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WEIGHTED-EP ELEMENTS IN C*-ALGEBRAS*

DIJANA MOSICT AND DRAGAN S. DJORDJEVICT
Abstract. The weighted—EP elements in C*-algebras are defined and characterized.
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1. Introduction. There are many equivalent characterizations of EP elements
in a ring or C*-algebra (see, for example, [10, 19, 21, 23, 24, 27]), many more still for
Banach or Hilbert space operators and matrices (see [1, 2,3,4,5,7,8,9, 11, 13, 16, 18,
22, 26]). In [30], Tian and Wang defined weighted-EP matrices and presented char-
acterizations of weighted—EP matrices using various rank formulas for matrices. In
this paper, weighted-EP elements of C*-algebras are studied using different methods,
extending the results from [30] to more general settings.

Let A be a unital C*—algebra with the unit 1. An element a € A is regular if there
exists some b € A satisfying aba = a. The set of all regular elements of A is denoted
by A~. An element a € A satisfying a* = a is called symmetric (or Hermitian). An
element z € A is positive if z = y*y for some y € A. Alternatively, z € A is positive
if # is Hermitian and o(z) C [0, +00), where the spectrum of element z is denoted by

o(z).

An element a € A is group invertible if there exists a# € A such that

ac?a=a, a*ad” =a¥*, ad” =a"a.

Recall that a# is uniquely determined by these equations. The group inverse a# exists
if and only if aAd = a?A and Aa = Aa? if and only if a € a®> AN Aa? (see [12, 28]).
We use A* to denote the set of all group invertible elements of A. The group inverse
a# double commutes with a, that is, ax = za implies a#z = za# [6, 11].

An element a' € A is the Moore—Penrose inverse (or MP-inverse) of a € A, if
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the following hold [29]:

aa’a =a, dalaa’ =a', (ad")* =aa’, (a'a)*=a

There is at most one a' such that above conditions hold (see [14, 17]). The set of all
Moore-Penrose invertible elements of A will be denoted by Af.

THEOREM 1.1. [14] In a unital C*—-algebra A, a € A is MP-invertible if and only
if a is regqular.

DEFINITION 1.2. Let A be a unital C*—algebra, and let e and f be invertible
positive elements in A. The element a € A has the weighted MP-inverse with weights
e and f if there exists b € A such that

aba =a, bab=">b, (eab)" =eab, (fba)* = fba.

The unique weighted MP-inverse with weights e and f will be denoted by a; 7 if it
exists [6]. The set of all weighted MP-invertible elements of A with weights e and f
will be denoted by Al,f

THEOREM 1.3. [6] Let A be a unital C*—algebra and let e and f be positive
invertible elements of A. If a € A is reqular, then the unique weighted MP-inverse
a; 5 exists and

a;f _ f_1/2(el/2af_l/2)Tel/2.

Define the mapping = + x*¢f = e~la*f, for all z € A. Notice that (*,e, f) :
A — A is not an involution, because in general (zy)*®f # y*¢fz*¢f. Now, we
formulate the following result which can be proved directly by the definition of the
weighted MP-inverse.

THEOREM 1.4. Let A be a unital C*—algebra and let e and f be positive invertible
elements of A. For any a € A™, the following hold:

(a) (a ef)je =a;

(b) (@)}, = (al )
(c) a

(d
(e
) (e )}y =al gl )
(&) (aa™h)t. = (af ;)*Tal 4
(h) a*fe )Tff wfe — g*f, e(aa*f,e)'r - and

e,e’

*f.e _aTjaa*ﬂ = a*f*ad} ,;

*f, e( )*ej — ai,fa7

( )*e fa*f,e — aai f’.

) a
)

ef:(
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() (@)}, =al@la)} ; = (1)} a.
For a € A, consider two annihilators
a® ={x € A:ax =0}, ca={r € A:za=0}.
Note that

(@)’ =0a° & °(a*) = “aq, aAd=a"As Aa = Aa”.

LEMMA 1.5. [10] Fora€ A, ae A~ & A= (a*A) & a°.

The following result is very useful in the rest of paper and can be verified by
properties of the weighted MP-inverse.

LEMMA 1.6. Let a € A~, and let e and f be invertible positive elements in A.
Then

Now, we state an important result related to the weighted Moore-Penrose inverse.
In [19, Lemma 1.5], the following result is proved for the ordinary Moore-Penrose
inverse. Observe that conditions (1.1) and (1.2) also appear in the proof of [15,
Theorem 10] for the ordinary Moore-Penrose inverse.

LEMMA 1.7. Let a € A~, and let e and f be invertible positive elements in A.
Then

(1.1) aj;f =(a*Ca+1- aj;fa)_la*f’6 =a*C(aa* e +1 — aalyf)_l,
(1.2) a"Pe At =al LAV and A7 el = ANl
(13) (a*1)° = (al ;)° and °(a*)) = °(al ).

Proof. By Theorem 1.4, we can verify

't = (a**a+1~af ja)al ; = al [(aa™€ +1—aaf p),
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(a*j'ﬁea + 1— a;fa)*l = a;f(a;f)*e-,f + 1— a;fa

and

(aa*f¢ +1 — aal f)fl = (ai_’f)*e’fa;f +1- aa;f.

Thus, the part (1.1) holds and it implies the equalities (1.2) and (1.3). O
We recall the definition of EP elements.
DEFINITION 1.8. An element a € A~ is EP if aat = ala.

LEMMA 1.9. [19] An element a € A is EP, if a € A~ and aA = a*A (or,
equivalently, if a € A~ and a® = (a*)°).

The condition a4 = a* A gave the EP elements their name for equal projections
onto the range of a¢ and a* in the case of matrices and closed range Hilbert space op-
erators. These elements are important since they are characterized by commutativity
with their Moore—Penrose inverse. Also notice that EP elements are those elements
for which the group and the Moore-Penrose inverse exist and coincide.

In this paper, as an extension of EP elements, we are concerned with elements
of a C*-algebra which commute with their weighted Moore-Penrose inverse. These
elements are called weighted—EP elements. In particular, we give several equivalent
conditions for an element of C*-algebra to be weighted-EP. The motivation for this
paper is an interesting paper by Tian and Wang [30]. They studied such characteri-
zations for weighted—EP complex square matrices.

We conclude this section with the following results on the reverse order law for
the Moore-Penrose inverse of a product, which will be used later.

LEMMA 1.10. [25, Theorem 2.4] Let A be a unital C*-algebra and let a,b,ab €
A~. Then the following conditions are equivalent:

(a) (ab)! = blal;
(b) a*ab = bbTa*ab and abb* = abb*a'a.

THEOREM 1.11. Let A be a unital C*—algebra and let a,b,ab € A~. Then
(ab)t = bTal if and only if a*abA C bA and bb*a* A C a* A.

Proof. ==: If (ab)’ = bfal, then, by Lemma 1.10, a*ab = bbTa*ab and abb* =
abb*aa which imply

bb*a* = (abb*) = (abb*ala)* = a*(a’)*bb*a*.

Hence, a*abA C bA and bb*a* A C a* A.
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<=: Conversely, from a*abA C bA and bb*a* A C a* A, we conclude that a*ab =
bz, for some x € A, and bb*a* = a*y, for some y € A. Then the equalities

bbla*ab = bb'bx = bz = a*ab
and
abb*a’a = (aTabb*a*)* = (a'aa*y)* = (a*y)* = (bb*a*)* = abb*
imply (ab)! = b'af, by Lemma 1.10. O

2. Weighted—EP elements in C*-algebras. First, we state the definition of
weighted—EP elements in C*-algebras.

DEFINITION 2.1. An element a € A is said to be weighted-EP with respect to
two invertible positive elements e, f € A (or weighted-EP w.r.t. (e,f)) if both ea and
af~! are EP, that is, a € A~, eaA = (ea)* A, and af ' A= (af~!)*A

In the following theorem, a number of necessary and sufficient conditions for an
element to be weighted-EP are presented.

THEOREM 2.2. Let A be a unital C* —algebra, and let e and f be invertible positive
elements in A. For a € A~ the following statements are equivalent:
(1) a is weighted—EP w.r.t. (e,f);
IT) a is weighted-EP w.r.t. (f.e);

( ;
ITI) a is both weighted-EP w.r.t. (e,e) and w.r.t. (f,f);

)
)
(1)
(IV) eaA = faA=a*A;
(V) 6_1 *A=f"ta *A*aA;
(V1) af A =aA and (af e ) A=a"A;
(VII) a* is weighted-EP w.r.t. (e~1,f~1);
aa! . =a! ;a;
VIIL) aal ; =al ,
(IX) a € A* and a* = a;faa]C = akaa;f, for any/some integer k > 1;
(X) Z,f = a(a;f)Q = (aLf)Qa:
(XI) a € A* and a¥ = a;f;
(XII) a € A* and both eaa™ and faa® are Hermitian;
(XII) a € A# and a*al ; = al ;a#;
(XIV) a € A* and aa#aT y= a;fa#a;
I
(V)aEafA NA " a,
(XVI) a € a FAN Aa
(XVII) a A~ 12 f ! *A and A~ta = A ta*e;
(xviii) A7 ta* = A taf~! and a* A7 = ea A™L;
)

(XIX

there exists x € A such that a = e’la*xa f;
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(XXI) a € A* and a* is weighted-EP w.r.t. (e,f), for any/some integer k > 1;

(XXII
(XXIII
(XXI

(XX
(XXVI

(XXVII
(XXVIII
(XXIX

) a
)
)
) a® = [(ea)]° and (a”)° =
)
)
)
)
)
)
(XXX)
)
)
)
)
)
)
)
)
)
L)

A=eta*A® (a

2k—1 _ 1
= Qe 5@
and aaz

a € A*
a€ A*
a € A*
a € A*
a € A*
a € A#, aaT e la*a=e"ta

10,*0,* 671

and a

and aa” = aal_’e

and aa® = aal

(XXXI
(XXXII
(XXXIII
(XXXIV
(XXXV
(XXXVI

(XXXVII
(XXXVIII
(XXXIX

(X

(XLI)

aEA,aaefe a

T
a € A#, afeaaa e =aa*eay

any/some integer k > 1;
aai_’f(a + /\al)f) =

= aaff

ef = 0lgc
1, %

a—f—/\aT Vaal , and a! .a a—f—/\aT ) = a—I—/\aT
e, f e, f e, f e, f

aa*a is weighted—EP w.r.t. (e,f);
= (af”
) _a/*A@(a/*f)O;
a' is weighted-EP w.r.t. (e=1,f~1);
CLT  is weighted-EP w.r.t. (e,f);
a2kt

l)o;

Qe fs for any/some integer k > 1;

§O0s0 = 0l gaaal g
and a¥ is weighted-EP w.r.t. (e,f);

I _ a})fa);

:alfa)'
la*a_f
I~

1a*af

(or aa® = al ,a
(or aa™ = a} 0

t
f-,ff
and aa}7ef

T-,
1% T
a aaaj f’

1a*aaa]; of

aaal . and aa

€,e

CLCLCL;f

a € A" ,a Laaa’e = aa eaJf aanda}faaa*f—aa*fajfa

a and a faaa*f = aa*fa6 P

a€ A" and a aaT gt aT faa = 2a*, for any/some integer k > 1;
a € A* and a! ja#a—i—aa# Tf =24/ efi

a € A#* and a*f’ = a*)eqa¥ = a#aa*f’ ;

a € A* and a*7Caa# + a#aa* e = 2a*f €

a € A* and a*aa! f—|—(a aaif) =a

t

faa + (a efaak) = a* + (a¥)*, for

e,f)al,faf

for any/some complex number X # 0;

(XLID) ab=ba = al ;b=bal
(XLII) af

e, f =
(XLIV) (a+Xaf . )A =

f(a), for some function f holomorphic in a neighbourhood of o(a);
(a+ /\a}7f)A =

(Aa+a®)A and A(a+Aaf ) = A(a+Aal ;) =

A(Xa + a?), for any/some complex number X # 0;

(XLV) (a+ Aaf ;) A =

complex number A # 0;

(XLVI) (a+ Aaf ,)°

(Ma + a®)A and A(a + Aa! )=

(a+ )\a}_’f)o =

A(Xa + a?), for any/some

(Aa+a®)° and °(a + Aal )

°(a+ /\a}’f) =

°(Aa + a?), for any/some complex number \ # 0;

(XLVIL) (a + Aa! ;)° =

complex number A #£0;
a € A* and (

a € A* and a(a! ag ¢
a € A#, a*f>€ai_f
a€ A" and (aj;f)2

)2 = a# =

= (a#)Q;

e.f

(Aa + a®)° and °(a + )\a})e) =

= a*Hea¥ and al 7

°(Aa + a3), for any/some

) 20# — aT ja#aT ;= a#( T’j)2’.

(al p)%a;

'a*f,e — a#a*f,e).

a*e,f _ a*e,fal fa’ — aaT a*e,f}.
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(LII) a € A* and (a®)*®) = aa¥ (a¥)*) = (a#)*¢/a¥a (or (a¥)*]¢ =
aat (a#)he = (a#)eata);
# i # #)2,T .
(LIV) a € A" and a, (a) (a) ag ¢
LV) a € A* and a*a! , = a! .a*, for any/some integer k > 1;
e, f ef
(LVI) aae)f(a—i—)\a*e Yy = (a+Aa*® f)aaLf and ai)fa(a—f—)\a*evf) = (a—i—)\a*e’f)agfa,
for any/some complex number X # 0;

(LVI) a € A*, aal (aa*e — e 'a*a) = (aa*e — e 'a*a)aal, and aa}yf(aa*f -
-1 % _ * -1 o
fla a)—(aa f— [ a*a)aa} ;;

(LVII) a € A%, aa slaa*e —e “la*a) = (aa*e — efla*a)aalf and aa}e(aa*f —
f~la*a) = (aa*f - fa*a)aa],;

(LIX) a € A#, af ,a(aa*e — e 'a*a) = (aa*e — e ta*a)af ,a and a}ja(aa*f -
flara) = (aa*f fla a)aj &

(LX) a € A*, af a(aa*e — e ta*a) = (aa*e — efla*a)a})ea and al;fa(aa*f —
f~'a*a) = (aa” f — f~'a*a)a] ;a;

(LXI) a € A* and (a*TH)t = (as)l)l(at)l{_’e = (a®)t 1(0})1;7]“ for any/some integers

I
s, t>1;
(LX) a € A% and (a”‘t);f = (as)}_’f(at)i_’f = (as)l)f(at)l)e, for any/some integers
s,t>1.

Proof. (I) = (II): Assume that a is weighted-EP w.r.t. (e,f), i.e., ea and af~! are
EP. From eaA = (ea)* A, we obtain ad = e la*eA = (ae™!)*eA implying ae ted =
(ae™1)*eA, that is, ae ' A = (ae™1)* A. In the same way af 1A = (af~1)* A implies
faA = (fa)*A. Hence, fa and ae~! are EP, i.e., a is weighted-EP w.r.t. (f,e).

(IT) = (I): This implication can be proved in the same way as (I) = (II).
(III) < (I): Obviously, because (I) < (II).

(IV) < (I): Notice that (ea)*A = a*A and af ' A = aA. Now, ead = faA =
a*A is equivalent to ead = a*eA and aAd = f~la*A, that is, ead = (ea)*A and
af7'A = (af~1)*A. These equalities mean that ea and af~! are EP, ie., a is
weighted-EP w.r.t. (e,f).

(V) & (IV): This is easy to check.

(VI) & (I): By Lemma 1.6, ae A = aA and (al o)A = a*Ais equivalent to
fla*A = aA and ea A = a* A which is (af ~1)*A = af 1A and ead = (ea)* A.

(VII) & (V): Using the equivalence (I) < (V) for a*, we have that a* is weighted—
EP w.rt. (e71,f71) if and only if e ta*A = f~la* A = aA.
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(VIII) = (VI): The equality aa; ;= a; 7@ gives

aA = a;faa/l C a;fA = aa;fa;ffl C aA,
and
a* A = (aaal )" A C (af ;)" A= (af jal ;a)"ACa A,
ie., a;fA = aA and (a;f)*/l =a* A

(VI) = (IX): Since aiﬁfA = aA, then a = alyfy for some y € A. Now,

a= ai)fy = aLfa(aLfy) = az)faa,

and af = a;faak, for any/some integer k > 1. Similarly, the assumption (a;f)*A =

a* A implies a* = (al )"z for some z € A and

a* = (al;f)*x = (ai)faagf)*x = (aaLf)*(aZ)f)*:z: = (aaLf)*a* = (aaaLf)*.

Applying involution to this equality, we get a = aaai_’ f and, for any/some integer
E>1,a" = akaal - Notice that, from a € a®AN Aa?, it follows a¥ exists.

(IX) = (VII): If a € A% and o* = a;faak = akaa;f, for any/some integer
k > 1, then

aal ;= (a#)k(ak-i-la]‘

k Kk k k k k
ep) = (a*)Fa¥ = ¥ ()" = a! 7@ ) = aLfa.

67

(X) = (VHI?L: Applying the equality aLf = a(ai)f)2 = (ai)f)Qa, we obtain aLfa =
a((al ;)%a) = aal .

(VIII) = (X): Obviously.

(VIII) & (XI) & (XII): By the uniquely determined group and weighted-MP
inverse.

(XIII) = (VIII): The hypothesis a*al ; = a! ,a# implies

aaz P = a?(a*al P = a’al fa# = a2al fa(a#)2 =a*(a™)? = aa”

€,, e,
and
ai,fa = (a;fa#)az = a#al,f(ﬂ = (a#)Qaa fa2 = a*a.

Therefore, aaLf = ai)fa.
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(XI) = (XIII): From the equality a¥ = ai > we have a#al ;= (al f)2 = ai fa#
So, the condition (XIIT) holds.

(XIV) = (VIII): Suppose that a € A# and aa#agf = al)fa#a. Then we get the
equality (VIII):

—

a(aa#a;f) = aa;fa#a = aal

a*aal a, ja = (aa#ai_’f)a = a;fa#aa = al_’fa.

2
)
| |

faa# = aa#

(XI) = (XIV): By a* = aL #» obviously, the condition (XIV) is satisfied.

(VIIT) = (XV): Using aaT 5= aT ja we can verify that a = (a® + 1 — aT fa) l
and (a2+1—a;fa) L= (a e,f) +1- ae)fa. Thus, a € A™! T . Since aaT g = ae 7@, by
previous equalities, we conclude that a = ai_’f(a2 +1-— aal_’f) and (a®+1— aa;f) 1 =

(al)f)Q +1-— aai)f which yields a € al)fA’l. Hence, (XV) holds.

i

(XV) = (XVI): Obviously.

(XVI) = (IX): From the condition a € al sA, we have a = al 5, for some z € A,
and a* — al)faak = (QZ ;- al faaT f):mk*1 = 0 for integer k¥ > 1. In the similar
way, a € Aa f gives a* = akaa for integer k > 1. When k£ = 1, we observe that
a€a?An Aa and a? exists. So the condition (IX) holds.

(XV) =3 (XVH): The assumption a € aT JATINA e 1 L 1s equivalent to aA™! =
al fA and A~la = A~ 1aT By Lemma 1.7, we observe that these equalities hold
1fand0n1y1fa.A1*a*fe.A1 f~la* A" and A la = A7 a*f¢ = A~ a*e.

(XVII) & (XVIII): Applying the involution, we check this equivalence.

(XIX) = (II): Suppose that there exists € A such that a = e 'a*za*f. Then,
by Lemma 1.7, a € e 'a* AN Aa* f = a*>T AN Aa*f = a}yeAﬁAa}_’e. Now, by (xvi)
< (i), we deduce that a is weighted—EP w.r.t. (f,e).

(H) (XIX) If a is weighted-EP w.r.t. (f,e), by the equivalence (I) < (XVI),

aEafe.AﬁAaf = e ta* AN Aa* f. Therefore, for some y,z € A, a = e ta*y = za* f

and a = aa}_’ea =e" (yaﬁe z)a*f. For © = yafyez, the statement (XIX) is satisfied.

(XX) = (II): Since a = (ae~!)Tae tafa(fa)’, we conclude that a € (ae=H)TAN
A(fa)t = (ae )* AN A(fa)* = a*T AN Aa*e! = a}7eAﬁAa}7e. Using (XVI) < (1),
we observe that a is weighted-EP w.r.t. (f,e).

II) = (XX): The condition (II) implies that ae~' and fa are EP, and hence,
(

(ae™ ) afa(fa)T = ((ae ) 1a _1)efa(fa)]L = ae_lefa(fa)T
=f" (fafa(fa) )= ftfa=a.
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Thus, the condition (XX) holds.

(XXI) < (XI): Applying the equivalence (I) < (XII) for a*, & > 1, we see
that a € A% and a* is weighted-EP w.r.t. (e,f) if and only if a € A# and ea®(a*)?#,

fa*(a*)# are Hermitian which is equivalent to a € A* and eaa”, faa™ are Hermitian,
by (a*)# = (a¥)~.

(XXII) & (IV): Notice that, from a € A~, it follows that aa*a € A~ and
(aa*a)’ = a'(a*)Tal. Using the equivalence (I) < (IV) for aa*a, we observe that
aa*a is weighted-EP w.r.t. (e,f) is equivalent to eaa*a A = faa*aA = a*aa*A.
Since a € A~, a' exists and ea = eaa’a = eaa*(a’)* = eaa*aa’(a’)*. Consequently,
eaa*aA = eaA and in the same way faa*aA = faA. By a* = a*aa’ = a*aa’aa’ =
a*aa*(a’)*a’, we conclude a*aa*A = a*A. Hence, eaa*aAd = faa*aA = a*aa*A is
equivalent to (IV).

(XXIII) < (I): Observe that a is weighted-EP w.r.t. (e,f) if and only if elements
ea and af~! are EP. By the definition of EP elements, this is equivalent to (ea)® =
[(ea)*]° and (af~1)° = [(af~1)*]° = (f~'a*)°, which can be written as a® = [(ea)*]°
and (af~1)° = (a*)°, by Lemma 1.6.

(V) = (XXIV): The condition (V) gives e *a*A = aA and its equivalent con-
dition (IV) imply faA = a*A. For a*,a*f € A~, Lemma 1.5 implies that A =
aA® (a*)° = faA® (a*f)°. Thus, A=e ta*AD (a*)° =a* A® (a* f)°.

(XXIV) = (VII): From A = e la* A ® (a*)° = a* A @ (a*f)°, we see that A =
e la* Ad (e ta*)° = a* fAD(a* f)°. Define the left regular representation L, : A — A
by Lo(z) = ax forallz € A. Now, A= R(Le-14+)BN(Lo-14+) = R(La+ ) BN (Lg+f)
which implies that L,-1,« i Loy are EP operators. According to [3, Remark 12],
necessary and sufficient condition for @ € A to be EP is that L, € L(A) is EP. So,
elements e~'a*, a* f are EP, and a* is weighted-EP w.r.t. (e71,f~1).

(XXV) < (V): By the equivalence (I) < (V) for a', we get that a' is weighted-EP
w.r.t. (et f71) if and only if e(a’)*A = f(a?)*A = al A. Recall that a' A = a*A
and (a")*A = aA. Now,

e(@)yA=d'A & (@)Y A=e'a"A & ad=c"1a"A
and, similarly, f(a")*A =a'A & ad = f~ta* A.

(XXVI) < (VI): If we apply the equivalence (I) < (iv) for aL ¢+ then aL s
weighted-EP w.r.t. (e,f) ea;f.A = fa;fA = (al_’f)*A. By Lemma 1.6, we obtain

eai_’fA = (a;f)*A & ea;fA =ead & a;fA =aA
and

fal JA=(al ) A & a*A=(a] )7 A
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(XXVII) = (VIII): Assume that a € A# and ¢®*~! = o] fa%“ai s» for any/some
integer k > 1. Consequently, we have

aal *(a#)zkanJrlaZ *(a#)zka(aT a2kt

ef = ;= e.f e.p) = (@) aa® 1 = a%a

and
a;fa = (ai_’fazk“ae_’f)a(a#)% = azk*la(a#)% = aa®

T

implying aai)f = a, ;a.

The implication (VIIT) = (XXVII) is easy to check.

(XXVII) = (IX): Suppose that a € A# and aalyfa;fa = ai_’faaai_’f. Now,
observe that

ai_’faaai_’f = aa;fa;fa = aa#(aai_’fai_’fa)a#a
(2.1) = a#aal faaal faa# =a*a.

First, if k is a positive integer, then multiplying the equality (2.1) by a* from the left

side, we get akaa; F= a* and then multiplying the equality (2.1) by a* from the right

side, we obtain az)faak = a*. So, the condition (IX) is satisfied.
The implication (VIII) = (XXVIII) is obvious.

(XXIX) <« (IV): Using (I) < (IV) for a*, we deduce that a* is weighted-EP
w.r.t. (e,f) if and only if ea# A = fa# A = (a¥)*A. This is equivalent to (iv), because
a* A= aA, a* A= aA and (a¥)* A= a*A.

(XXX) = (XII): From aa* = aal, = aan ¢ we conclude that elements eaa” =

eaa;e and faa® = faa}  are Hermitian.

(ITI) = (XXX): Since a is weighted-EP w.r.t. (e,f), it follows that a# = ai)f.
Hence, the fact that a is both weighted-EP w.r.t. (e,e) and w.r.t. (f,f) gives a¥ =
T

al)e = a}yf. Thus, aa” = aal)e =aay ;.
(I) = (XXXI) = (XII): This part follows similarly as (III) = (XXX) = (XII),
using the equivalence (I) < (II).

(XXXII) = (XXX): By the equality aaf e *a*a = e *a*aaaf ., we have

e,e’

a* =a*ad’ = a*aaa”a’ = e(e ra*aaal )aa” ol

-1 -1
(2.2) = eaai)ee a*aaaal = eaaLee a*.
Applying the involution to (2.2), we obtain a = ae’leaa;e = aaal)e which yields

ata = aal)e. In the same way, the assumption aa}yff_la*a = f_la*aaa}_’f implies

a’a = aa; - Therefore, the condition (XXX) holds.
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1) = (XXXII): The condition (III) gives that a# = af = a’ ,. Then we get
g e,e If g

T -1 % _ -1 T -1 % __ -1 —1 T *
aal e a*a=e eaal e a"a=e " (ac” eaal.)*a
= e Yaaa™)a = e la*a = e la*aaal ,

and similarly aa}yff_la*(l = f‘la*aaa;f.

The implications (I) = (XXXIII) = (XXX), (ITI) = (XXXIV) = (XXX) and (I)
= (XXXV) = (XXX) can be proved in the same way as (III) = (XXXII) = (XXX).

(XXXVI) = (VIII): Multiplying a*aa , + a! aa® = 2a*, k > 1, from the right
side by (a*)*, we obtain
akaagf(a#)k + ai)faaa# = 2aa™.
Further, the equality
akaai_fa(a’k’&)]H'1 + ai_fa = 2aa’”,
gives aa#+al7fa = 2aa¥, i.e., ai)fa = aa*. Similarly, multiplying akaagf—i—agfaak =

2a* from the left side by (a¥)*, we show that aaLf = aa”. So, az)fa = aaLf.
(VIII) = (XXXVI) A (XXXVII): We can easily check this implication.

(XXXVII) = (VIII): Multiplying the equality a! ;a*a + aa*al ; = 24! , by a

first from the right side, we get a#a = al 7@ and then from the left side, we obtain

aa® = a;fa. Hence, we deduce that ai_’fa = aa;f.

(XXXVII) = (XII): The condition a*¢ = a*f€aa® = a*aa*/* is equivalent to
a* = a*eaa®e”! = fa*af 'a*. Then, from

(eaa™)* = (a¥)*a*e = (a)*a*eaa” e le = (aa™)*eaa™
and
(fa*a)* = a*(a¥) f = fa¥af " a*(a®) f = faFaf " (a¥a)*f,
we conclude that elements eaa® and fa#a are Hermitian.
(XIT) = (XXXVIII): If eaa” is Hermitian, then
a*laa® = fla*eaa® = f~ (eaa®a)* = f(ea)* = fla*e = a* .
In the same way, since faa® is Hermitian, it follows a*/¢ = a#aa*/*.

(XXXIX) = (XXXVII): Multiplying the equality a*/¢aa# + a#aa*/¢ = 2a*/*
by aal 7 from the right side, we get

a*f’eaagf + a#aa*-f’eaagf = 2a*f’€aa;f.
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By Theorem 1.4, we have a*/¢ 4+ a#aa*/¢ = 2a*/>¢ which implies a#aa*f¢ = a*/¢.
Similarly, multiplying the equality a*/¢aa” 4 a#aa*/¢ = 2a*/>¢ from the left side by
a and then by al + We obtain a*l¢aa® = a*/¢. Hence, (XXIX) is satisfied.

The implication (XXXVIII) = (XXXIX) is obvious.
(XL) = (IX): Multiplying the condition akaai_’f + (a’“aa;f)* =af+(ad") k>1,
by a from the right side, we see that

(2.3) (akaal §)a= (a®)*a.

Applying the involution to (2.3), we obtain

*x _k T _ x _k
a*a“aa, ; = a*a”,

which gives

akaal_’f = aaTakaa;f = (aT)*(a*akaal_’f) = (a")*a*a® = d.

In the same way, multiplying the hypothesis al faak + (al faak)* =aF+ (") k>1,

by a from the left side, we show aLfaak = a”*. Thus, (ix) holds.

The implication (VIII) = (XL) A (XLI) is obvious.

(XLI) = (VIII): The equality aai_’f(a + /\alyf) = (a+ /\alyf)aa;f is equivalent to
(2.4) a+ )\aai)fai)f = aaaLf + /\aLf.

Multiplying (2.4) from the left side by a; 7+ We get

a;fa + /\a;fa;f = ai_’faaai_’f + )\al_’fal_’f,
: : T _ T T T _ T T
which yields a/ ;a = a] ;aaa] ;. Analogously, a) ;a(a + Aa) ;) = (a + Aa] ;)a; ;a

implies aai_’f = a;faaa;f. Therefore, ai_’fa = aa;f.
(XLII) = (VIII): Assume that ab = ba implies al b= balf. If b = a, then
al)fa = aa;f.

(XI) = (XLII): By ot = al_’ f and the double commutativity of a#, from ab = ba
we obtain a#b = ba#, i.e., aLfb = bai,f'

(XLII) = (VIII): Let aT_’ s = [f(a) for some function f holomorphic in a neigh-

e
bourhood of o(a). By a property of the holomorphic calculus, al 5 commutes with
a.
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(XI) = (XLIII): By a;f = a* along with [20, Theorem 4.4], we have a# = f(a),
where f is holomorphic in a neighbourhood of o(a), and f(A) = 0 in a neighbourhood
of 0, f(A\) = A7 in a neighbourhood of o(a)\{0}, it follows (XLIII).

(XLIV) = (I): Since (a + Aaf ,)A = (Aa+a®)A for A # 0, we have a + Aaf , =
(Aa + a®)z for some z € A. Now, from

a+ )\aal)eage = aal)e(a + )\aLe) = aaLe(Aa +a®)x
= (\a+a® )z =a+ X\l

e,e’

we conclude that aaf af . = af .. In the same way, A(a + Aaf ) = A(Aa + a®) gives
al .al .a= al)e. So, a;e =aa} ,al ., = al ,al .a, which implies that a is weighted-EP

e,ee,e e,ee,e e,ee,e

w.r.t. (ee), by (I) & (X).

Similarly, from the equalities (a + )\a}yf)A = (Aa +a®)A and A(a + )\a}ﬁf) =
A(Xa + a?), for X # 0, we can show that a is weighted-EP w.r.t. (f,f).

(III) = (XLIV): The condition (III) implies a* = af , = a}yf. Then, for \ # 0,

(2.5) a+Aal, = a+Xa¥ = (@® + Aa)(a¥)? € (a® + Na)A
and
(2.6) a® +Xa = (a+ X a?)a® = (a + )\alye)(f € (a+ )\a;e)A,

we deduce (a+Aaf ) A = (Aa+a®)A. In the same way, it follows the rest of condition
(XLIV).

(XI) = (XLV) = (X): It follows in the same way as the part (III) < (XLIV).

(XLVI) = (XXIII): Assume that (a + Aal,)° = (Aa + a®)° for A # 0. If az = 0
for some x € A, then (Aa + a®)z = 0 implies (a + Aaf )z = 0. Now, we conclude
al v =0 and a® C (af .)°. Therefore, by Lemma 1.6, a® C [(ea)*]°.

Let °(a + Aaf,) = °(Aa +a®) for A # 0, and (ea)*z = 0 for some z € A.
Applying the involution, we see that z*ea = 0 which gives z*e(\a + a®) = 0. Then
z*e(a+Aal ) = 0 and, consequently, z*eal , = 0, i.e., (al ,)*ex = 0. By this equality,
we have

Hence, [(ea)*]° C a° and a°® = [(ea)*]°.

The equalities (a + /\ajc’f)O = (Aa+a®)° and °(a+ /\a?f) = °(Aa+a?) for X # 0,
imply (a*)° = (af~1)° in the similar way.
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(III) = (XLVI): The assumption (III) gives a# = af , = a}ﬁf, so by (2.5) and
2.6), we deduce °(a + Xal ) = °(Aa +a?), for A # 0. Similarly, we can prove the
( y
rest of (XLVI).

(ITT) = (XLVII) = (XXIII): Similarly as (I1T) = (XLVI) = (XXIII).

= : Using the equality (a_ ,)“a™ =a_ a*a, ., irst we get
XLVIII) = (VIII): Using th lity (af ;)%a* = al a*al ,, fi

(@Z)f)2a# = ((al7f)2@#)aa# = aT 4@ #QT f@a#
= aj;,f(a#)QCLaZ)faa# = CLLf(a#)Q
and then
aal ; = a’(a*)%a] ; = a®af ja(a®)?a] [ = a*(al ja¥a] ;)
= a¥((a} ,)2a%) = a®a ,(a*)? = a®al ja(a*)? = ac®.

We can show that al fa#al F= a* (al f)2 implies ai FO = aa® in the same way. Thus,

al)fa = aaLf.
The implication (XI) = (XLVIII) A (XLIX) is obvious.
(XLIX) = (VIII): From the hypothesis a(a;f)2 =a¥ = (a;f)Qa, we have

# T

aaLf =aa aai)f = aa(ai)f)zaai)f = a(a(a&f)z) = aa”

and
aLfa = al)faa#a = al7fa(a;f)2aa = ((aLf)za)a =a"a.

Therefore, we deduce that ai_ FO = aal -

(L) = (XLIX): The equalities a*fe 1 ef = a*/a® and a fa*f'fe = a?a*l¢ are
equivalent to a ealf = a*ea? and a f lo* = a#f~1a*. By a eaT g = = a*ea”, we
obtain

2 -1 -1
aal P)=e (eaai)f)*agf =e¢ (a

67

t

67

f)*(a*eagf) = eil(ai)f)*a*ea#

= efleaai)fa# = aal7fa(a#)2 =a”.
Analogously, from al ff_la* = a¥f~la*, we get a¥ = (ai_f)%. So, the condition
(XLIX) holds.

The implication (XI) = (L) A (LI) is obvious.

)2 = (a#)? by a first from the left side and then
(XLIX) is satisfied.

)

(
(LI) = (XLIX): Multiplying (ai
from the right side, we observe that
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= : e assumption a**f = a*¢fa! .a = aa’ ,a*®/ is equivalent to
LII) < (VIII): Th tion a*¢/ “fal [ pared 1

e, f

a*f = a*fai sa and e ta* = aal fe_la*. Applying the involution to these equalities,
we see that they are equivalent to fa = fa! saa and ae”" = ae~'eaal et e,

a = (Ll faa = aaal f ~ (Ll fa = aai f

(LII) = (XII): Since (a#)*¢/ = aa®(a?)*>/ = (a¥)**fa*a can be written as
(a™)* = eaa™e " (a™)* = (a™)* fa¥af™!, we get
(eaa™)* = (a¥)*a*e = eaa™ e L (a¥)*a*e = eaa® e (eaa™)*
and
(fa*a)' = a*(a®)' f = a* ()" fataf L f = (a*a)* fata.
So, we conclude that eaa” and fa*a are Hermitian.
(XI) = (LIII): Tt is easy to check this part, by Theorem 1.4.

(LIV) = (XII): The condition a;f(a#)2 = (a#)Qa;f gives

eaa® = eag’az fa(a#)3 = ca®(a! f(a#)z) = ea®(a¥)?a! P = eaai ¢

e). e).

and

fa¥a = f(aq‘yﬁ):’,aagfa3 = f((a*)%a! f)a3 = fai)f(a#)Qag’ = fai)fa.

Therefore, eaa” and fa™a are Hermitian elements.
The implication (XI) = (LIV) A (LV) is obvious.
LV) = (VIII): Suppose that a € A# and akal  =al .a®, for any/some integer
e, f e f
k > 1. Then

aa;f = (a#)kfl(aka;f) = (a#)kflatfak = (a#)kaa;fak =da"a

e
and

aLfa = (aLfak)(a#)k*l = akaj}’f(a#)k*l = akai)fa(a#)k = aa’”.

Hence, aai)f = al;fa.

(LVI) = (VIII): The equality aal)f(a +Aa*ed) = (a + )\a*e’f)aa;f, for A #£ 0, is
equivalent to

(2.7) a+ /\aaLfa*e’f = aaai)f + )\a*e’faai)f.

Multiplying (2.7) from the right side by a, we observe that

(2.8) aai fa*e’fa = e ta*e .

Y
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Multiplying (2.8) from the right side by a}e, we get aai fa*e’f =a*ef.

Similarly, from a;fa(a + Aa*f) = (a + )\a*e’f)a;fa, for A # 0, we obtain

a*e’fal)fa = a*®/. Thus, the condition (LII) is satisfied.
(VIII) = (LVI): If a;fa = aa;f, then

(a+ )\a*e’f)aa;f =a+ )\e_la*fa;fa =a+ e_l(fa;faa)*

=a+ Xl ta*f=a+ )\efl(aefleaa;f)*f

=a+ )\aa;fe*la*f = aa;f(a + Aa*e)).
The second equality follows similarly.

(LVII) < (XXXII): Note that the assumption aal  (aa*e — e *a*a) = (aa*e —

e’la*a)aal)e is equivalent to aa*e — aal)ee’la*a =aa*e — e la*aaal , ie

aalﬁeefla*a = efla*aaalye. 7

In the same way, the equality aa?f(aa*f—f*la*a) = (aa*f—f’la*a)aa})f holds
if and only if aa}ﬁff_la*a = f_la*aaa}ﬁf.

The equivalences (LVIII) < (XXXIII), (LIX) < (XXXIV) and (L) & (XXXV)
follow similarly as (LVII) < (XXXII).

(LXI) < (IV): For s,t > 1 and a € A¥, notice that a*,a’,a*t* € A#, and
hence, a*,at,a*** € A~. By Theorem 1.3, (a***)T = ((15)271(0L75)1£78 is equivalent to
[(ate=1/2)(e!/%a®)]t = (e'/?a®)T(ate~'/?)T which holds, by Theorem 1.11, if and only
if e 1/2(a’)*a*T' A C e2a° A and e'/2a%(a*T)* A C e V2(at)* A, i.e., (a')*a*TTA C
ea* A and ea®(a*Tt)* A C (a')*A. By elementary computations, this is equivalent to
a*A C eaA and eaA C a* A, that is, a* A = eaA. Analogy, (a**!)T = (as)})l(at)l{)f,
s,t >1< a*A= faA.

(LXTII) < (IV): Observe that, for s,¢ > 1, (a”‘t);f = (as)}yf(at);f is equivalent
to [(e/2al f=12)(f Y 2as f-12)T = (fY2a5f~1/2) (! /2al f~1/2)t, by Theorem 1.3.
Using Theorem 1.11, the previous equality is equivalent to f_l/Q(at)*ea”sf_l/QA -
f1/2asf71/2A and f1/2asf71(at+s)*el/2d4 C f71/2(at)*el/2‘/4, that is, (at)*eatJrsA C
fa*A and fa®f~1(a'T*)* A C (a')*A. Tt follows by elementary computations that
this is equivalent to a*A C faA and faA C a*A, ie., a*A = faA. Similarly,
(a5t = (as)l,f(at)T s,t > 1 if and only if a* A = eaA. O

e, f e,e’

From the previous theorem, we can get the following result.

COROLLARY 2.3. Let A be a unital C*—algebra, and let e and f be invertible
positive elements in A. For a € A~ the following statements are equivalent:

(a) a is weighted-EP w.r.t. (e,f);
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)
( ) (CL*fve)o = a° and o(a*f,e) — oa;
(d) aA™t =a*/°At and A~ra = A7 Ya* )¢ and

) A lg* = .A_l(a*f’e)* and a* AL = (a*f’e)*A_l;
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