0 −1 1 0; 1 0 0 1; 0 1 1 0] R

[0 0 −8 −4; 0 1 −1 0; 1 0 −2 5; 0 1 1 1] R

[−2 0 1 2; 0 0 1 0; −1 0 1 1; 0 1 −2 1] R

[1 0 −2 1; 0 1 −1 0; 1 0 0 −1; 0 1 1 −2] R

[1 0 −2 −1; 0 1 1 0; 1 0 −2 −1; 0 1 1 0] R

[1 0 −1 −1; 0 1 1 0; 1 0 −1 −1; 0 1 1 −1] R

29 [0 0 1 1; 0 0 0 −1; 1 1 0 1; 0 0 −1 0] N

B [0 0 1 −2; 0 0 0 1; 1 1 1 −2; 0 0 1 −1] R

[0 0 1 −1; 0 1 0 −1; 1 1 0 −2; 0 0 1 −1] R

[1 0 −2 3
2
; 0 −1 0 1

2
; 1 1 0 1; 0 0 1 0] R

[0 0 −1 2; 0 1 0 −1; 1 1 1 −2; 0 0 1 −2] R

[1 0 1 −3; 0 2 0 −16; 1 1 0 −8; 0 0 1 −3] R

[1 0 −1 2; 0 2 0 −16; 1 1 −3 −6; 0 0 1 0] R

[1 0 −1 − 1
2
; 0 −1 0 1

2
; 1 1 −1 −1; 0 0 1 1] R
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30 [0 0 1 −1; 0 0 −1 1; 1 1 1 −1; 1 0 0 −1] R

B [0 0 −1 −1; 0 1 1 4; 1 1 0 2; 1 0 0 −1] R

[0 0 −1 1; 0 1 −1 1; 1 1 −1 1; 1 0 0 0] R

[1 0 − 1
2

− 3
2
; 0 0 1 1; 1 1 0 −1; 1 0 0 −1] R

[1 0 −1 1; 0 0 −1 1; 1 1 −1 2; 1 0 0 0] R

[1 0 1 −1; 0 −1 −1 2; 1 1 0 −1; 1 0 0 0] R

[0 0 2 −4; 0 1 −1 3; 1 1 1 −3; 1 0 0 −2] R

[−2 0 1 1; 0 0 1 −1; −1 −1 1 −1; −1 0 0 1] R

[1 0 1 −5; 0 1 1 −6; 1 1 0 −5; 1 0 0 −2] R

[1 0 −1 −3; 0 1 1 4; 1 1 −2 −5; 1 0 0 0] R

[−1 0 1
2

1; 0 − 1
2

− 1
2

1; −1 1
2

1
2

1; − 1
2

0 0 1] R

31 [0 0 ∗ ∗ ; 0 0 ∗ ∗; ∗ ∗ 0 0; ∗ 0 ∗ 0] ∗
B [0 0 − 2

3
1; 0 0 − 2

3
1; 2 1 1 0; 1 0 1 −1] R

[0 0 1 −1; 0 1 −1 1; 1 1 0 0; 1 0 1 −1] R

[0 0 1 1; 0 1 1 2; − 1
2

1
2

−1 0; −1 0 −1 0] R

[1 0 −1 −2; 0 0 6
5

3
5
; 1

5
1 0 0; 1 0 1 −1] R

[1 0 −1 −6; 0 0 6 18; 1 1 −1 0; 1 0 1 0] R

[1 0 1 1; 0 −1 1 1; −1 −1 0 0; 1 0 1
2

0] R

[0 0 −1 2; 0 1 −1 4; 4 1 1 0; 1 0 1 −2] R

[1 0 1 −2; 0 0 − 1
2

1
2
; − 1

2
1 1 0; 1 0 1 −2] R

[1 0 1 −3; 0 1 −1 2; 1 1 0 0; 1 0 1 −2] R

[1 0 1 −3; 0 1 −1 2; 1 1 −2 0; 1 0 −5 0] R

[1 0 −1 −1; 0 1 −2 −1; −1 1 −1 0; 1 0 1 −1] R

32 [0 0 1 1; 0 1 1 0; 1
2

0 0 1
2
; −1 −1 −1 −1] R

B [1 0 1 1; 0 0 −2 0; −1 0 0 −1; 1 1 1 −1] R

[1 0 1 1; 0 −1 1 0; −1 0 0 1; 2
9

1
3

− 2
9

0] R

[0 0 a1 a2; 0 1 a3 0; −1 0 1 1; 1 1 1 −2] R

[−2 0 −1 1; 0 0 1 0; −2 0 1 1; −4 −4 −1 1] R

[−2 0 −2 −2; 0 1 −1 0; 1 0 0 1; 1 1 1 1] R

[1 0 1 − 5
4
; 0 − 1

2
− 1

4
0; 1 0 1

2
−1; 1 1 1 −1] R

where a1 = 4 + 2
3

√
3, a2 = 2

3

√
3, a3 = 3 + 2

√
3

33 [0 0 1 −1; 0 0 −2 1; 1 1 0 1; 0 0 1 0] N

B [0 0 1 1; 0 0 1 1; −1 −1 −1 1; 0 0 1 1] R

[0 0 −1 1; 0 1 −1 1; 1 1 0 1; 0 0 1 −1] R

[1 0 −1 1
2
; 0 −1 1

2
1; 1 1 0 − 1

2
; 0 0 1 0] R

[0 0 1 −2; 0 1 1 −4; 1 1 1 −5; 0 0 1 −2] R

[1 0 1 − 1
3
; 0 −2 −1 7

3
; 1 1 0 −3; 0 0 1 1] R

[1 0 −1 2; 0 2 −3 −10; 1 1 −3 −3; 0 0 1 0] R

[1 0 −1 3
2
; 0 −1 1 1

2
; 1 1 1 −2; 0 0 1 −1] R

34 [0 0 2
3

− 1
3
; 0 1 −1 0; 1 1 0 − 2

3
; 0 1 1 −1] R

B [0 0 1 1; 0 1 1 0; 1 −1 −1 −1; 0 1 1 0] R

[1 0 −1 1; 0 −1 −1 0; 1 1 0 1; 0 1 1 0] R

[0 0 −1 1; 0 1 − 1
2

0; 1 1 1 − 3
2
; 0 2 1 −2] R

[1 0 −1 −1; 0 1 1 0; 1 1 0 −3; 0 1 1 −2] R

[1 0 −3 −1; 0 1 1 0; 1 1 −2 −1; 0 1 1 0] R

[1 0 −4 5; 0 −1 1 0; 1 −1 1 3; 0 1 1 −1] R

35 [0 0 1 −1; 0 0 1
2

− 1
2
; 0 1 0 1

2
; 1 0 1 0] N

B [0 0 1 −1; 0 0 1 −1; 0 1 1 −1; 1 0 1 −1] R

[0 0 1 −1; 0 1 1 −2; 0 1 0 −1; 1 0 1 −1] R

[0 0 −1 2; 0 1 1 −8; 0 1 −1 −4; 1 0 1 0] R

[1 0 −1 −1; 0 −1 2
3

1; 0 1 0 − 2
3
; 1 0 1 0] R

[0 0 −3 −3; 0 1 1 2; 0 1 −2 −1; 1 0 1 1] R

[1 0
√
3 −1; 0 −2 −1 a1; 0 1 0 −1; 1 0 1 1] R

[−1 0 −1 −2; 0 −1 −1 −1; 0 1 1 1; 1 0 1 1] R

where a1 = 3 +
√
3
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36 [0 0 1 1; 0 1 1 0; 0 −1 0 1; −1 2 1 −1] R

B [0 0 1 1; 0 1 1 0; 0 −2 −1 1; −1 3 2 0] R

[1 0 1 −1; 0 −1 −1 0; 0 1 0 1; 1 1 1 0] R

[0 0 2 −1; 0 1 −1 0; 0 1 1 −1; 1 3 1 −2] R

[1 0 1 −1; 0 1 −1 0; 0 1 0 −1; 1 1 1 −2] R

[1 0 3 −5; 0 −1 −1 0; 0 1 −1 4; 1 1 1 1] R

37 [0 0 −1 −1; 0 0 1 1; 1 1 0 1; 1 1 0 0] N

B [0 0 1 1; 0 0 1 2; −2 1 1 −1; −2 1 0 −1] R

[0 0 1 −1; 0 1 1 −2; 1 1 0 −1; 1 1 0 −1] R

[1 0 1 −4; 0 −1 1 1; 1 1 0 5
2
; 1 1 0 0] R

[0 0 −1 2; 0 1 1 −5; 1 1 1 −4; 1 1 0 −2] R

[1 0 −1 2
3
; 0 −2 1 − 11

3
; 1 1 0 1; 1 1 0 1] R

[1 0 −1 −1; 0 −1 1 −1; 1 1 1 − 3
2
; 1 1 0 −1] R

38 [0 0 1 −1; 0 0 − 1
2

1
2
; 1 1 0 1

2
; 1 0 1 0] N

B [0 0 −2 2; 0 0 2 −2; 2 1 1 −1; 1 0 1 −1] R

[0 0 1 − 1
2
; 0 1 −2 2; 1 1 0 1

2
; 1 0 1 −1] R

[0 0 1 1; 0 1 1 −4; − 1
2

− 1
2

−1 1; −1 0 1 0] R

[1 0 −1 1; 0 0 1 −1; 1 −2 0 1; 1 0 1 −1] R

[1 0 2 −2; 0 0 1
2

−1; − 3
4

1 −1 2; 1 0 1 0] R

[1 0 1 −2; 0 −1 1 5; 1 1 0 −1; 1 0 1 0] R

[0 0 1 −2; 0 1 1 −3; 1 1 1 −3; 1 0 1 −2] R

[1 0 −1 −4; 0 0 −2 −2; −1 1 1 2; 1 0 1 −2] R

[1 0 1 −2; 0 1 −1 1; −1 1 0 1; 1 0 1 −2] R

[1 0 −1 −2; 0 1 1 3; 1 1 −2 −1; 1 0 1 0] R

[1 0 1 −1; 0 −1 1 2; −1 1 1 −1; 1 0 1 −1] R

39 [0 0 −1 −1; 0 0 1 −1; 1 1 1 1; 1 1 1 −1] R

B [0 0 1 −1; 0 1 −1 5; − 1
3

−2 0 − 20
3
; 1 1 1 −1] R

[1 0 1
2

−2; 0 −1 − 1
2

1; −1 1 0 1; 1 1 1 0] R

[0 0 −1 − 4
3
; 0 1 1 2

3
; −1 −1 −2 − 7

3
; 1 1 1 1] R

[1 0 1 − 2
3
; 0 −2 −1 − 10

3
; 1 1 0 1; 1 1 1 1] R

[1 0 1
3

−1; 0 1 2
3

−1; 1 −2 −1 1; 1 1 1 −1] R

40 [1 0 0 −2; 1 a1 0 0; 1 a1 0 0; 0 1 − 1
2

a1] C

A [1 0 0 − 1
2
; 1 a1 0 0; 1 −1 a1 0; 0 1 1 0] C

[1 0 0 1; 1 −i 0 0; i 1 i 0; 0 −i 1 −1] C

where a1 = − 1
2
+

√
3

2
i

41 [0 1 2 1; −1 0 1 0; 0 0 1 1; 0 1 0 −1] R

A [0 1 −2 2; −1 1 1 0; 0 0 −1 1; 0 −1 0 0] R

[1 1 −1 2; −1 0 1 0; 0 0 0 1; 0 −1 0 −1] R

[1 1 −3 2; −1 0 1 0; 0 0 −1 1; 0 −1 0 0] R

[1 1 −1 1; −1 −1 1 0; 0 0 0 1; 0 1 0 0] R

[0 1 −6 2; −3 1 1 0; 0 0 −2 1; 0 −1 0 1] R

[1 1 − 1
3

2; −3 0 1 0; 0 0 1 1; 0 −1 0 −2] R

[1 1 − 1
3

3; −3 1 1 0; 0 0 0 1; 0 −1 0 −2] R

[1 1 1 1; −3 −2 6 0; 0 0 1 1
3
; 0 1 0 0] R

[1 1 1 1
2
; −2 −1 1 0; 0 0 1 1; 0 1

2
0 −1] R

42 [0 1 1 1; −1 0 0 0; 0 1 1 1; 0 −1 0 −1] R

A [0 1 1 1; −1 1 0 0; 0 − 1
2

0 −1; 0 − 1
2

0 −1] R

[0 1 1 1; −1 1 0 0; 0 −2 −1 −1; 0 1 0 0] R

[0 1 1 1; −3 1 0 0; 0 −2 −2 −2; 0 1
3

0 1] R

[1 1 1 1; −3 −2 0 0; 0 1 0 − 3
2
; 0 − 2

3
0 1] R

[1 1 1 1; −2 1 0 0; 0 −1 −1 − 1
2
; 0 −1 0 −1] R

43 [0 1 1 0; −1 0 1 0; 0 0 1 1; − 1
2

1
2

0 −1] R

A [0 1 −1 0; −1 1 1 0; 0 0 0 1; − 1
3

2
3

0 −1] R

[1 1 −1 0; −1 −1 1 0; 0 0 0 1; 1 1 0 0] C

[0 1 1 0; −3 1 1 0; 0 0 −2 1; 3 2 0 1] R

[1 1 −1 0; −3 −2 1 0; 0 0 0 1; 2 1 0 1] R

[1 1 −2 0; −2 1 1 0; 0 0 −1 1; −1 2 0 −1] R
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44 [0 −1 −1 0; 1 0 0 −2; 0 1 1 1; 1 0 0 −1] R

A [0 −1 −1 0; 1 1 0 − 3
2
; 0 1 0 − 1

2
; 1 0 0 −1] R

[1 −1 1 0; 1 0 0 −1; 0 1 0 −1; 1 0 0 −1] R

[1 −1 − 1
2

0; 1 −1 0 −1; 0 1 0 1; 1 0 0 0] R

[0 −3 1 0; 1 1 0 1
8
; 0 1 −2 35

8
; 1 0 0 1] R

[1 −3 6 0; 1 0 0 −2; 0 1 −2 − 7
6
; 1 0 0 1] R

[1 −3 −2 0; 1 −2 0 −1; 0 1 0 1; 1 0 0 1] R

[1 −2 11
3

0; 1 1 0 1; 0 1 −1 7
11

; 1 0 0 −1] R

45 [0 −2 1 −3; 1 0 −1 2; 1 0 1 0; 0 0 1 −1] R

A [0 1 −2 −2; 1 1 1 −5; 1 0 0 0; 0 0 1 −1] R

[0 1 1 1; −2 1 2 1; 1 0 −1 0; 0 0 1 0] R

[1 1 −1 1; −2 0 1 1
2
; −1 0 0 0; 0 0 −2 −1] R

[1 1 1 1; −2 −1 1 −1; 1 0 0 0; 0 0 −2 0] R

[0 1 1 1; −1 1 1 −1; −2 0 −2 0; 0 0 − 1
2

1] R

[1 −2 −1 1; 1 0 −1 1; 1 0 −2 0; 0 0 1 1] R

[1 −1 −2 5; 1 1 −1 1; 1 0 0 0; 0 0 1 −2] R

[1 −1 −2 1; 1 1 −1 −1; 1 0 −2 0; 0 0 1 0] R

[1 −1 −1 1; 1 1 −1 −1; 1 0 −1 0; 0 0 1 −1] R

46 [0 1 1 1; 1 0 1 0; −1 0 0 1; 0 1
2

0 0] N

A [0 1 −2 1; 1 0 −1 0; 1 0 1 −2; 0 1 0 −1] R

[0 1 1 2; -2 1 1 0; 1 0 0 1; 0 − 1
3

0 −1] R

[0 1 −2 −2; 1 1 1 0; 1 0 −1 −2; 0 1 0 0] R

[1 1 1 1; 1 0 1 0; −2 0 0 −4; 0 −1 0 −1] R

[1 −2 1 −6; 1 0 −2 0; 1 0 −1 −2; 0 1 0 0] R

[1 −2 1 −6; 1 −1 −1 0; 1 0 0 −3; 0 1 0 0] R

[0 −4 1 7; 1 1 1 0; 1 0 1 2; 0 1 0 −2] R

[1 −1 −2 2; 1 0 −2 0; 1 0 1 − 3
2
; 0 1 0 −2] R

[1 −1 −2 11
2
; 1 1 −1 0; 1 0 0 1

2
; 0 1 0 −2] R

[1 −1 −2 2; 1 1 −2 0; 1 0 −2 1; 0 1 0 0] R

[−1 1 1 1; −1 −1 2 0; −1 0 1 1
2
; 0 2 0 1] R

47 [0 1 −2 0; 1 0 1 −1; 1 0 1 −1; 1 0 0 −1] R

A [0 1 −2 0; 1 1 1 −4; 1 0 0 −1; 1 0 0 −1] R

[0 1 −2 0; 1 1 −5 6; 1 0 −1 2; 1 0 0 0] R

[1 1 −2 0; 1 0 1 −2; 1 0 0 −1; 1 0 0 −1] R

[1 1 −2 0; 1 0 1 − 2
3
; 1 0 −1 2

3
; 1 0 0 0] R

[1 − 1
2

− 1
2

0; 1 −1 −1 −1; 1 0 0 1; 1 0 0 0] R

[0 1 1 0; −1 −2 −2 1; −2 0 1 1; −1 0 0 1] R

[1 −4 1 0; 1 0 −1 − 4
5
; 1 0 1 − 16

5
; 1 0 0 −2] R

[−2 1 1 0; −2 1 2 1; −1 0 0 −1; 1 0 0 1] R

[−2 1 1 0; −2 1 −1 1; −1 0 1 − 1
2
; −4 0 0 0] R

[1 −1 −1 0; 1 1 1 −2; 1 0 −1 −1; 1 0 0 −1] R

48 [0 1
2

− 1
2

1; 0 0 −1 1; 0 1 0 1; 1 0 0 0] N

A [0 1 2 2; 0 0 1 1; 0 1 1 1; −1 0 0 −1] R

[0 1 1 1; 0 1 1 1; 0 1 −1 −1; −2 0 0 0] R

[1 1 1 1; 0 0 −1 − 4
3
; 0 2 0 4

3
; 1 0 0 −1] R

[0 1 1 1; 0 1 1 1; 0 −2 1 −5; −1 0 0 −2] R

[1 1 1 1; 0 0 −1 − 1
2
; 0 2 1 − 5

2
; −1 0 0 −2] R

[1 1 1 1; 0 1 1 −1; 0 −1 −1 1; −1 0 0 −1] R

49 [0 1 1 1; 0 0 1 1; 0 1 0 0; −1 0 1 0] N

A [0 2 4 −2; 0 0 1 −1; 0 1 1 0; 1 0 1 −1] R

[0 2 −2 1; 0 1 −2 1; 0 1 0 0; 1 0 1 −1] R

[0 1 1 1; 0 1 1 1; 0 −2 −1 0; 1 0 1
2

0] R

[1 1 − 1
4

1; 0 0 1 −2; 0 −2 −1 0; 1 0 − 1
4

0] R

[0 1 − 1
2

1; 0 −2 1 −2; 0 −1 1 0; −2 0 − 1
2

1] R

[1 1 1
2

1; 0 0 1 −1; 0 −1 −2 0; −2 0 2 1] R

[−1 1 −2 1; 0 −1 1 1; 0 −1 1 0; −1 0 −1 1] R
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50 [0 1 0 1; 0 0 1 1; - 2
9

2
3

0 0; - 2
3

0 2 0] N

A [0 −2 0 −2; 0 0 1 −1; 1 1 1 0; 1 0 1 −1] R

[0 2
3

0 1; 0 1 −2 1; 5 1 −1 0; 1 0 1 0] R

[0 1 0 1; 0 1 1 1; -2 1 1 0; 4 0 2 −2] R

[−1 1 0 1; 0 1 1 4; 4 −1 −1 0; −1 0 1 1] R

51 [0 1 1 1; −1 0 −2 −1; 1 0 1 1; −1 0 0 −1] R

A [0 −1 −1 1; 1 1 1 −2; 1 0 0 −1; 1 0 0 −1] R

[1 −1 −1 1; 1 0 −2 1; 1 0 0 −1; 1 0 0 −1] R

[1 1 1 1; −2 0 2 2; −1 0 −1 −1; 2 0 0 0] R

[0 −1 −1 −1; 1 1 1 −1; 1 0 1 −2; 1 0 0 −2] R

[−2 1 1 1; −5 0 −2 −5; 1 0 1 1; 1 0 0 1] R

[1 −1 −1 −1; 1 1 −1 −1; 1 0 0 −2; 1 0 0 −2] R

[−1 1 1 1; 1 −1 −1 −1; −2 0 1 1; −1 0 0 1] R

52 [0 1 1 1; − 1
5

0 −1 0; − 2
5

0 0 1
2
; 3

5
1 0 0] N

A [0 1 −1 −1; 1 0 1 0; 1 0 1 1; 1 1 0 −1] R

[1 2 −2 −1; 1 0 1 0; 1 0 0 1; 1 1 0 −1] R

[0 −1 −1 −1; 1 1 −1 0; 1 0 1 −1; 1 −1 0 −2] R

[−2 1 1 1; −1 0 1 0; −1 0 1 1; −1 1 0 1] R

[1 2 1 −1; −1 1 2 0; 1 0 −2 − 1
3
; 1 1 0 −1] R

53 [0 2 1 1; 1 0 3
2

1; 1 −2 0 0; 0 0 1 0] N

A [0 1 1 1; −1 0 1 −1; − 1
2

1
2

1 0; 0 0 −1 −1] R

[0 1 1 1; 1 1 1 1; −1 −1 0 0; 0 0 −1 −1] R

[0 1 −1 1; 1 1 1 2; 1 −1 −1 0; 0 0 4 0] R

[1 1 1 1; −1 −1 −1 −1; 1 1 0 0; 0 0 1 0] R

[0 1 1 1; −1 1 1 4
5
; −1 −1 1 0; 0 0 − 10

3
−2] R

[1 1 1 1; −1 1 1 2; −1 −1 0 0; 0 0 −2 −2] R

[1 1 1 1; −1 1 1 1
2
; −3 1 −2 0; 0 0 − 12

5
0] R

[1 1 1 1; −1 −1 −1 −1; −2 −1 1 0; 0 0 −1 −1] R

54 [0 −1 −1 2; 1 0 −1 1
2
; 0 1 0 − 3

2
; 1 0 0 0] N

A [0 2 2
3

−1; 1 0 −2 1
2
; 0 1 1 −1; 1 0 0 −1] R

[0 1 −1 −1; 1 1 −1 −2; 0 1 0 −2; 1 0 0 −1] R

[0 −1 1 −1; 1 1 1 1; 0 1 −1 1; 1 0 0 0] R

[1 −1 1 1; 1 0 −1 − 3
2
; 0 1 0 − 3

2
; 1 0 0 −1] R

[1 1 −1 −1; 1 0 −1 −1; 0 1 −1 −1; 1 0 0 0] R

[1 −1 2
3

−1; 1 −1 1 −2; 0 1 0 −1; 1 0 0 0] R

[0 −1 1 −1; 1 1 −1 −1; 0 1 1 1; 1 0 0 −2] R

[1 −1 −1 −1; 1 0 −1 −3; 0 1 1 −1; 1 0 0 −2] R

[−2 1 1 1; −2 1 1 1; 0 1 0 − 1
2
; −2 0 0 1] R

[1 −1 1 −1; 1 1 −1 1; 0 1 −2 4; 1 0 0 0] R

[1 −1 −1 −2; 1 −1 1 −2; 0 1 1 1; 1 0 0 −1] R

55 [0 1 1 1; 2 0 1 0; 0 −1 0 1; −1 1 0 0] N

A [0 −1 −1 −1; 1 0 1 0; 0 1 1 1; 1 1 0 −1] R

[0 1 −1 −1; 1 1 −1 0; 0 1 0 a1; 1 a2 0 −1] R

[0 2 − 5
3

−1; 1 1 −2 0; 0 1 −1 −1; 1 −2 0 0] R

[1 −2 2 −1; 1 −1 2 0; 0 1 0 1; 1 −1 0 0] R

[0 −1 1
2

−1; 1 1 −1 0; 0 1 1 1; 1 −1 0 −2] R

[−2 1 −4 1; 1 1 1 0; 0 −2 0 2; −2 −7 0 1] R

[−1 1 1
2

1; 2 1 1 0; 0 −2 −1 −2; −2 1
2

0 1] R

where a1 = − 2

1+
√

3
, a2 = 1 +

√
3

56 [0 1 0 1; 2 0 1 1; 1 −1 0 −1; −1 0 0 0] N

A [0 −1 0 −1; 1 0 1 1; 1 1 1 2; 1 0 0 −1] R

[0 1 0 1; −1 1 1 2; 1 −1 0 −2; 1 0 0 −1] R

[0 1 0 −1; 1 1 1 −2; 1 −1 −1 2; 1 0 0 0] R

[1 1 0 −1; 1 −1 −1 1; 1 1 0 −1; 1 0 0 0] R

[0 −1 0 −1; 1 1 1 −4; 1 −1 1 −6; 1 0 0 −2] R

[1 −1 0 −4; 1 1 −2 4; 1 −1 0 −4; 1 0 0 −2] R

[1 −2 0 −1; 1 1 −1 −1; 1 −1 −1 −1; 1 0 0 −1] R

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 22, pp. 931-958, September 2011



ELA

958 N. Campbell, K.N. Vander Meulen, and A. Van Tuyl

57 [0 −1 1 − 1
2
; −1 0 −1 1; − 1

2
1 0 − 1

2
; −1 0 0 0] N

A [0 1 1 1; −2 0 1 2; −1 1 1 2; 1 0 0 −1] R

[0 1 −2 −2; 1 1 −2 −2; 1 −1 −1 1
2
; 1 0 0 0] R

[1 −1 2 −1; 1 0 1 − 8
5
; 1 −1 0 1

5
; 1 0 0 −1] R

[1 −1 2 −1; 1 0 −1 4
3
; 1 1 −1 − 1

3
; 1 0 0 0] R

[0 −1 −1 −2; 1 1 1 −1; 1 1 1 1; 1 0 0 −2] R

[1 −1 −1 −2; 1 0 1 −2; 1 1 1 −2; 1 0 0 −2] R

[1 −1 −1 − 1
2
; 1 −2 1 − 5

2
; 1 − 1

2
1 −1; 1 0 0 0] R

[1 −1 −1 −1; 1 1 −1 1; 1 −1 −1 −1; 1 0 0 −1] R

58 [0 −1 1 −1; 1 0 1 −1; 1 1 0 0; 1 0 1
2

0] N

A [0 2 −1 −1; 1 0 1 −1; 1 −1 1 0; 1 0 1 −1] R

[0 −1 −1 2; 1 1 1 −4; 1 −1 −1 0; 1 0 − 2
3

0] R

[−1 −2 1 −1; 1 0 1 −1; 1 1 0 0; 1 0 1 1] R

[1 −1 a1 a2; 1 0
√

3

3
−1; 1 1 −1 0; 1 0 −1 0] R

[0 1 1 −1; −1 −2 −2 1; 1 1 1 0; 1 0 1 1] R

[−2 1 1 −6; 1 0 1 1; 1 1 1 0; 1 0 1 1] R

[1 1 1 1; 1
11

1 4
11

2
11

; −1 −3 −2 0; −1 0 −1 0] R

[1 −1 1 −1; 1 −1 1 − 1
2
; 1 −1 1 0; 1 0 1 −1] R

where a1 = 2
√

3

3
− 1, a2 = 1 −

√
3

59 [0 1 1 1; 0 0 −2 1; 1
2

− 5
24

1 −1; −1 − 11
12

0 −1] R

A [0 1 1 1; 0 1 1 −1; −2 4 0 −4; −1 2 0 −1] R

[0 1 1 1; 0 1 1 −1; −3 5 −1 1; −1 2 0 0] R

[0 1 1 1; 0 1 −1 1; 1 1 1 1; −1 −2 0 −2] R

[1 1 1 1; 0 1 1 −1; −1 1 −1 1; −1 1 0 −1] R

60 [0 2 −2 2; 1 0 1 −1; 1 −1 0 4; 1 1 0 0] N

A [0 1 2 −1; −1 0 1 − 1
2
; − 1

10
9
20

1 1; 1
5

1
10

0 −1] R

[0 1 1 1; −1 1 1 1; 2 −2 0 2; −1 1 0 −1] R

[1 1 1 1; −1 −1 1 −1; 1 1 0 1; −1 1 0 0] R

[0 1 1 1; −1 1 1 1; 2
3

1 1 1; −3 − 2
3

0 −2] R

[1 1 −2 − 1
5
; 1 −2 1 − 4

5
; 1 −1 0 − 3

5
; 1 1 0 1] R

[1 1 1 1; −1 −1 −2 −3; −1 −1 1 3; 1 1 0 −1] R

61 [0 −2 − 4
3

4
3
; 1 0 4

3
− 4

3
; 1 1 0 2; 1 1 1 0] N

A [0 1 1 1; −1 0 2 −6; −2 1 1 5; 1 1 1 −1] R

[0 1 1 1; −1 1 1
2

1; −1 − 1
2

1 1; −1 41
8

− 39
8

−2] R

[1 1 1 1; −1 −1 −1 −1; 1 1 1 1; −1 −1 −1 −1] R
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