WEIGHTED-EP ELEMENTS IN C^{*}-ALGEBRAS*

DIJANA MOSIĆ ${ }^{\dagger}$ AND DRAGAN S. DJORDJEVIĆ ${ }^{\dagger}$

Abstract

The weighted-EP elements in C*-algebras are defined and characterized.

Key words. EP elements, Moore-Penrose inverse, Group inverse, C^{*}-algebra.

AMS subject classifications. 46L05, 47A05.

1. Introduction. There are many equivalent characterizations of EP elements in a ring or C^{*}-algebra (see, for example, $[10,19,21,23,24,27]$), many more still for Banach or Hilbert space operators and matrices (see $[1,2,3,4,5,7,8,9,11,13,16,18$, $22,26]$). In [30], Tian and Wang defined weighted-EP matrices and presented characterizations of weighted-EP matrices using various rank formulas for matrices. In this paper, weighted-EP elements of C^{*}-algebras are studied using different methods, extending the results from [30] to more general settings.

Let \mathcal{A} be a unital C^{*}-algebra with the unit 1 . An element $a \in \mathcal{A}$ is regular if there exists some $b \in \mathcal{A}$ satisfying $a b a=a$. The set of all regular elements of \mathcal{A} is denoted by \mathcal{A}^{-}. An element $a \in \mathcal{A}$ satisfying $a^{*}=a$ is called symmetric (or Hermitian). An element $x \in \mathcal{A}$ is positive if $x=y^{*} y$ for some $y \in \mathcal{A}$. Alternatively, $x \in \mathcal{A}$ is positive if x is Hermitian and $\sigma(x) \subseteq[0,+\infty)$, where the spectrum of element x is denoted by $\sigma(x)$.

An element $a \in \mathcal{A}$ is group invertible if there exists $a^{\#} \in \mathcal{A}$ such that

$$
a a^{\#} a=a, \quad a^{\#} a a^{\#}=a^{\#}, \quad a a^{\#}=a^{\#} a .
$$

Recall that $a^{\#}$ is uniquely determined by these equations. The group inverse $a^{\#}$ exists if and only if $a \mathcal{A}=a^{2} \mathcal{A}$ and $\mathcal{A} a=\mathcal{A} a^{2}$ if and only if $a \in a^{2} \mathcal{A} \cap \mathcal{A} a^{2}$ (see [12, 28]). We use $\mathcal{A}^{\#}$ to denote the set of all group invertible elements of \mathcal{A}. The group inverse $a^{\#}$ double commutes with a, that is, $a x=x a$ implies $a^{\#} x=x a^{\#}[6,11]$.

An element $a^{\dagger} \in \mathcal{A}$ is the Moore-Penrose inverse (or MP-inverse) of $a \in \mathcal{A}$, if

[^0]the following hold [29]:
$$
a a^{\dagger} a=a, \quad a^{\dagger} a a^{\dagger}=a^{\dagger}, \quad\left(a a^{\dagger}\right)^{*}=a a^{\dagger}, \quad\left(a^{\dagger} a\right)^{*}=a^{\dagger} a
$$

There is at most one a^{\dagger} such that above conditions hold (see [14, 17]). The set of all Moore-Penrose invertible elements of \mathcal{A} will be denoted by \mathcal{A}^{\dagger}.

Theorem 1.1. [14] In a unital C^{*}-algebra \mathcal{A}, $a \in \mathcal{A}$ is MP-invertible if and only if a is regular.

Definition 1.2. Let \mathcal{A} be a unital C^{*}-algebra, and let e and f be invertible positive elements in \mathcal{A}. The element $a \in \mathcal{A}$ has the weighted $M P$-inverse with weights e and f if there exists $b \in \mathcal{A}$ such that

$$
a b a=a, \quad b a b=b, \quad(e a b)^{*}=e a b, \quad(f b a)^{*}=f b a .
$$

The unique weighted MP-inverse with weights e and f will be denoted by $a_{e, f}^{\dagger}$ if it exists [6]. The set of all weighted MP-invertible elements of \mathcal{A} with weights e and f will be denoted by $\mathcal{A}_{e, f}^{\dagger}$.

Theorem 1.3. [6] Let \mathcal{A} be a unital C^{*}-algebra and let e and f be positive invertible elements of \mathcal{A}. If $a \in \mathcal{A}$ is regular, then the unique weighted $M P$-inverse $a_{e, f}^{\dagger}$ exists and

$$
a_{e, f}^{\dagger}=f^{-1 / 2}\left(e^{1 / 2} a f^{-1 / 2}\right)^{\dagger} e^{1 / 2}
$$

Define the mapping $x \mapsto x^{* e, f}=e^{-1} x^{*} f$, for all $x \in \mathcal{A}$. Notice that $(*, e, f)$: $\mathcal{A} \rightarrow \mathcal{A}$ is not an involution, because in general $(x y)^{* e, f} \neq y^{* e, f} x^{* e, f}$. Now, we formulate the following result which can be proved directly by the definition of the weighted MP-inverse.

Theorem 1.4. Let \mathcal{A} be a unital C^{*}-algebra and let e and f be positive invertible elements of \mathcal{A}. For any $a \in \mathcal{A}^{-}$, the following hold:
(a) $\left(a_{e, f}^{\dagger}\right)_{f, e}^{\dagger}=a$;
(b) $\left(a^{* f, e}\right)_{f, e}^{\dagger}=\left(a_{e, f}^{\dagger}\right)^{* e, f}$;
(c) $a^{* f, e}=a_{e, f}^{\dagger} a a^{* f, e}=a^{* f, e} a a_{e, f}^{\dagger}$;
(d) $a^{* f, e}\left(a_{e, f}^{\dagger}\right)^{* e, f}=a_{e, f}^{\dagger} a$;
(e) $\left(a_{e, f}^{\dagger}\right)^{* e, f} a^{* f, e}=a a_{e, f}^{\dagger}$;
(f) $\left(a^{* f, e} a\right)_{f, f}^{\dagger}=a_{e, f}^{\dagger}\left(a_{e, f}^{\dagger}\right)^{* e, f}$;
(g) $\left(a a^{* f, e}\right)_{e, e}^{\dagger}=\left(a_{e, f}^{\dagger}\right) * e, f a_{e, f}^{\dagger}$;
(h) $a_{e, f}^{\dagger}=\left(a^{* f, e} a\right)_{f, f}^{\dagger} a^{* f, e}=a^{* f, e}\left(a a^{* f, e}\right)_{e, e}^{\dagger}$; and
(i) $\left(a^{* e, f}\right)_{f, e}^{\dagger}=a\left(a^{* f, e} a\right)_{f, f}^{\dagger}=\left(a a^{* f, e}\right)_{e, e}^{\dagger} a$.

For $a \in \mathcal{A}$, consider two annihilators

$$
a^{\circ}=\{x \in \mathcal{A}: a x=0\}, \quad{ }^{\circ} a=\{x \in \mathcal{A}: x a=0\} .
$$

Note that

$$
\left(a^{*}\right)^{\circ}=a^{\circ} \Leftrightarrow{ }^{\circ}\left(a^{*}\right)={ }^{\circ} a, \quad a \mathcal{A}=a^{*} \mathcal{A} \Leftrightarrow \mathcal{A} a=\mathcal{A} a^{*} .
$$

Lemma 1.5. [10] For $a \in \mathcal{A}, a \in \mathcal{A}^{-} \Leftrightarrow \mathcal{A}=\left(a^{*} \mathcal{A}\right) \oplus a^{\circ}$.
The following result is very useful in the rest of paper and can be verified by properties of the weighted MP-inverse.

Lemma 1.6. Let $a \in \mathcal{A}^{-}$, and let e and f be invertible positive elements in \mathcal{A}. Then
(a) $a_{e, f}^{\dagger} \mathcal{A}=a_{e, f}^{\dagger} a \mathcal{A}=f^{-1} a^{*} \mathcal{A}$;
(b) $\left(a_{e, f}^{\dagger}\right)^{*} \mathcal{A}=\left(a a_{e, f}^{\dagger}\right)^{*} \mathcal{A}=e a \mathcal{A}$;
(c) $a^{\circ}=(e a)^{\circ}$;
(d) $\left(a^{*}\right)^{\circ}=\left(f^{-1} a^{*}\right)^{\circ}$;
(e) $\left(a_{e, f}^{\dagger}\right)^{\circ}=\left[(e a)^{*}\right]^{\circ}$; and
(f) $\left[\left(a_{e, f}^{\dagger}\right)^{*}\right]^{\circ}=\left(a f^{-1}\right)^{\circ}$;

Now, we state an important result related to the weighted Moore-Penrose inverse. In [19, Lemma 1.5], the following result is proved for the ordinary Moore-Penrose inverse. Observe that conditions (1.1) and (1.2) also appear in the proof of $[15$, Theorem 10] for the ordinary Moore-Penrose inverse.

Lemma 1.7. Let $a \in \mathcal{A}^{-}$, and let e and f be invertible positive elements in \mathcal{A}. Then

$$
\begin{equation*}
a_{e, f}^{\dagger}=\left(a^{* f, e} a+1-a_{e, f}^{\dagger} a\right)^{-1} a^{* f, e}=a^{* f, e}\left(a a^{* f, e}+1-a a_{e, f}^{\dagger}\right)^{-1}, \tag{1.1}
\end{equation*}
$$

$$
\begin{gather*}
a^{* f, e} \mathcal{A}^{-1}=a_{e, f}^{\dagger} \mathcal{A}^{-1} \text { and } \mathcal{A}^{-1} a^{* f, e}=\mathcal{A}^{-1} a_{e, f}^{\dagger}, \tag{1.2}\\
\left(a^{* f, e}\right)^{\circ}=\left(a_{e, f}^{\dagger}\right)^{\circ} \text { and }^{\circ}\left(a^{* f, e}\right)={ }^{\circ}\left(a_{e, f}^{\dagger}\right) . \tag{1.3}
\end{gather*}
$$

Proof. By Theorem 1.4, we can verify

$$
a^{* f, e}=\left(a^{* f, e} a+1-a_{e, f}^{\dagger} a\right) a_{e, f}^{\dagger}=a_{e, f}^{\dagger}\left(a a^{* f, e}+1-a a_{e, f}^{\dagger}\right),
$$

$$
\left(a^{* f, e} a+1-a_{e, f}^{\dagger} a\right)^{-1}=a_{e, f}^{\dagger}\left(a_{e, f}^{\dagger}\right)^{* e, f}+1-a_{e, f}^{\dagger} a
$$

and

$$
\left(a a^{* f, e}+1-a a_{e, f}^{\dagger}\right)^{-1}=\left(a_{e, f}^{\dagger}\right)^{* e, f} a_{e, f}^{\dagger}+1-a a_{e, f}^{\dagger} .
$$

Thus, the part (1.1) holds and it implies the equalities (1.2) and (1.3).
We recall the definition of EP elements.
Definition 1.8. An element $a \in \mathcal{A}^{-}$is $E P$ if $a a^{\dagger}=a^{\dagger} a$.
Lemma 1.9. [19] An element $a \in \mathcal{A}$ is $E P$, if $a \in \mathcal{A}^{-}$and $a \mathcal{A}=a^{*} \mathcal{A}$ (or, equivalently, if $a \in \mathcal{A}^{-}$and $\left.a^{\circ}=\left(a^{*}\right)^{\circ}\right)$.

The condition $a \mathcal{A}=a^{*} \mathcal{A}$ gave the EP elements their name for equal projections onto the range of a and a^{*} in the case of matrices and closed range Hilbert space operators. These elements are important since they are characterized by commutativity with their Moore-Penrose inverse. Also notice that EP elements are those elements for which the group and the Moore-Penrose inverse exist and coincide.

In this paper, as an extension of EP elements, we are concerned with elements of a C^{*}-algebra which commute with their weighted Moore-Penrose inverse. These elements are called weighted-EP elements. In particular, we give several equivalent conditions for an element of C^{*}-algebra to be weighted-EP. The motivation for this paper is an interesting paper by Tian and Wang [30]. They studied such characterizations for weighted-EP complex square matrices.

We conclude this section with the following results on the reverse order law for the Moore-Penrose inverse of a product, which will be used later.

Lemma 1.10. [25, Theorem 2.4] Let \mathcal{A} be a unital C^{*}-algebra and let $a, b, a b \in$ \mathcal{A}^{-}. Then the following conditions are equivalent:
(a) $(a b)^{\dagger}=b^{\dagger} a^{\dagger}$;
(b) $a^{*} a b=b b^{\dagger} a^{*} a b$ and $a b b^{*}=a b b^{*} a^{\dagger} a$.

Theorem 1.11. Let \mathcal{A} be a unital C^{*}-algebra and let $a, b, a b \in \mathcal{A}^{-}$. Then $(a b)^{\dagger}=b^{\dagger} a^{\dagger}$ if and only if $a^{*} a b \mathcal{A} \subseteq b \mathcal{A}$ and $b b^{*} a^{*} \mathcal{A} \subseteq a^{*} \mathcal{A}$.

Proof. \Longrightarrow : If $(a b)^{\dagger}=b^{\dagger} a^{\dagger}$, then, by Lemma 1.10, $a^{*} a b=b b^{\dagger} a^{*} a b$ and $a b b^{*}=$ $a b b^{*} a^{\dagger} a$ which imply

$$
b b^{*} a^{*}=\left(a b b^{*}\right)=\left(a b b^{*} a^{\dagger} a\right)^{*}=a^{*}\left(a^{\dagger}\right)^{*} b b^{*} a^{*}
$$

Hence, $a^{*} a b \mathcal{A} \subseteq b \mathcal{A}$ and $b b^{*} a^{*} \mathcal{A} \subseteq a^{*} \mathcal{A}$.
$\Longleftarrow:$ Conversely, from $a^{*} a b \mathcal{A} \subseteq b \mathcal{A}$ and $b b^{*} a^{*} \mathcal{A} \subseteq a^{*} \mathcal{A}$, we conclude that $a^{*} a b=$ $b x$, for some $x \in \mathcal{A}$, and $b b^{*} a^{*}=a^{*} y$, for some $y \in \mathcal{A}$. Then the equalities

$$
b b^{\dagger} a^{*} a b=b b^{\dagger} b x=b x=a^{*} a b
$$

and

$$
a b b^{*} a^{\dagger} a=\left(a^{\dagger} a b b^{*} a^{*}\right)^{*}=\left(a^{\dagger} a a^{*} y\right)^{*}=\left(a^{*} y\right)^{*}=\left(b b^{*} a^{*}\right)^{*}=a b b^{*}
$$

imply $(a b)^{\dagger}=b^{\dagger} a^{\dagger}$, by Lemma 1.10.
2. Weighted-EP elements in C^{*}-algebras. First, we state the definition of weighted-EP elements in C^{*}-algebras.

Definition 2.1. An element $a \in \mathcal{A}$ is said to be weighted-EP with respect to two invertible positive elements $e, f \in \mathcal{A}$ (or weighted-EP w.r.t. $(e, f))$ if both $e a$ and $a f^{-1}$ are EP, that is, $a \in \mathcal{A}^{-}, e a \mathcal{A}=(e a)^{*} \mathcal{A}$, and $a f^{-1} \mathcal{A}=\left(a f^{-1}\right)^{*} \mathcal{A}$.

In the following theorem, a number of necessary and sufficient conditions for an element to be weighted-EP are presented.

Theorem 2.2. Let \mathcal{A} be a unital C^{*}-algebra, and let e and f be invertible positive elements in \mathcal{A}. For $a \in \mathcal{A}^{-}$the following statements are equivalent:
(I) a is weighted-EP w.r.t. (e, f);
(II) a is weighted-EP w.r.t. (f, e);
(III) a is both weighted-EP w.r.t. (e,e) and w.r.t. (f, f);
(IV) $e a \mathcal{A}=f a \mathcal{A}=a^{*} \mathcal{A}$;
(V) $e^{-1} a^{*} \mathcal{A}=f^{-1} a^{*} \mathcal{A}=a \mathcal{A}$;
(VI) $a_{e, f}^{\dagger} \mathcal{A}=a \mathcal{A}$ and $\left(a_{e, f}^{\dagger}\right)^{*} \mathcal{A}=a^{*} \mathcal{A}$;
(VII) a^{*} is weighted-EP w.r.t. $\left(e^{-1}, f^{-1}\right)$;
(VIII) $a a_{e, f}^{\dagger}=a_{e, f}^{\dagger} a$;
(IX) $a \in \mathcal{A}^{\#}$ and $a^{k}=a_{e, f}^{\dagger} a a^{k}=a^{k} a a_{e, f}^{\dagger}$, for any/some integer $k \geq 1$;
(X) $a_{e, f}^{\dagger}=a\left(a_{e, f}^{\dagger}\right)^{2}=\left(a_{e, f}^{\dagger}\right)^{2} a$;
(XI) $a \in \mathcal{A}^{\#}$ and $a^{\#}=a_{e, f}^{\dagger}$;
(XII) $a \in \mathcal{A}^{\#}$ and both eaa ${ }^{\#}$ and faa\# are Hermitian;
(XIII) $a \in \mathcal{A}^{\#}$ and $a^{\#} a_{e, f}^{\dagger}=a_{e, f}^{\dagger} a^{\#}$;
(XIV) $a \in \mathcal{A}^{\#}$ and $a a^{\#} a_{e, f}^{\dagger}=a_{e, f}^{\dagger} a^{\#} a$;
(XV) $a \in a_{e, f}^{\dagger} \mathcal{A}^{-1} \cap \mathcal{A}^{-1} a_{e, f}^{\dagger} ;$
(XVI) $a \in a_{e, f}^{\dagger} \mathcal{A} \cap \mathcal{A} a_{e, f}^{\dagger}$;
(XVII) $a \mathcal{A}^{-1}=f^{-1} a^{*} \mathcal{A}^{-1}$ and $\mathcal{A}^{-1} a=\mathcal{A}^{-1} a^{*} e$;
(xviii) $\mathcal{A}^{-1} a^{*}=\mathcal{A}^{-1} a f^{-1}$ and $a^{*} \mathcal{A}^{-1}=e a \mathcal{A}^{-1}$;
(XIX) there exists $x \in \mathcal{A}$ such that $a=e^{-1} a^{*} x a^{*} f$;
(XX) $a=\left(a e^{-1}\right)^{\dagger} a e^{-1} a f a(f a)^{\dagger}$;
(XXI) $a \in \mathcal{A}^{\#}$ and a^{k} is weighted-EP w.r.t. (e,f), for any/some integer $k \geq 1$;
(XXII) $a a^{*} a$ is weighted-EP w.r.t. (e, f);
(XXIII) $a^{\circ}=\left[(e a)^{*}\right]^{\circ}$ and $\left(a^{*}\right)^{\circ}=\left(a f^{-1}\right)^{\circ}$;
(XXIV) $\mathcal{A}=e^{-1} a^{*} \mathcal{A} \oplus\left(a^{*}\right)^{\circ}=a^{*} \mathcal{A} \oplus\left(a^{*} f\right)^{\circ}$;
(XXV) a^{\dagger} is weighted-EP w.r.t. $\left(e^{-1}, f^{-1}\right)$;
(XXVI) $a_{e, f}^{\dagger}$ is weighted-EP w.r.t. (e,f);
(XXVII) $a \in \mathcal{A}^{\#}$ and $a^{2 k-1}=a_{e, f}^{\dagger} a^{2 k+1} a_{e, f}^{\dagger}$, for any/some integer $k \geq 1$;
(XXVIII) $a \in \mathcal{A}^{\#}$ and $a a_{e, f}^{\dagger} a_{e, f}^{\dagger} a=a_{e, f}^{\dagger} a a a_{e, f}^{\dagger}$;
(XXIX) $a \in \mathcal{A}^{\#}$ and $a^{\#}$ is weighted-EP w.r.t. (e,f);
(XXX) $a \in \mathcal{A}^{\#}$ and $a a^{\#}=a a_{e, e}^{\dagger}=a a_{f, f}^{\dagger}\left(\right.$ or $\left.a a^{\#}=a_{e, e}^{\dagger} a=a_{f, f}^{\dagger} a\right)$;
(XXXI) $a \in \mathcal{A}^{\#}$ and $a a^{\#}=a a_{e, f}^{\dagger}=a a_{f, e}^{\dagger}\left(\right.$ or $\left.a a^{\#}=a_{f, e}^{\dagger} a=a_{e, f}^{\dagger} a\right)$;
(XXXII) $a \in \mathcal{A}^{\#}, a a_{e, e}^{\dagger} e^{-1} a^{*} a=e^{-1} a^{*} a a a_{e, e}^{\dagger}$ and $a a_{f, f}^{\dagger} f^{-1} a^{*} a=f^{-1} a^{*} a a a_{f, f}^{\dagger}$;
(XXXIII) $a \in \mathcal{A}^{\#}, a a_{e, f}^{\dagger} e^{-1} a^{*} a=e^{-1} a^{*} a a a_{e, f}^{\dagger}$ and $a a_{f, e}^{\dagger} f^{-1} a^{*} a=f^{-1} a^{*} a a a_{f, e}^{\dagger}$;
(XXXIV) $a \in \mathcal{A}^{\#}, a_{e, e}^{\dagger} a a a^{*} e=a a^{*} e a_{e, e}^{\dagger} a$ and $a_{f, f}^{\dagger} a a a^{*} f=a a^{*} f a_{f, f}^{\dagger} a$;
(XXXV) $a \in \mathcal{A}^{\#}, a_{f, e}^{\dagger} a a a^{*} e=a a^{*} e a_{f, e}^{\dagger} a$ and $a_{e, f}^{\dagger} a a a^{*} f=a a^{*} f a_{e, f}^{\dagger} a$;
(XXXVI) $a \in \mathcal{A}^{\#}$ and $a^{k} a a_{e, f}^{\dagger}+a_{e, f}^{\dagger} a a^{k}=2 a^{k}$, for any/some integer $k \geq 1$;
(XXXVII) $a \in \mathcal{A}^{\#}$ and $a_{e, f}^{\dagger} a^{\#} a+a a^{\#} a_{e, f}^{\dagger}=2 a_{e, f}^{\dagger}$;
(XXXVIII) $a \in \mathcal{A}^{\#}$ and $a^{* f, e}=a^{* f, e} a a^{\#}=a^{\#} a a^{* f, e}$;
(XXXIX) $a \in \mathcal{A}^{\#}$ and $a^{* f, e} a a^{\#}+a^{\#} a a^{* f, e}=2 a^{* f, e}$;
(XL) $a \in \mathcal{A}^{\#}$ and $a^{k} a a_{e, f}^{\dagger}+\left(a^{k} a a_{e, f}^{\dagger}\right)^{*}=a_{e, f}^{\dagger} a a^{k}+\left(a_{e, f}^{\dagger} a a^{k}\right)^{*}=a^{k}+\left(a^{k}\right)^{*}$, for any/some integer $k \geq 1$;
(XLI) $a a_{e, f}^{\dagger}\left(a+\lambda a_{e, f}^{\dagger}\right)=\left(a+\lambda a_{e, f}^{\dagger}\right) a a_{e, f}^{\dagger}$ and $a_{e, f}^{\dagger} a\left(a+\lambda a_{e, f}^{\dagger}\right)=\left(a+\lambda a_{e, f}^{\dagger}\right) a_{e, f}^{\dagger} a$, for any/some complex number $\lambda \neq 0$;
(XLII) $a b=b a \Rightarrow a_{e, f}^{\dagger} b=b a_{e, f}^{\dagger}$;
(XLIII) $a_{e, f}^{\dagger}=f(a)$, for some function f holomorphic in a neighbourhood of $\sigma(a)$;
(XLIV) $\left(a+\lambda a_{e, e}^{\dagger}\right) \mathcal{A}=\left(a+\lambda a_{f, f}^{\dagger}\right) \mathcal{A}=\left(\lambda a+a^{3}\right) \mathcal{A}$ and $\mathcal{A}\left(a+\lambda a_{e, e}^{\dagger}\right)=\mathcal{A}\left(a+\lambda a_{f, f}^{\dagger}\right)=$ $\mathcal{A}\left(\lambda a+a^{3}\right)$, for any/some complex number $\lambda \neq 0$;
(XLV) $\left(a+\lambda a_{e, f}^{\dagger}\right) \mathcal{A}=\left(\lambda a+a^{3}\right) \mathcal{A}$ and $\mathcal{A}\left(a+\lambda a_{e, f}^{\dagger}\right)=\mathcal{A}\left(\lambda a+a^{3}\right)$, for any/some complex number $\lambda \neq 0$;
(XLVI) $\left(a+\lambda a_{e, e}^{\dagger}\right)^{\circ}=\left(a+\lambda a_{f, f}^{\dagger}\right)^{\circ}=\left(\lambda a+a^{3}\right)^{\circ} a n d^{\circ}\left(a+\lambda a_{e, e}^{\dagger}\right)={ }^{\circ}\left(a+\lambda a_{f, f}^{\dagger}\right)=$ ${ }^{\circ}\left(\lambda a+a^{3}\right)$, for any/some complex number $\lambda \neq 0$;
(XLVII) $\left(a+\lambda a_{e, f}^{\dagger}\right)^{\circ}=\left(\lambda a+a^{3}\right)^{\circ}$ and ${ }^{\circ}\left(a+\lambda a_{f, e}^{\dagger}\right)={ }^{\circ}\left(\lambda a+a^{3}\right)$, for any/some complex number $\lambda \neq 0$;
(XLVIII) $a \in \mathcal{A}^{\#}$ and $\left(a_{e, f}^{\dagger}\right)^{2} a^{\#}=a_{e, f}^{\dagger} a^{\#} a_{e, f}^{\dagger}=a^{\#}\left(a_{e, f}^{\dagger}\right)^{2}$;
(XLIX) $a \in \mathcal{A}^{\#}$ and $a\left(a_{e, f}^{\dagger}\right)^{2}=a^{\#}=\left(a_{e, f}^{\dagger}\right)^{2} a$;
(L) $a \in \mathcal{A}^{\#}, a^{* f, e} a_{e, f}^{\dagger}=a^{* f, e} a^{\#}$ and $a_{e, f}^{\dagger} a^{* f, e}=a^{\#} a^{* f, e}$;
(LI) $a \in \mathcal{A}^{\#}$ and $\left(a_{e, f}^{\dagger}\right)^{2}=\left(a^{\#}\right)^{2}$;
(LII) $a^{* e, f}=a^{* e, f} a_{e, f}^{\dagger} a=a a_{e, f}^{\dagger} a^{* e, f}$;
(LIII) $a \in \mathcal{A}^{\#}$ and $\left(a^{\#}\right)^{* e, f}=a a^{\#}\left(a^{\#}\right)^{* e, f}=\left(a^{\#}\right)^{* e, f} a^{\#} a\left(\right.$ or $\left(a^{\#}\right)^{* f, e}=$ $\left.a a^{\#}\left(a^{\#}\right)^{* f, e}=\left(a^{\#}\right)^{* f, e} a^{\#} a\right) ;$
(LIV) $a \in \mathcal{A}^{\#}$ and $a_{e, f}^{\dagger}\left(a^{\#}\right)^{2}=\left(a^{\#}\right)^{2} a_{e, f}^{\dagger}$;
(LV) $a \in \mathcal{A}^{\#}$ and $a^{k} a_{e, f}^{\dagger}=a_{e, f}^{\dagger} a^{k}$, for any/some integer $k \geq 1$;
(LVI) $a a_{e, f}^{\dagger}\left(a+\lambda a^{* e, f}\right)=\left(a+\lambda a^{* e, f}\right) a a_{e, f}^{\dagger}$ and $a_{e, f}^{\dagger} a\left(a+\lambda a^{* e, f}\right)=\left(a+\lambda a^{* e, f}\right) a_{e, f}^{\dagger} a$, for any/some complex number $\lambda \neq 0$;
(LVII) $a \in \mathcal{A}^{\#}, a a_{e, e}^{\dagger}\left(a a^{*} e-e^{-1} a^{*} a\right)=\left(a a^{*} e-e^{-1} a^{*} a\right) a a_{e, e}^{\dagger}$ and $a a_{f, f}^{\dagger}\left(a a^{*} f-\right.$ $\left.f^{-1} a^{*} a\right)=\left(a a^{*} f-f^{-1} a^{*} a\right) a a_{f, f}^{\dagger} ;$
(LVIII) $a \in \mathcal{A}^{\#}, a a_{e, f}^{\dagger}\left(a a^{*} e-e^{-1} a^{*} a\right)=\left(a a^{*} e-e^{-1} a^{*} a\right) a a_{e, f}^{\dagger}$ and $a a_{f, e}^{\dagger}\left(a a^{*} f-\right.$ $\left.f^{-1} a^{*} a\right)=\left(a a^{*} f-f^{-1} a^{*} a\right) a a_{f, e}^{\dagger} ;$
(LIX) $a \in \mathcal{A}^{\#}, a_{e, e}^{\dagger} a\left(a a^{*} e-e^{-1} a^{*} a\right)=\left(a a^{*} e-e^{-1} a^{*} a\right) a_{e, e}^{\dagger} a$ and $a_{f, f}^{\dagger} a\left(a a^{*} f-\right.$ $\left.f^{-1} a^{*} a\right)=\left(a a^{*} f-f^{-1} a^{*} a\right) a_{f, f}^{\dagger} a ;$
(LX) $a \in \mathcal{A}^{\#}, a_{f, e}^{\dagger} a\left(a a^{*} e-e^{-1} a^{*} a\right)=\left(a a^{*} e-e^{-1} a^{*} a\right) a_{f, e}^{\dagger} a$ and $a_{e, f}^{\dagger} a\left(a a^{*} f-\right.$ $\left.f^{-1} a^{*} a\right)=\left(a a^{*} f-f^{-1} a^{*} a\right) a_{e, f}^{\dagger} a ;$
(LXI) $a \in \mathcal{A}^{\#}$ and $\left(a^{s+t}\right)^{\dagger}=\left(a^{s}\right)_{e, 1}^{\dagger}\left(a^{t}\right)_{1, e}^{\dagger}=\left(a^{s}\right)_{f, 1}^{\dagger}\left(a^{t}\right)_{1, f}^{\dagger}$, for any/some integers $s, t \geq 1$;
(LXII) $a \in \mathcal{A}^{\#}$ and $\left(a^{s+t}\right)_{e, f}^{\dagger}=\left(a^{s}\right)_{f, f}^{\dagger}\left(a^{t}\right)_{e, f}^{\dagger}=\left(a^{s}\right)_{e, f}^{\dagger}\left(a^{t}\right)_{e, e}^{\dagger}$, for any/some integers $s, t \geq 1$.

Proof. (I) \Rightarrow (II): Assume that a is weighted-EP w.r.t. (e, f), i.e., $e a$ and $a f^{-1}$ are EP. From ea $\mathcal{A}=(e a)^{*} \mathcal{A}$, we obtain $a \mathcal{A}=e^{-1} a^{*} e \mathcal{A}=\left(a e^{-1}\right)^{*} e \mathcal{A}$ implying $a e^{-1} e \mathcal{A}=$ $\left(a e^{-1}\right)^{*} e \mathcal{A}$, that is, $a e^{-1} \mathcal{A}=\left(a e^{-1}\right)^{*} \mathcal{A}$. In the same way $a f^{-1} \mathcal{A}=\left(a f^{-1}\right)^{*} \mathcal{A}$ implies $f a \mathcal{A}=(f a)^{*} \mathcal{A}$. Hence, $f a$ and $a e^{-1}$ are EP, i.e., a is weighted-EP w.r.t. (f, e).
$(\mathrm{II}) \Rightarrow(\mathrm{I})$: This implication can be proved in the same way as (I) \Rightarrow (II).
(III) $\Leftrightarrow(\mathrm{I})$: Obviously, because (I) \Leftrightarrow (II).
(IV) $\Leftrightarrow(\mathrm{I}):$ Notice that $(e a)^{*} \mathcal{A}=a^{*} \mathcal{A}$ and $a f^{-1} \mathcal{A}=a \mathcal{A}$. Now, ea $\mathcal{A}=f a \mathcal{A}=$ $a^{*} \mathcal{A}$ is equivalent to $e a \mathcal{A}=a^{*} e \mathcal{A}$ and $a \mathcal{A}=f^{-1} a^{*} \mathcal{A}$, that is, ea $\mathcal{A}=(e a)^{*} \mathcal{A}$ and $a f^{-1} \mathcal{A}=\left(a f^{-1}\right)^{*} \mathcal{A}$. These equalities mean that $e a$ and $a f^{-1}$ are EP, i.e., a is weighted-EP w.r.t. (e, f).
$(\mathrm{V}) \Leftrightarrow(\mathrm{IV})$: This is easy to check.
(VI) $\Leftrightarrow(\mathrm{I})$: By Lemma 1.6, $a_{e, f}^{\dagger} \mathcal{A}=a \mathcal{A}$ and $\left(a_{e, f}^{\dagger}\right)^{*} \mathcal{A}=a^{*} \mathcal{A}$ is equivalent to $f^{-1} a^{*} \mathcal{A}=a \mathcal{A}$ and $e a \mathcal{A}=a^{*} \mathcal{A}$ which is $\left(a f^{-1}\right)^{*} \mathcal{A}=a f^{-1} \mathcal{A}$ and $e a \mathcal{A}=(e a)^{*} \mathcal{A}$.
(VII) $\Leftrightarrow(\mathrm{V})$: Using the equivalence (I) $\Leftrightarrow(\mathrm{V})$ for a^{*}, we have that a^{*} is weightedEP w.r.t. $\left(e^{-1}, f^{-1}\right)$ if and only if $e^{-1} a^{*} \mathcal{A}=f^{-1} a^{*} \mathcal{A}=a \mathcal{A}$.
$(\mathrm{VIII}) \Rightarrow(\mathrm{VI})$: The equality $a a_{e, f}^{\dagger}=a_{e, f}^{\dagger} a$ gives

$$
a \mathcal{A}=a_{e, f}^{\dagger} a a \mathcal{A} \subset a_{e, f}^{\dagger} \mathcal{A}=a a_{e, f}^{\dagger} a_{e, f}^{\dagger} \mathcal{A} \subset a \mathcal{A}
$$

and

$$
a^{*} \mathcal{A}=\left(a a a_{e, f}^{\dagger}\right)^{*} \mathcal{A} \subset\left(a_{e, f}^{\dagger}\right)^{*} \mathcal{A}=\left(a_{e, f}^{\dagger} a_{e, f}^{\dagger} a\right)^{*} \mathcal{A} \subset a^{*} \mathcal{A},
$$

i.e., $a_{e, f}^{\dagger} \mathcal{A}=a \mathcal{A}$ and $\left(a_{e, f}^{\dagger}\right)^{*} \mathcal{A}=a^{*} \mathcal{A}$.
$(\mathrm{VI}) \Rightarrow(\mathrm{IX}):$ Since $a_{e, f}^{\dagger} \mathcal{A}=a \mathcal{A}$, then $a=a_{e, f}^{\dagger} y$ for some $y \in \mathcal{A}$. Now,

$$
a=a_{e, f}^{\dagger} y=a_{e, f}^{\dagger} a\left(a_{e, f}^{\dagger} y\right)=a_{e, f}^{\dagger} a a
$$

and $a^{k}=a_{e, f}^{\dagger} a a^{k}$, for any/some integer $k \geq 1$. Similarly, the assumption $\left(a_{e, f}^{\dagger}\right)^{*} \mathcal{A}=$ $a^{*} \mathcal{A}$ implies $a^{*}=\left(a_{e, f}^{\dagger}\right)^{*} x$ for some $x \in \mathcal{A}$ and

$$
a^{*}=\left(a_{e, f}^{\dagger}\right)^{*} x=\left(a_{e, f}^{\dagger} a a_{e, f}^{\dagger}\right)^{*} x=\left(a a_{e, f}^{\dagger}\right)^{*}\left(a_{e, f}^{\dagger}\right)^{*} x=\left(a a_{e, f}^{\dagger}\right)^{*} a^{*}=\left(a a a_{e, f}^{\dagger}\right)^{*} .
$$

Applying involution to this equality, we get $a=a a a_{e, f}^{\dagger}$ and, for any/some integer $k \geq 1, a^{k}=a^{k} a a_{e, f}^{\dagger}$. Notice that, from $a \in a^{2} \mathcal{A} \cap \mathcal{A} a^{2}$, it follows $a^{\#}$ exists.
(IX) \Rightarrow (VIII): If $a \in \mathcal{A}^{\#}$ and $a^{k}=a_{e, f}^{\dagger} a a^{k}=a^{k} a a_{e, f}^{\dagger}$, for any/some integer $k \geq 1$, then

$$
a a_{e, f}^{\dagger}=\left(a^{\#}\right)^{k}\left(a^{k+1} a_{e, f}^{\dagger}\right)=\left(a^{\#}\right)^{k} a^{k}=a^{k}\left(a^{\#}\right)^{k}=a_{e, f}^{\dagger} a^{k+1}\left(a^{\#}\right)^{k}=a_{e, f}^{\dagger} a .
$$

$(\mathrm{X}) \Rightarrow(\mathrm{VIII})$: Applying the equality $a_{e, f}^{\dagger}=a\left(a_{e, f}^{\dagger}\right)^{2}=\left(a_{e, f}^{\dagger}\right)^{2} a$, we obtain $a_{e, f}^{\dagger} a=$ $a\left(\left(a_{e, f}^{\dagger}\right)^{2} a\right)=a a_{e, f}^{\dagger}$.
(VIII) $\Rightarrow(\mathrm{X}):$ Obviously.
(VIII) $\Leftrightarrow(\mathrm{XI}) \Leftrightarrow(\mathrm{XII}):$ By the uniquely determined group and weighted-MP inverse.

$$
\begin{aligned}
& \text { (XIII) } \Rightarrow \text { (VIII): The hypothesis } a^{\#} a_{e, f}^{\dagger}=a_{e, f}^{\dagger} a^{\#} \text { implies } \\
& \qquad a a_{e, f}^{\dagger}=a^{2}\left(a^{\#} a_{e, f}^{\dagger}\right)=a^{2} a_{e, f}^{\dagger} a^{\#}=a^{2} a_{e, f}^{\dagger} a\left(a^{\#}\right)^{2}=a^{2}\left(a^{\#}\right)^{2}=a a^{\#}
\end{aligned}
$$

and

$$
a_{e, f}^{\dagger} a=\left(a_{e, f}^{\dagger} a^{\#}\right) a^{2}=a^{\#} a_{e, f}^{\dagger} a^{2}=\left(a^{\#}\right)^{2} a a_{e, f}^{\dagger} a^{2}=a^{\#} a .
$$

Therefore, $a a_{e, f}^{\dagger}=a_{e, f}^{\dagger} a$.
(XI) \Rightarrow (XIII): From the equality $a^{\#}=a_{e, f}^{\dagger}$, we have $a^{\#} a_{e, f}^{\dagger}=\left(a_{e, f}^{\dagger}\right)^{2}=a_{e, f}^{\dagger} a^{\#}$ So, the condition (XIII) holds.
$(\mathrm{XIV}) \Rightarrow(\mathrm{VIII}):$ Suppose that $a \in \mathcal{A}^{\#}$ and $a a^{\#} a_{e, f}^{\dagger}=a_{e, f}^{\dagger} a^{\#} a$. Then we get the equality (VIII):

$$
\begin{aligned}
a a_{e, f}^{\dagger} & =a\left(a a^{\#} a_{e, f}^{\dagger}\right)=a a_{e, f}^{\dagger} a^{\#} a=a a_{e, f}^{\dagger} a a^{\#}=a a^{\#} \\
& =a^{\#} a a_{e, f}^{\dagger} a=\left(a a^{\#} a_{e, f}^{\dagger}\right) a=a_{e, f}^{\dagger} a^{\#} a a=a_{e, f}^{\dagger} a .
\end{aligned}
$$

$(\mathrm{XI}) \Rightarrow(\mathrm{XIV}): \mathrm{By} a^{\#}=a_{e, f}^{\dagger}$, obviously, the condition (XIV) is satisfied.
(VIII) $\Rightarrow(\mathrm{XV}):$ Using $a a_{e, f}^{\dagger}=a_{e, f}^{\dagger} a$, we can verify that $a=\left(a^{2}+1-a_{e, f}^{\dagger} a\right) a_{e, f}^{\dagger}$ and $\left(a^{2}+1-a_{e, f}^{\dagger} a\right)^{-1}=\left(a_{e, f}^{\dagger}\right)^{2}+1-a_{e, f}^{\dagger} a$. Thus, $a \in \mathcal{A}^{-1} a_{e, f}^{\dagger}$. Since $a a_{e, f}^{\dagger}=a_{e, f}^{\dagger} a$, by previous equalities, we conclude that $a=a_{e, f}^{\dagger}\left(a^{2}+1-a a_{e, f}^{\dagger}\right)$ and $\left(a^{2}+1-a a_{e, f}^{\dagger}\right)^{-1}=$ $\left(a_{e, f}^{\dagger}\right)^{2}+1-a a_{e, f}^{\dagger}$ which yields $a \in a_{e, f}^{\dagger} \mathcal{A}^{-1}$. Hence, (XV) holds.
$(\mathrm{XV}) \Rightarrow(\mathrm{XVI}):$ Obviously.
(XVI) \Rightarrow (IX): From the condition $a \in a_{e, f}^{\dagger} \mathcal{A}$, we have $a=a_{e, f}^{\dagger} x$, for some $x \in \mathcal{A}$, and $a^{k}-a_{e, f}^{\dagger} a a^{k}=\left(a_{e, f}^{\dagger}-a_{e, f}^{\dagger} a a_{e, f}^{\dagger}\right) x a^{k-1}=0$ for integer $k \geq 1$. In the similar way, $a \in \mathcal{A} a_{e, f}^{\dagger}$ gives $a^{k}=a^{k} a a_{e, f}^{\dagger}$ for integer $k \geq 1$. When $k=1$, we observe that $a \in a^{2} \mathcal{A} \cap \mathcal{A} a^{2}$ and $a^{\#}$ exists. So, the condition (IX) holds.
$(\mathrm{XV}) \Leftrightarrow(\mathrm{XVII}):$ The assumption $a \in a_{e, f}^{\dagger} \mathcal{A}^{-1} \cap \mathcal{A}^{-1} a_{e, f}^{\dagger}$ is equivalent to $a \mathcal{A}^{-1}=$ $a_{e, f}^{\dagger} \mathcal{A}^{-1}$ and $\mathcal{A}^{-1} a=\mathcal{A}^{-1} a_{e, f}^{\dagger}$. By Lemma 1.7, we observe that these equalities hold if and only if $a \mathcal{A}^{-1}=a^{* f, e} \mathcal{A}^{-1}=f^{-1} a^{*} \mathcal{A}^{-1}$ and $\mathcal{A}^{-1} a=\mathcal{A}^{-1} a^{* f, e}=\mathcal{A}^{-1} a^{*} e$.
(XVII) \Leftrightarrow (XVIII): Applying the involution, we check this equivalence.
$(\mathrm{XIX}) \Rightarrow(\mathrm{II}):$ Suppose that there exists $x \in \mathcal{A}$ such that $a=e^{-1} a^{*} x a^{*} f$. Then, by Lemma 1.7, $a \in e^{-1} a^{*} \mathcal{A} \cap \mathcal{A} a^{*} f=a^{* e, f} \mathcal{A} \cap \mathcal{A} a^{* e, f}=a_{f, e^{\dagger}}^{\dagger} \mathcal{A} \cap \mathcal{A} a_{f, e}^{\dagger}$. Now, by (xvi) $\Leftrightarrow(\mathrm{i})$, we deduce that a is weighted-EP w.r.t. (f, e).
(II) \Rightarrow (XIX): If a is weighted-EP w.r.t. (f, e), by the equivalence (I) \Leftrightarrow (XVI), $a \in a_{f, e}^{\dagger} \mathcal{A} \cap \mathcal{A} a_{f, e}^{\dagger}=e^{-1} a^{*} \mathcal{A} \cap \mathcal{A} a^{*} f$. Therefore, for some $y, z \in \mathcal{A}, a=e^{-1} a^{*} y=z a^{*} f$ and $a=a a_{f, e}^{\dagger} a=e^{-1} a^{*}\left(y a_{f, e}^{\dagger} z\right) a^{*} f$. For $x=y a_{f, e^{\prime}}^{\dagger} z$, the statement (XIX) is satisfied.
$(\mathrm{XX}) \Rightarrow(\mathrm{II}):$ Since $a=\left(a e^{-1}\right)^{\dagger} a e^{-1} a f a(f a)^{\dagger}$, we conclude that $a \in\left(a e^{-1}\right)^{\dagger} \mathcal{A} \cap$ $\mathcal{A}(f a)^{\dagger}=\left(a e^{-1}\right)^{*} \mathcal{A} \cap \mathcal{A}(f a)^{*}=a^{* e, f} \mathcal{A} \cap \mathcal{A} a^{* e, f}=a_{f, e}^{\dagger} \mathcal{A} \cap \mathcal{A} a_{f, e}^{\dagger}$. Using (XVI) $\Leftrightarrow(\mathrm{I})$, we observe that a is weighted-EP w.r.t. (f, e).
(II) $\Rightarrow(\mathrm{XX})$: The condition (II) implies that $a e^{-1}$ and $f a$ are EP, and hence,

$$
\begin{aligned}
\left(a e^{-1}\right)^{\dagger} a e^{-1} a f a(f a)^{\dagger} & =\left(\left(a e^{-1}\right)^{\dagger} a e^{-1} a e^{-1}\right) e f a(f a)^{\dagger}=a e^{-1} e f a(f a)^{\dagger} \\
& =f^{-1}\left(f a f a(f a)^{\dagger}\right)=f^{-1} f a=a .
\end{aligned}
$$

Thus, the condition (XX) holds.
(XXI) \Leftrightarrow (XII): Applying the equivalence (I) \Leftrightarrow (XII) for $a^{k}, k \geq 1$, we see that $a \in \mathcal{A}^{\#}$ and a^{k} is weighted-EP w.r.t. (e, f) if and only if $a \in \mathcal{A}^{\#}$ and $e a^{k}\left(a^{k}\right)^{\#}$, $f a^{k}\left(a^{k}\right)^{\#}$ are Hermitian which is equivalent to $a \in \mathcal{A}^{\#}$ and eaa $a^{\#}, f a a^{\#}$ are Hermitian, by $\left(a^{k}\right)^{\#}=\left(a^{\#}\right)^{k}$.
(XXII) \Leftrightarrow (IV): Notice that, from $a \in \mathcal{A}^{-}$, it follows that $a a^{*} a \in \mathcal{A}^{-}$and $\left(a a^{*} a\right)^{\dagger}=a^{\dagger}\left(a^{*}\right)^{\dagger} a^{\dagger}$. Using the equivalence (I) \Leftrightarrow (IV) for $a a^{*} a$, we observe that $a a^{*} a$ is weighted-EP w.r.t. (e, f) is equivalent to $e a a^{*} a \mathcal{A}=f a a^{*} a \mathcal{A}=a^{*} a a^{*} \mathcal{A}$. Since $a \in \mathcal{A}^{-}, a^{\dagger}$ exists and $e a=e a a^{\dagger} a=e a a^{*}\left(a^{\dagger}\right)^{*}=e a a^{*} a a^{\dagger}\left(a^{\dagger}\right)^{*}$. Consequently, $e a a^{*} a \mathcal{A}=e a \mathcal{A}$ and in the same way $f a a^{*} a \mathcal{A}=f a \mathcal{A}$. By $a^{*}=a^{*} a a^{\dagger}=a^{*} a a^{\dagger} a a^{\dagger}=$ $a^{*} a a^{*}\left(a^{\dagger}\right)^{*} a^{\dagger}$, we conclude $a^{*} a a^{*} \mathcal{A}=a^{*} \mathcal{A}$. Hence, eaa* $a \mathcal{A}=f a a^{*} a \mathcal{A}=a^{*} a a^{*} \mathcal{A}$ is equivalent to (IV).
(XXIII) $\Leftrightarrow(\mathrm{I}):$ Observe that a is weighted-EP w.r.t. (e, f) if and only if elements $e a$ and $a f^{-1}$ are EP. By the definition of EP elements, this is equivalent to $(e a)^{\circ}=$ $\left[(e a)^{*}\right]^{\circ}$ and $\left(a f^{-1}\right)^{\circ}=\left[\left(a f^{-1}\right)^{*}\right]^{\circ}=\left(f^{-1} a^{*}\right)^{\circ}$, which can be written as $a^{\circ}=\left[(e a)^{*}\right]^{\circ}$ and $\left(a f^{-1}\right)^{\circ}=\left(a^{*}\right)^{\circ}$, by Lemma 1.6.
$(\mathrm{V}) \Rightarrow(X X I V):$ The condition (V) gives $e^{-1} a^{*} \mathcal{A}=a \mathcal{A}$ and its equivalent condition (IV) imply $f a \mathcal{A}=a^{*} \mathcal{A}$. For $a^{*}, a^{*} f \in \mathcal{A}^{-}$, Lemma 1.5 implies that $\mathcal{A}=$ $a \mathcal{A} \oplus\left(a^{*}\right)^{\circ}=f a \mathcal{A} \oplus\left(a^{*} f\right)^{\circ}$. Thus, $\mathcal{A}=e^{-1} a^{*} \mathcal{A} \oplus\left(a^{*}\right)^{\circ}=a^{*} \mathcal{A} \oplus\left(a^{*} f\right)^{\circ}$.
(XXIV) $\Rightarrow(\mathrm{VII}):$ From $\mathcal{A}=e^{-1} a^{*} \mathcal{A} \oplus\left(a^{*}\right)^{\circ}=a^{*} \mathcal{A} \oplus\left(a^{*} f\right)^{\circ}$, we see that $\mathcal{A}=$ $e^{-1} a^{*} \mathcal{A} \oplus\left(e^{-1} a^{*}\right)^{\circ}=a^{*} f \mathcal{A} \oplus\left(a^{*} f\right)^{\circ}$. Define the left regular representation $L_{a}: \mathcal{A} \rightarrow \mathcal{A}$ by $L_{a}(x)=a x$ for all $x \in \mathcal{A}$. Now, $\mathcal{A}=R\left(L_{e^{-1} a^{*}}\right) \oplus N\left(L_{e^{-1} a^{*}}\right)=R\left(L_{a^{*} f}\right) \oplus N\left(L_{a^{*} f}\right)$ which implies that $L_{e^{-1} a^{*}}$ i $L_{a^{*} f}$ are EP operators. According to [3, Remark 12], necessary and sufficient condition for $a \in \mathcal{A}$ to be EP is that $L_{a} \in \mathcal{L}(\mathcal{A})$ is EP. So, elements $e^{-1} a^{*}, a^{*} f$ are EP, and a^{*} is weighted-EP w.r.t. $\left(e^{-1}, f^{-1}\right)$.
$(\mathrm{XXV}) \Leftrightarrow(\mathrm{V})$: By the equivalence $(\mathrm{I}) \Leftrightarrow(\mathrm{V})$ for a^{\dagger}, we get that a^{\dagger} is weighted-EP w.r.t. $\left(e^{-1}, f^{-1}\right)$ if and only if $e\left(a^{\dagger}\right)^{*} \mathcal{A}=f\left(a^{\dagger}\right)^{*} \mathcal{A}=a^{\dagger} \mathcal{A}$. Recall that $a^{\dagger} \mathcal{A}=a^{*} \mathcal{A}$ and $\left(a^{\dagger}\right)^{*} \mathcal{A}=a \mathcal{A}$. Now,

$$
e\left(a^{\dagger}\right)^{*} \mathcal{A}=a^{\dagger} \mathcal{A} \Leftrightarrow\left(a^{\dagger}\right)^{*} \mathcal{A}=e^{-1} a^{*} \mathcal{A} \Leftrightarrow a \mathcal{A}=e^{-1} a^{*} \mathcal{A}
$$

and, similarly, $f\left(a^{\dagger}\right)^{*} \mathcal{A}=a^{\dagger} \mathcal{A} \Leftrightarrow a \mathcal{A}=f^{-1} a^{*} \mathcal{A}$.
(XXVI) $\Leftrightarrow(\mathrm{VI})$: If we apply the equivalence (I) \Leftrightarrow (iv) for $a_{e, f}^{\dagger}$, then $a_{e, f}^{\dagger}$ is weighted-EP w.r.t. $(e, f) \Leftrightarrow e a_{e, f}^{\dagger} \mathcal{A}=f a_{e, f}^{\dagger} \mathcal{A}=\left(a_{e, f}^{\dagger}\right)^{*} \mathcal{A}$. By Lemma 1.6, we obtain

$$
e a_{e, f}^{\dagger} \mathcal{A}=\left(a_{e, f}^{\dagger}\right)^{*} \mathcal{A} \Leftrightarrow e a_{e, f}^{\dagger} \mathcal{A}=e a \mathcal{A} \Leftrightarrow a_{e, f}^{\dagger} \mathcal{A}=a \mathcal{A}
$$

and

$$
f a_{e, f}^{\dagger} \mathcal{A}=\left(a_{e, f}^{\dagger}\right)^{*} \mathcal{A} \Leftrightarrow a^{*} \mathcal{A}=\left(a_{e, f}^{\dagger}\right)^{*} \mathcal{A}
$$

(XXVII) \Rightarrow (VIII): Assume that $a \in \mathcal{A}^{\#}$ and $a^{2 k-1}=a_{e, f}^{\dagger} a^{2 k+1} a_{e, f}^{\dagger}$, for any/some integer $k \geq 1$. Consequently, we have

$$
a a_{e, f}^{\dagger}=\left(a^{\#}\right)^{2 k} a^{2 k+1} a_{e, f}^{\dagger}=\left(a^{\#}\right)^{2 k} a\left(a_{e, f}^{\dagger} a^{2 k+1} a_{e, f}^{\dagger}\right)=\left(a^{\#}\right)^{2 k} a a^{2 k-1}=a^{\#} a
$$

and

$$
a_{e, f}^{\dagger} a=\left(a_{e, f}^{\dagger} a^{2 k+1} a_{e, f}^{\dagger}\right) a\left(a^{\#}\right)^{2 k}=a^{2 k-1} a\left(a^{\#}\right)^{2 k}=a a^{\#}
$$

implying $a a_{e, f}^{\dagger}=a_{e, f}^{\dagger} a$.
The implication (VIII) \Rightarrow (XXVII) is easy to check.
(XXVIII) \Rightarrow (IX): Suppose that $a \in \mathcal{A}^{\#}$ and $a a_{e, f}^{\dagger} a_{e, f}^{\dagger} a=a_{e, f}^{\dagger} a a a_{e, f}^{\dagger} . \quad$ Now, observe that

$$
\begin{align*}
a_{e, f}^{\dagger} a a a_{e, f}^{\dagger} & =a a_{e, f}^{\dagger} a_{e, f}^{\dagger} a=a a^{\#}\left(a a_{e, f}^{\dagger} a_{e, f}^{\dagger} a\right) a^{\#} a \\
& =a^{\#} a a_{e, f}^{\dagger} a a a_{e, f}^{\dagger} a a^{\#}=a^{\#} a . \tag{2.1}
\end{align*}
$$

First, if k is a positive integer, then multiplying the equality (2.1) by a^{k} from the left side, we get $a^{k} a a_{e, f}^{\dagger}=a^{k}$ and then multiplying the equality (2.1) by a^{k} from the right side, we obtain $a_{e, f}^{\dagger} a a^{k}=a^{k}$. So, the condition (IX) is satisfied.

The implication (VIII) \Rightarrow (XXVIII) is obvious.
(XXIX) \Leftrightarrow (IV): Using (I) \Leftrightarrow (IV) for $a^{\#}$, we deduce that $a^{\#}$ is weighted-EP w.r.t. (e, f) if and only if $e a^{\#} \mathcal{A}=f a^{\#} \mathcal{A}=\left(a^{\#}\right)^{*} \mathcal{A}$. This is equivalent to (iv), because $a^{\#} \mathcal{A}=a \mathcal{A}, a^{\#} \mathcal{A}=a \mathcal{A}$ and $\left(a^{\#}\right)^{*} \mathcal{A}=a^{*} \mathcal{A}$.
$(\mathrm{XXX}) \Rightarrow(\mathrm{XII}):$ From $a a^{\#}=a a_{e, e}^{\dagger}=a a_{f, f}^{\dagger}$ we conclude that elements $e a a^{\#}=$ $e a a_{e, e}^{\dagger}$ and $f a a^{\#}=f a a_{f, f}^{\dagger}$ are Hermitian.
$(\mathrm{III}) \Rightarrow(\mathrm{XXX}):$ Since a is weighted-EP w.r.t. (e, f), it follows that $a^{\#}=a_{e, f}^{\dagger}$. Hence, the fact that a is both weighted-EP w.r.t. (e, e) and w.r.t. (f, f) gives $a^{\#}=$ $a_{e, e}^{\dagger}=a_{f, f}^{\dagger}$. Thus, $a a^{\#}=a a_{e, e}^{\dagger}=a a_{f, f}^{\dagger}$.
$(\mathrm{I}) \Rightarrow(\mathrm{XXXI}) \Rightarrow(\mathrm{XII})$: This part follows similarly as $(\mathrm{III}) \Rightarrow(\mathrm{XXX}) \Rightarrow(\mathrm{XII})$, using the equivalence (I) \Leftrightarrow (II).
(XXXII) $\Rightarrow(\mathrm{XXX})$: By the equality $a a_{e, e}^{\dagger} e^{-1} a^{*} a=e^{-1} a^{*} a a a_{e, e}^{\dagger}$, we have

$$
\begin{align*}
a^{*} & =a^{*} a a^{\dagger}=a^{*} a a a^{\#} a^{\dagger}=e\left(e^{-1} a^{*} a a a_{e, e}^{\dagger}\right) a a^{\#} a^{\dagger} \\
& =e a a_{e, e}^{\dagger} e^{-1} a^{*} a a a^{\#} a^{\dagger}=e a a_{e, e}^{\dagger} e^{-1} a^{*} . \tag{2.2}
\end{align*}
$$

Applying the involution to (2.2), we obtain $a=a e^{-1} e a a_{e, e}^{\dagger}=a a a_{e, e}^{\dagger}$ which yields $a^{\#} a=a a_{e, e}^{\dagger}$. In the same way, the assumption $a a_{f, f}^{\dagger} f^{-1} a^{*} a=f^{-1} a^{*} a a a_{f, f}^{\dagger}$ implies $a^{\#} a=a a_{f, f}^{\dagger}$. Therefore, the condition (XXX) holds.

ELA

(III) \Rightarrow (XXXII): The condition (III) gives that $a^{\#}=a_{e, e}^{\dagger}=a_{f, f}^{\dagger}$. Then we get

$$
\begin{aligned}
a a_{e, e}^{\dagger} e^{-1} a^{*} a & =e^{-1} e a a_{e, e}^{\dagger} e^{-1} a^{*} a=e^{-1}\left(a e^{-1} e a a_{e, e}^{\dagger}\right)^{*} a \\
& =e^{-1}\left(a a a^{\#}\right)^{*} a=e^{-1} a^{*} a=e^{-1} a^{*} a a a_{e, e}^{\dagger}
\end{aligned}
$$

and similarly $a a_{f, f}^{\dagger} f^{-1} a^{*} a=f^{-1} a^{*} a a a_{f, f}^{\dagger}$.
The implications (I) \Rightarrow (XXXIII) \Rightarrow (XXX), (III) \Rightarrow (XXXIV) \Rightarrow (XXX) and (I) $\Rightarrow(\mathrm{XXXV}) \Rightarrow(\mathrm{XXX})$ can be proved in the same way as $(\mathrm{III}) \Rightarrow(\mathrm{XXXII}) \Rightarrow(\mathrm{XXX})$.
(XXXVI) \Rightarrow (VIII): Multiplying $a^{k} a a_{e, f}^{\dagger}+a_{e, f}^{\dagger} a a^{k}=2 a^{k}, k \geq 1$, from the right side by $\left(a^{\#}\right)^{k}$, we obtain

$$
a^{k} a a_{e, f}^{\dagger}\left(a^{\#}\right)^{k}+a_{e, f}^{\dagger} a a a^{\#}=2 a a^{\#} .
$$

Further, the equality

$$
a^{k} a a_{e, f}^{\dagger} a\left(a^{\#}\right)^{k+1}+a_{e, f}^{\dagger} a=2 a a^{\#}
$$

gives $a a^{\#}+a_{e, f}^{\dagger} a=2 a a^{\#}$, i.e., $a_{e, f}^{\dagger} a=a a^{\#}$. Similarly, multiplying $a^{k} a a_{e, f}^{\dagger}+a_{e, f}^{\dagger} a a^{k}=$ $2 a^{k}$ from the left side by $\left(a^{\#}\right)^{k}$, we show that $a a_{e, f}^{\dagger}=a a^{\#}$. So, $a_{e, f}^{\dagger} a=a a_{e, f}^{\dagger}$.
$(\mathrm{VIII}) \Rightarrow(\mathrm{XXXVI}) \wedge(\mathrm{XXXVII}):$ We can easily check this implication.
$(\mathrm{XXXVII}) \Rightarrow(\mathrm{VIII}):$ Multiplying the equality $a_{e, f}^{\dagger} a^{\#} a+a a^{\#} a_{e, f}^{\dagger}=2 a_{e, f}^{\dagger}$ by a first from the right side, we get $a^{\#} a=a_{e, f}^{\dagger} a$ and then from the left side, we obtain $a a^{\#}=a_{e, f}^{\dagger} a$. Hence, we deduce that $a_{e, f}^{\dagger} a=a a_{e, f}^{\dagger}$.
$(\mathrm{XXXVIII}) \Rightarrow(X I I):$ The condition $a^{* f, e}=a^{* f, e} a a^{\#}=a^{\#} a a^{* f, e}$ is equivalent to $a^{*}=a^{*} e a a^{\#} e^{-1}=f a^{\#} a f^{-1} a^{*}$. Then, from

$$
\left(e a a^{\#}\right)^{*}=\left(a^{\#}\right)^{*} a^{*} e=\left(a^{\#}\right)^{*} a^{*} e a a^{\#} e^{-1} e=\left(a a^{\#}\right)^{*} e a a^{\#}
$$

and

$$
\left(f a^{\#} a\right)^{*}=a^{*}\left(a^{\#}\right)^{*} f=f a^{\#} a f^{-1} a^{*}\left(a^{\#}\right)^{*} f=f a^{\#} a f^{-1}\left(a^{\#} a\right)^{*} f
$$

we conclude that elements $e a a^{\#}$ and $f a^{\#} a$ are Hermitian.

$$
\begin{aligned}
& (\mathrm{XII}) \Rightarrow(\mathrm{XXXVIII}): \text { If } e a a^{\#} \text { is Hermitian, then } \\
& \qquad a^{* f, e} a a^{\#}=f^{-1} a^{*} e a a^{\#}=f^{-1}\left(e a a^{\#} a\right)^{*}=f^{-1}(e a)^{*}=f^{-1} a^{*} e=a^{* f, e} .
\end{aligned}
$$

In the same way, since $f a a^{\#}$ is Hermitian, it follows $a^{* f, e}=a^{\#} a a^{* f, e}$.
$($ XXXIX $) \Rightarrow(X X X V I I I): ~ M u l t i p l y i n g ~ t h e ~ e q u a l i t y ~ a ~ m f, e ~ a a^{\#}+a^{\#} a a^{* f, e}=2 a^{* f, e}$ by $a a_{e, f}^{\dagger}$ from the right side, we get

$$
a^{* f, e} a a_{e, f}^{\dagger}+a^{\#} a a^{* f, e} a a_{e, f}^{\dagger}=2 a^{* f, e} a a_{e, f}^{\dagger} .
$$

By Theorem 1.4, we have $a^{* f, e}+a^{\#} a a^{* f, e}=2 a^{* f, e}$ which implies $a^{\#} a a^{* f, e}=a^{* f, e}$. Similarly, multiplying the equality $a^{* f, e} a a^{\#}+a^{\#} a a^{* f, e}=2 a^{* f, e}$ from the left side by a and then by $a_{e, f}^{\dagger}$, we obtain $a^{* f, e} a a^{\#}=a^{* f, e}$. Hence, (XXIX) is satisfied.

The implication (XXXVIII) \Rightarrow (XXXIX) is obvious.
$(\mathrm{XL}) \Rightarrow(\mathrm{IX})$: Multiplying the condition $a^{k} a a_{e, f}^{\dagger}+\left(a^{k} a a_{e, f}^{\dagger}\right)^{*}=a^{k}+\left(a^{k}\right)^{*}, k \geq 1$, by a from the right side, we see that

$$
\begin{equation*}
\left(a^{k} a a_{e, f}^{\dagger}\right)^{*} a=\left(a^{k}\right)^{*} a . \tag{2.3}
\end{equation*}
$$

Applying the involution to (2.3), we obtain

$$
a^{*} a^{k} a a_{e, f}^{\dagger}=a^{*} a^{k}
$$

which gives

$$
a^{k} a a_{e, f}^{\dagger}=a a^{\dagger} a^{k} a a_{e, f}^{\dagger}=\left(a^{\dagger}\right)^{*}\left(a^{*} a^{k} a a_{e, f}^{\dagger}\right)=\left(a^{\dagger}\right)^{*} a^{*} a^{k}=a^{k} .
$$

In the same way, multiplying the hypothesis $a_{e, f}^{\dagger} a a^{k}+\left(a_{e, f}^{\dagger} a a^{k}\right)^{*}=a^{k}+\left(a^{k}\right)^{*}, k \geq 1$, by a from the left side, we show $a_{e, f}^{\dagger} a a^{k}=a^{k}$. Thus, (ix) holds.

The implication $(\mathrm{VIII}) \Rightarrow(\mathrm{XL}) \wedge(\mathrm{XLI})$ is obvious.
$(\mathrm{XLI}) \Rightarrow(\mathrm{VIII}):$ The equality $a a_{e, f}^{\dagger}\left(a+\lambda a_{e, f}^{\dagger}\right)=\left(a+\lambda a_{e, f}^{\dagger}\right) a a_{e, f}^{\dagger}$ is equivalent to

$$
\begin{equation*}
a+\lambda a a_{e, f}^{\dagger} a_{e, f}^{\dagger}=a a a_{e, f}^{\dagger}+\lambda a_{e, f}^{\dagger} . \tag{2.4}
\end{equation*}
$$

Multiplying (2.4) from the left side by $a_{e, f}^{\dagger}$, we get

$$
a_{e, f}^{\dagger} a+\lambda a_{e, f}^{\dagger} a_{e, f}^{\dagger}=a_{e, f}^{\dagger} a a a_{e, f}^{\dagger}+\lambda a_{e, f}^{\dagger} a_{e, f}^{\dagger},
$$

which yields $a_{e, f}^{\dagger} a=a_{e, f}^{\dagger} a a a_{e, f}^{\dagger}$. Analogously, $a_{e, f}^{\dagger} a\left(a+\lambda a_{e, f}^{\dagger}\right)=\left(a+\lambda a_{e, f}^{\dagger}\right) a_{e, f}^{\dagger} a$ implies $a a_{e, f}^{\dagger}=a_{e, f}^{\dagger} a a a_{e, f}^{\dagger}$. Therefore, $a_{e, f}^{\dagger} a=a a_{e, f}^{\dagger}$.
(XLII) \Rightarrow (VIII): Assume that $a b=b a$ implies $a_{e, f}^{\dagger} b=b a_{e, f}^{\dagger}$. If $b=a$, then $a_{e, f}^{\dagger} a=a a_{e, f}^{\dagger}$.
$(\mathrm{XI}) \Rightarrow(\mathrm{XLII}):$ By $a^{\#}=a_{e, f}^{\dagger}$ and the double commutativity of $a^{\#}$, from $a b=b a$ we obtain $a^{\#} b=b a^{\#}$, i.e., $a_{e, f}^{\dagger} b=b a_{e, f}^{\dagger}$.
(XLIII) \Rightarrow (VIII): Let $a_{e, f}^{\dagger}=f(a)$ for some function f holomorphic in a neighbourhood of $\sigma(a)$. By a property of the holomorphic calculus, $a_{e, f}^{\dagger}$ commutes with a.

ELA

(XI) \Rightarrow (XLIII): By $a_{e, f}^{\dagger}=a^{\#}$ along with [20, Theorem 4.4], we have $a^{\#}=f(a)$, where f is holomorphic in a neighbourhood of $\sigma(a)$, and $f(\lambda)=0$ in a neighbourhood of $0, f(\lambda)=\lambda^{-1}$ in a neighbourhood of $\sigma(a) \backslash\{0\}$, it follows (XLIII).
$(\mathrm{XLIV}) \Rightarrow(\mathrm{III}):$ Since $\left(a+\lambda a_{e, e}^{\dagger}\right) \mathcal{A}=\left(\lambda a+a^{3}\right) \mathcal{A}$ for $\lambda \neq 0$, we have $a+\lambda a_{e, e}^{\dagger}=$ $\left(\lambda a+a^{3}\right) x$ for some $x \in \mathcal{A}$. Now, from

$$
\begin{aligned}
a+\lambda a a_{e, e}^{\dagger} a_{e, e}^{\dagger} & =a a_{e, e}^{\dagger}\left(a+\lambda a_{e, e}^{\dagger}\right)=a a_{e, e}^{\dagger}\left(\lambda a+a^{3}\right) x \\
& =\left(\lambda a+a^{3}\right) x=a+\lambda a_{e, e}^{\dagger},
\end{aligned}
$$

we conclude that $a a_{e, e}^{\dagger} a_{e, e}^{\dagger}=a_{e, e}^{\dagger}$. In the same way, $\mathcal{A}\left(a+\lambda a_{e, e}^{\dagger}\right)=\mathcal{A}\left(\lambda a+a^{3}\right)$ gives $a_{e, e}^{\dagger} a_{e, e}^{\dagger} a=a_{e, e}^{\dagger}$. So, $a_{e, e}^{\dagger}=a a_{e, e}^{\dagger} a_{e, e}^{\dagger}=a_{e, e}^{\dagger} a_{e, e}^{\dagger} a$, which implies that a is weighted-EP w.r.t. (e, e), by (I) $\Leftrightarrow(X)$.

Similarly, from the equalities $\left(a+\lambda a_{f, f}^{\dagger}\right) \mathcal{A}=\left(\lambda a+a^{3}\right) \mathcal{A}$ and $\mathcal{A}\left(a+\lambda a_{f, f}^{\dagger}\right)=$ $\mathcal{A}\left(\lambda a+a^{3}\right)$, for $\lambda \neq 0$, we can show that a is weighted-EP w.r.t. (f, f).
$(\mathrm{III}) \Rightarrow(\mathrm{XLIV})$: The condition (III) implies $a^{\#}=a_{e, e}^{\dagger}=a_{f, f}^{\dagger}$. Then, for $\lambda \neq 0$, by

$$
\begin{equation*}
a+\lambda a_{e, e}^{\dagger}=a+\lambda a^{\#}=\left(a^{3}+\lambda a\right)\left(a^{\#}\right)^{2} \in\left(a^{3}+\lambda a\right) \mathcal{A} \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
a^{3}+\lambda a=\left(a+\lambda a^{\#}\right) a^{2}=\left(a+\lambda a_{e, e}^{\dagger}\right) a^{2} \in\left(a+\lambda a_{e, e}^{\dagger}\right) \mathcal{A}, \tag{2.6}
\end{equation*}
$$

we deduce $\left(a+\lambda a_{e, e}^{\dagger}\right) \mathcal{A}=\left(\lambda a+a^{3}\right) \mathcal{A}$. In the same way, it follows the rest of condition (XLIV).

$$
(\mathrm{XI}) \Rightarrow(\mathrm{XLV}) \Rightarrow(\mathrm{X}): \text { It follows in the same way as the part }(\mathrm{III}) \Leftrightarrow \text { (XLIV). }
$$

$(\mathrm{XLVI}) \Rightarrow(\mathrm{XXIII}):$ Assume that $\left(a+\lambda a_{e, e}^{\dagger}\right)^{\circ}=\left(\lambda a+a^{3}\right)^{\circ}$ for $\lambda \neq 0$. If $a x=0$ for some $x \in \mathcal{A}$, then $\left(\lambda a+a^{3}\right) x=0$ implies $\left(a+\lambda a_{e, e}^{\dagger}\right) x=0$. Now, we conclude $a_{e, e}^{\dagger} x=0$ and $a^{\circ} \subset\left(a_{e, e}^{\dagger}\right)^{\circ}$. Therefore, by Lemma 1.6, $a^{\circ} \subset\left[(e a)^{*}\right]^{\circ}$.

Let ${ }^{\circ}\left(a+\lambda a_{e, e}^{\dagger}\right)={ }^{\circ}\left(\lambda a+a^{3}\right)$ for $\lambda \neq 0$, and $(e a)^{*} x=0$ for some $x \in \mathcal{A}$. Applying the involution, we see that $x^{*} e a=0$ which gives $x^{*} e\left(\lambda a+a^{3}\right)=0$. Then $x^{*} e\left(a+\lambda a_{e, e}^{\dagger}\right)=0$ and, consequently, $x^{*} e a_{e, e}^{\dagger}=0$, i.e., $\left(a_{e, e}^{\dagger}\right)^{*} e x=0$. By this equality, we have

$$
a x=a e^{-1}\left(e a_{e, e}^{\dagger} a\right)^{*} x=a e^{-1} a^{*}\left(a_{e, e}^{\dagger}\right)^{*} e x=0 .
$$

Hence, $\left[(e a)^{*}\right]^{\circ} \subset a^{\circ}$ and $a^{\circ}=\left[(e a)^{*}\right]^{\circ}$.
The equalities $\left(a+\lambda a_{f, f}^{\dagger}\right)^{\circ}=\left(\lambda a+a^{3}\right)^{\circ}$ and ${ }^{\circ}\left(a+\lambda a_{f, f}^{\dagger}\right)={ }^{\circ}\left(\lambda a+a^{3}\right)$ for $\lambda \neq 0$, imply $\left(a^{*}\right)^{\circ}=\left(a f^{-1}\right)^{\circ}$ in the similar way.
(III) \Rightarrow (XLVI): The assumption (III) gives $a^{\#}=a_{e, e}^{\dagger}=a_{f, f}^{\dagger}$, so by (2.5) and (2.6), we deduce ${ }^{\circ}\left(a+\lambda a_{e, e}^{\dagger}\right)={ }^{\circ}\left(\lambda a+a^{3}\right)$, for $\lambda \neq 0$. Similarly, we can prove the rest of (XLVI).
$(\mathrm{III}) \Rightarrow(\mathrm{XLVII}) \Rightarrow(\mathrm{XXIII}):$ Similarly as $(\mathrm{III}) \Rightarrow(\mathrm{XLVI}) \Rightarrow(X X I I I)$.
(XLVIII) $\Rightarrow(\mathrm{VIII}):$ Using the equality $\left(a_{e, f}^{\dagger}\right)^{2} a^{\#}=a_{e, f}^{\dagger} a^{\#} a_{e, f}^{\dagger}$, first we get

$$
\begin{aligned}
\left(a_{e, f}^{\dagger}\right)^{2} a^{\#} & =\left(\left(a_{e, f}^{\dagger}\right)^{2} a^{\#}\right) a a^{\#}=a_{e, f}^{\dagger} a^{\#} a_{e, f}^{\dagger} a a^{\#} \\
& =a_{e, f}^{\dagger}\left(a^{\#}\right)^{2} a a_{e, f}^{\dagger} a a^{\#}=a_{e, f}^{\dagger}\left(a^{\#}\right)^{2}
\end{aligned}
$$

and then

$$
\begin{aligned}
a a_{e, f}^{\dagger} & =a^{3}\left(a^{\#}\right)^{2} a_{e, f}^{\dagger}=a^{3} a_{e, f}^{\dagger} a\left(a^{\#}\right)^{2} a_{e, f}^{\dagger}=a^{3}\left(a_{e, f}^{\dagger} a^{\#} a_{e, f}^{\dagger}\right) \\
& =a^{3}\left(\left(a_{e, f}^{\dagger}\right)^{2} a^{\#}\right)=a^{3} a_{e, f}^{\dagger}\left(a^{\#}\right)^{2}=a^{3} a_{e, f}^{\dagger} a\left(a^{\#}\right)^{3}=a a^{\#} .
\end{aligned}
$$

We can show that $a_{e, f}^{\dagger} a^{\#} a_{e, f}^{\dagger}=a^{\#}\left(a_{e, f}^{\dagger}\right)^{2}$ implies $a_{e, f}^{\dagger} a=a a^{\#}$ in the same way. Thus, $a_{e, f}^{\dagger} a=a a_{e, f}^{\dagger}$.

The implication (XI) $\Rightarrow($ XLVIII $) \wedge$ (XLIX) is obvious.
(XLIX) $\Rightarrow(\mathrm{VIII})$: From the hypothesis $a\left(a_{e, f}^{\dagger}\right)^{2}=a^{\#}=\left(a_{e, f}^{\dagger}\right)^{2} a$, we have

$$
a a_{e, f}^{\dagger}=a a^{\#} a a_{e, f}^{\dagger}=a a\left(a_{e, f}^{\dagger}\right)^{2} a a_{e, f}^{\dagger}=a\left(a\left(a_{e, f}^{\dagger}\right)^{2}\right)=a a^{\#}
$$

and

$$
a_{e, f}^{\dagger} a=a_{e, f}^{\dagger} a a^{\#} a=a_{e, f}^{\dagger} a\left(a_{e, f}^{\dagger}\right)^{2} a a=\left(\left(a_{e, f}^{\dagger}\right)^{2} a\right) a=a^{\#} a .
$$

Therefore, we deduce that $a_{e, f}^{\dagger} a=a a_{e, f}^{\dagger}$.
$(\mathrm{L}) \Rightarrow(X L I X): ~ T h e ~ e q u a l i t i e s ~ a^{* f, e} a_{e, f}^{\dagger}=a^{* f, e} a^{\#}$ and $a_{e, f}^{\dagger} a^{* f, e}=a^{\#} a^{* f, e}$ are equivalent to $a^{*} e a_{e, f}^{\dagger}=a^{*} e a^{\#}$ and $a_{e, f}^{\dagger} f^{-1} a^{*}=a^{\#} f^{-1} a^{*}$. By $a^{*} e a_{e, f}^{\dagger}=a^{*} e a^{\#}$, we obtain

$$
\begin{aligned}
a\left(a_{e, f}^{\dagger}\right)^{2} & =e^{-1}\left(e a a_{e, f}^{\dagger}\right)^{*} a_{e, f}^{\dagger}=e^{-1}\left(a_{e, f}^{\dagger}\right)^{*}\left(a^{*} e a_{e, f}^{\dagger}\right)=e^{-1}\left(a_{e, f}^{\dagger}\right)^{*} a^{*} e a^{\#} \\
& =e^{-1} e a a_{e, f}^{\dagger} a^{\#}=a a_{e, f}^{\dagger} a\left(a^{\#}\right)^{2}=a^{\#} .
\end{aligned}
$$

Analogously, from $a_{e, f}^{\dagger} f^{-1} a^{*}=a^{\#} f^{-1} a^{*}$, we get $a^{\#}=\left(a_{e, f}^{\dagger}\right)^{2} a$. So, the condition (XLIX) holds.

The implication (XI) $\Rightarrow(\mathrm{L}) \wedge(\mathrm{LI})$ is obvious.
$(\mathrm{LI}) \Rightarrow$ (XLIX): Multiplying $\left(a_{e, f}^{\dagger}\right)^{2}=\left(a^{\#}\right)^{2}$ by a first from the left side and then from the right side, we observe that (XLIX) is satisfied.
(LII) \Leftrightarrow (VIII): The assumption $a^{* e, f}=a^{* e, f} a_{e, f}^{\dagger} a=a a_{e, f}^{\dagger} a^{* e, f}$ is equivalent to $a^{*} f=a^{*} f a_{e, f}^{\dagger} a$ and $e^{-1} a^{*}=a a_{e, f}^{\dagger} e^{-1} a^{*}$. Applying the involution to these equalities, we see that they are equivalent to $f a=f a_{e, f}^{\dagger} a a$ and $a e^{-1}=a e^{-1} e a a_{e, f}^{\dagger} e^{-1}$, i.e., $a=a_{e, f}^{\dagger} a a=a a a_{e, f}^{\dagger} \Leftrightarrow a_{e, f}^{\dagger} a=a a_{e, f}^{\dagger}$.
$(\mathrm{LIII}) \Rightarrow(\mathrm{XII}):$ Since $\left(a^{\#}\right)^{* e, f}=a a^{\#}\left(a^{\#}\right)^{* e, f}=\left(a^{\#}\right)^{* e, f} a^{\#} a$ can be written as $\left(a^{\#}\right)^{*}=e a a^{\#} e^{-1}\left(a^{\#}\right)^{*}=\left(a^{\#}\right)^{*} f a^{\#} a f^{-1}$, we get

$$
\left(e a a^{\#}\right)^{*}=\left(a^{\#}\right)^{*} a^{*} e=e a a^{\#} e^{-1}\left(a^{\#}\right)^{*} a^{*} e=e a a^{\#} e^{-1}\left(e a a^{\#}\right)^{*}
$$

and

$$
\left(f a^{\#} a\right)^{*}=a^{*}\left(a^{\#}\right)^{*} f=a^{*}\left(a^{\#}\right)^{*} f a^{\#} a f^{-1} f=\left(a^{\#} a\right)^{*} f a^{\#} a .
$$

So, we conclude that eaa\# and $f a^{\#} a$ are Hermitian.
$(\mathrm{XI}) \Rightarrow(\mathrm{LIII}):$ It is easy to check this part, by Theorem 1.4.
$(\mathrm{LIV}) \Rightarrow(\mathrm{XII})$: The condition $a_{e, f}^{\dagger}\left(a^{\#}\right)^{2}=\left(a^{\#}\right)^{2} a_{e, f}^{\dagger}$ gives

$$
e a a^{\#}=e a^{3} a_{e, f}^{\dagger} a\left(a^{\#}\right)^{3}=e a^{3}\left(a_{e, f}^{\dagger}\left(a^{\#}\right)^{2}\right)=e a^{3}\left(a^{\#}\right)^{2} a_{e, f}^{\dagger}=e a a_{e, f}^{\dagger}
$$

and

$$
f a^{\#} a=f\left(a^{\#}\right)^{3} a a_{e, f}^{\dagger} a^{3}=f\left(\left(a^{\#}\right)^{2} a_{e, f}^{\dagger}\right) a^{3}=f a_{e, f}^{\dagger}\left(a^{\#}\right)^{2} a^{3}=f a_{e, f}^{\dagger} a .
$$

Therefore, eaa ${ }^{\#}$ and $f a^{\#} a$ are Hermitian elements.
The implication (XI) $\Rightarrow(\mathrm{LIV}) \wedge(\mathrm{LV})$ is obvious.
$(\mathrm{LV}) \Rightarrow(\mathrm{VIII}):$ Suppose that $a \in \mathcal{A}^{\#}$ and $a^{k} a_{e, f}^{\dagger}=a_{e, f}^{\dagger} a^{k}$, for any/some integer $k \geq 1$. Then

$$
a a_{e, f}^{\dagger}=\left(a^{\#}\right)^{k-1}\left(a^{k} a_{e, f}^{\dagger}\right)=\left(a^{\#}\right)^{k-1} a_{e, f}^{\dagger} a^{k}=\left(a^{\#}\right)^{k} a a_{e, f}^{\dagger} a^{k}=a^{\#} a
$$

and

$$
a_{e, f}^{\dagger} a=\left(a_{e, f}^{\dagger} a^{k}\right)\left(a^{\#}\right)^{k-1}=a^{k} a_{e, f}^{\dagger}\left(a^{\#}\right)^{k-1}=a^{k} a_{e, f}^{\dagger} a\left(a^{\#}\right)^{k}=a a^{\#}
$$

Hence, $a a_{e, f}^{\dagger}=a_{e, f}^{\dagger} a$.
$(\mathrm{LVI}) \Rightarrow(\mathrm{VIII}):$ The equality $a a_{e, f}^{\dagger}\left(a+\lambda a^{* e, f}\right)=\left(a+\lambda a^{* e, f}\right) a a_{e, f}^{\dagger}$, for $\lambda \neq 0$, is equivalent to

$$
\begin{equation*}
a+\lambda a a_{e, f}^{\dagger} a^{* e, f}=a a a_{e, f}^{\dagger}+\lambda a^{* e, f} a a_{e, f}^{\dagger} . \tag{2.7}
\end{equation*}
$$

Multiplying (2.7) from the right side by a, we observe that

$$
\begin{equation*}
a a_{e, f}^{\dagger} a^{* e, f} a=e^{-1} a^{* e, f} . \tag{2.8}
\end{equation*}
$$

Multiplying (2.8) from the right side by $a_{f, e}^{\dagger}$, we get $a a_{e, f}^{\dagger} a^{* e, f}=a^{* e, f}$.
Similarly, from $a_{e, f}^{\dagger} a\left(a+\lambda a^{* e, f}\right)=\left(a+\lambda a^{* e, f}\right) a_{e, f}^{\dagger} a$, for $\lambda \neq 0$, we obtain $a^{* e, f} a_{e, f}^{\dagger} a=a^{* e, f}$. Thus, the condition (LII) is satisfied.
$(\mathrm{VIII}) \Rightarrow(\mathrm{LVI}):$ If $a_{e, f}^{\dagger} a=a a_{e, f}^{\dagger}$, then

$$
\begin{aligned}
\left(a+\lambda a^{* e, f}\right) a a_{e, f}^{\dagger} & =a+\lambda e^{-1} a^{*} f a_{e, f}^{\dagger} a=a+e^{-1}\left(f a_{e, f}^{\dagger} a a\right)^{*} \\
& =a+\lambda e^{-1} a^{*} f=a+\lambda e^{-1}\left(a e^{-1} e a a_{e, f}^{\dagger}\right)^{*} f \\
& =a+\lambda a a_{e, f}^{\dagger} e^{-1} a^{*} f=a a_{e, f}^{\dagger}\left(a+\lambda a^{* e, f}\right)
\end{aligned}
$$

The second equality follows similarly.
(LVII) \Leftrightarrow (XXXII): Note that the assumption $a a_{e, e}^{\dagger}\left(a a^{*} e-e^{-1} a^{*} a\right)=\left(a a^{*} e-\right.$ $\left.e^{-1} a^{*} a\right) a a_{e, e}^{\dagger}$ is equivalent to $a a^{*} e-a a_{e, e}^{\dagger} e^{-1} a^{*} a=a a^{*} e-e^{-1} a^{*} a a a_{e, e}^{\dagger}$, i.e., $a a_{e, e}^{\dagger} e^{-1} a^{*} a=e^{-1} a^{*} a a a_{e, e}^{\dagger}$.

In the same way, the equality $a a_{f, f}^{\dagger}\left(a a^{*} f-f^{-1} a^{*} a\right)=\left(a a^{*} f-f^{-1} a^{*} a\right) a a_{f, f}^{\dagger}$ holds if and only if $a a_{f, f}^{\dagger} f^{-1} a^{*} a=f^{-1} a^{*} a a a_{f, f}^{\dagger}$.

The equivalences (LVIII) \Leftrightarrow (XXXIII), (LIX) \Leftrightarrow (XXXIV) and (L) \Leftrightarrow (XXXV) follow similarly as (LVII) \Leftrightarrow (XXXII).
(LXI) \Leftrightarrow (IV): For $s, t \geq 1$ and $a \in \mathcal{A}^{\#}$, notice that $a^{s}, a^{t}, a^{s+t} \in \mathcal{A}^{\#}$, and hence, $a^{s}, a^{t}, a^{s+t} \in \mathcal{A}^{-}$. By Theorem 1.3, $\left(a^{s+t}\right)^{\dagger}=\left(a^{s}\right)_{e, 1}^{\dagger}\left(a^{t}\right)_{1, e}^{\dagger}$ is equivalent to $\left[\left(a^{t} e^{-1 / 2}\right)\left(e^{1 / 2} a^{s}\right)\right]^{\dagger}=\left(e^{1 / 2} a^{s}\right)^{\dagger}\left(a^{t} e^{-1 / 2}\right)^{\dagger}$ which holds, by Theorem 1.11, if and only if $e^{-1 / 2}\left(a^{t}\right)^{*} a^{s+t} \mathcal{A} \subseteq e^{1 / 2} a^{s} \mathcal{A}$ and $e^{1 / 2} a^{s}\left(a^{s+t}\right)^{*} \mathcal{A} \subseteq e^{-1 / 2}\left(a^{t}\right)^{*} \mathcal{A}$, i.e., $\left(a^{t}\right)^{*} a^{s+t} \mathcal{A} \subseteq$ $e a^{s} \mathcal{A}$ and $e a^{s}\left(a^{s+t}\right)^{*} \mathcal{A} \subseteq\left(a^{t}\right)^{*} \mathcal{A}$. By elementary computations, this is equivalent to $a^{*} \mathcal{A} \subseteq e a \mathcal{A}$ and $e a \mathcal{A} \subseteq a^{*} \mathcal{A}$, that is, $a^{*} \mathcal{A}=e a \mathcal{A}$. Analogy, $\left(a^{s+t}\right)^{\dagger}=\left(a^{s}\right)_{f, 1}^{\dagger}\left(a^{t}\right)_{1, f}^{\dagger}$, $s, t \geq 1 \Leftrightarrow a^{*} \mathcal{A}=f a \mathcal{A}$.
(LXII) \Leftrightarrow (IV): Observe that, for $s, t \geq 1,\left(a^{s+t}\right)_{e, f}^{\dagger}=\left(a^{s}\right)_{f, f}^{\dagger}\left(a^{t}\right)_{e, f}^{\dagger}$ is equivalent to $\left[\left(e^{1 / 2} a^{t} f^{-1 / 2}\right)\left(f^{1 / 2} a^{s} f^{-1 / 2}\right)\right]^{\dagger}=\left(f^{1 / 2} a^{s} f^{-1 / 2}\right)^{\dagger}\left(e^{1 / 2} a^{t} f^{-1 / 2}\right)^{\dagger}$, by Theorem 1.3. Using Theorem 1.11, the previous equality is equivalent to $f^{-1 / 2}\left(a^{t}\right)^{*} e a^{t+s} f^{-1 / 2} \mathcal{A} \subseteq$ $f^{1 / 2} a^{s} f^{-1 / 2} \mathcal{A}$ and $f^{1 / 2} a^{s} f^{-1}\left(a^{t+s}\right)^{*} e^{1 / 2} \mathcal{A} \subseteq f^{-1 / 2}\left(a^{t}\right)^{*} e^{1 / 2} \mathcal{A}$, that is, $\left(a^{t}\right)^{*} e a^{t+s} \mathcal{A} \subseteq$ $f a^{s} \mathcal{A}$ and $f a^{s} f^{-1}\left(a^{t+s}\right)^{*} \mathcal{A} \subseteq\left(a^{t}\right)^{*} \mathcal{A}$. It follows by elementary computations that this is equivalent to $a^{*} \mathcal{A} \subseteq f a \mathcal{A}$ and $f a \mathcal{A} \subseteq a^{*} \mathcal{A}$, i.e., $a^{*} \mathcal{A}=f a \mathcal{A}$. Similarly, $\left(a^{s+t}\right)_{e, f}^{\dagger}=\left(a^{s}\right)_{e, f}^{\dagger}\left(a^{t}\right)_{e, e}^{\dagger}, s, t \geq 1$ if and only if $a^{*} \mathcal{A}=e a \mathcal{A}$.

From the previous theorem, we can get the following result.
Corollary 2.3. Let \mathcal{A} be a unital C^{*}-algebra, and let e and f be invertible positive elements in \mathcal{A}. For $a \in \mathcal{A}^{-}$the following statements are equivalent:
(a) a is weighted-EP w.r.t. (e, f);
(b) $a^{* f, e} \mathcal{A}=a^{* e, f} \mathcal{A}=a \mathcal{A}\left(\right.$ or $a^{* f, e} \mathcal{A}=a \mathcal{A}$ and $\left.\mathcal{A} a^{* f, e}=\mathcal{A} a\right)$;
(c) $\left(a^{* f, e}\right)^{\circ}=a^{\circ}$ and ${ }^{\circ}\left(a^{* f, e}\right)={ }^{\circ} a$;
(d) $a \mathcal{A}^{-1}=a^{* f, e} \mathcal{A}^{-1}$ and $\mathcal{A}^{-1} a=\mathcal{A}^{-1} a^{* f, e}$; and
(e) $\mathcal{A}^{-1} a^{*}=\mathcal{A}^{-1}\left(a^{* f, e}\right)^{*}$ and $a^{*} \mathcal{A}^{-1}=\left(a^{* f, e}\right)^{*} \mathcal{A}^{-1}$;

Acknowledgment. We are grateful to the referee for helpful comments concerning the paper.

REFERENCES

[1] O.M. Baksalary and G. Trenkler. Characterizations of EP, normal and Hermitian matrices. Linear Multilinear Algebra, 56:299-304, 2006.
[2] A. Ben-Israel and T.N.E. Greville. Generalized Inverses: Theory and Applications, 2nd edition. Springer, New York, 2003.
[3] E. Boasso. On the Moore-Penrose inverse, EP Banach space operators, and EP Banach algebra elements. J. Math. Anal. Appl., 339:1003-1014, 2008.
[4] S.L. Campbell and C.D. Meyer Jr. EP operators and generalized inverses. Canad. Math. Bull., 18:327-333, 1975.
[5] S. Cheng and Y. Tian. Two sets of new characterizations for normal and EP matrices. Linear Algebra Appl., 375:181-195, 2003.
[6] D. Cvetković, D.S. Djordjević, and J.J. Koliha. Moore-Penrose inverse in rings with involution. Linear Algebra Appl., 426:371-381, 2007.
[7] D.S. Djordjević. Products of EP operators on Hilbert spaces. Proc. Amer. Math. Soc., 129(6):1727-1731, 2000.
[8] D.S. Djordjević. Characterization of normal, hyponormal and EP operators. J. Math. Anal. Appl., 329(2):1181-1190, 2007.
[9] D.S. Djordjević and J.J. Koliha. Characterizing hermitian, normal and EP operators. Filomat, 21(1):39-54, 2007.
[10] D.S. Djordjević, J.J. Koliha, and I. Straškraba. Factorization of EP elements in C^{*}-algebras. Linear Multilinear Algebra, 57(6):587-594, 2009.
[11] D.S. Djordjević and V. Rakočević. Lectures on generalized inverses. Faculty of Sciences and Mathematics, University of Niš, 2008.
[12] M.P. Drazin. Pseudoinverse in associative rings and semigroups. Amer. Math. Monthly, 65:506514, 1958.
[13] D. Drivaliaris, S. Karanasios, and D. Pappas. Factorizations of EP operators. Linear Algebra Appl., 429(7):1555-1567, 2008.
[14] R.E. Harte and M. Mbekhta. On generalized inverses in C*-algebras. Studia Math., 103:71-77, 1992.
[15] R.E. Harte and M. Mbekhta. On generalized inverses in C*-algebras II. Studia Math., 106:129138, 1993.
[16] R.E. Hartwig and I.J. Katz. On products of EP matrices. Linear Algebra Appl., 252:339-345, 1997.
[17] J.J. Koliha. The Drazin and Moore-Penrose inverse in C^{*}-algebras. Math. Proc. Royal Irish Acad., 99A:17-27, 1999.
[18] J.J. Koliha. A simple proof of the product theorem for EP matrices. Linear Algebra Appl., 294:213-215, 1999.
[19] J.J. Koliha. Elements of C^{*}-algebras commuting with their Moore-Penrose inverse. Studia Math., 139:81-90, 2000.
[20] J.J. Koliha. A generalized Drazin inverse. Glasgow Math. J., 38:367-381, 1996.
[21] J.J. Koliha and P. Patrício. Elements of rings with equal spectral idempotents. J. Australian Math. Soc., 72:137-152, 2002.
[22] G. Lesnjak. Semigroups of EP linear transformations. Linear Algebra Appl., 304(1-3):109-118, 2000.
[23] D. Mosić, D.S. Djordjević, and J.J. Koliha. EP elements in rings. Linear Algebra Appl., 431:527-535, 2009.
[24] D. Mosić and D.S. Djordjević. Partial isometries and EP elements in rings with involution. Electron. J. Linear Algebra, 18:761-772, 2009.
[25] D. Mosić and D.S. Djordjević. Reverse order law for the Moore-Penrose inverse in C^{*}-algebras. Electron. J. Linear Algebra, 22:92-111, 2011.
[26] D. Mosić and D.S. Djordjević. EP elements in Banach algebras. Banach J. Math. Anal., 5(2):25-32, 2011.
[27] P. Patrício and R. Puystjens. Drazin-Moore-Penrose invertibility in rings. Linear Algebra Appl., 389:159-173, 2004.
[28] P. Patrício and A. Veloso da Costa. On the Drazin index of regular elements. Cent. Eur. J. Math., 7(2):200-205, 2009.
[29] R. Penrose. A generalized inverse for matrices. Proc. Cambridge Philos. Soc., 51:406-413, 1955.
[30] Y. Tian and H. Wang. Characterizations of EP matrices and weighted-EP matices. Linear Algebra Appl., 434(5):1295-1318, 2011.

[^0]: *Received by the editors on February 13, 2011. Accepted for publication on September 6, 2011. Handling Editor: Michael Tsatsomeros.
 ${ }^{\dagger}$ Faculty of Sciences and Mathematics, University of Niš, PO Box 224, 18000 Niš, Serbia (dijana@pmf.ni.ac.rs, dragan@pmf.ni.ac.rs). The authors are supported by the Ministry of Science, Republic of Serbia, grant no. 174007.

