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SYLVESTER EQUATION FOR ⋆-CONGRUENCE∗
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Abstract. In this paper, the matrix equation AX + X⋆B = C is considered, where the

matrices A and B have sizes m × n and n × m, respectively, the size of the unknown X is n × m,

and the operator (·)⋆ denotes either the transpose or the conjugate transpose of a matrix. In

the first part of the paper, necessary and sufficient conditions for the existence and uniqueness

of solutions are reviewed. These conditions were obtained previously by Wimmer [H.K. Wimmer.

Roth’s theorems for matrix equations with symmetry constraints. Linear Algebra Appl., 199:357–

362, 1994.], by Byers and Kressner [R. Byers and D. Kressner. Structured condition numbers for

invariant subspaces. SIAM J. Matrix Anal. Appl., 28:326–347, 2006.], and by Kressner, Schröder

and Watkins [D. Kressner, C. Schröder, and D.S. Watkins. Implicit QR algorithms for palindromic

and even eigenvalue problems. Numer. Algorithms, 51:209–238, 2009.]. This review generalizes to

fields of characteristic different from two the existence condition that Wimmer originally proved for

the complex field. In the second part, an algorithm is developed, in the real or complex square case

m = n, to solve the equation in O(n3) flops when the solution is unique. This algorithm is based on

the generalized Schur decomposition of the matrix pencil A − λB⋆. The equation AX + X⋆B = C

is connected with palindromic eigenvalue problems and, as a consequence, the square complex case

has attracted recently the attention of several authors.
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1. Introduction. The Sylvester equation AX − XB = C, where A ∈ C
m×m,

B ∈ C
n×n, C ∈ C

m×n are given and X ∈ C
m×n is to be determined, is one of the

most important matrix equations in theory and applications. Let us recall some of its

well-known properties that may be found in standard references on matrix analysis

as [17, Chapter 16] or [19, Section 4.4]. The Sylvester equation has a unique solution

for each C if and only if A and B have no eigenvalues in common. In 1952, Roth

proved in [24] that the Sylvester equation has some solution (perhaps nonunique) if
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and only if

(1.1)

[
A C

0 B

]
and

[
A 0

0 B

]
are similar.

Roth proved this result in any field F through a rather indirect argument that uses the

Smith canonical form of matrices with entries in the polynomial ring F[x]. A more

direct proof was presented 25 years later in [12], by using certain linear mappings

and dimensional arguments. The proof in [12] may be found in modern references,

as for instance in [13, Theorem S2.1] or [19, Theorem 4.4.22]. The relationship of

the Sylvester equation with the block-diagonalization of block triangular matrices

shown in (1.1) is the reason of its importance in invariant subspace computations

[15, Section 7.6.3]. When the solution is unique for every C, the classical numerical

method for solving the Sylvester equation is the Bartels-Stewart algorithm [2] (see

also [15, Algorithm 7.6.2]) that makes use of the Schur decompositions of A and B

and requires O(m3 + n3) flops. A more efficient modification of the Bartels-Stewart

algorithm was proposed in [14].

We consider in this paper the following matrix equations

(1.2) AX + X⋆B = C,

where A ∈ C
m×n and B ∈ C

n×m, the unknown is X ∈ C
n×m, and the operator (·)⋆

denotes either the transpose ((·)T ) or the conjugate transpose ((·)∗) of a matrix. In

contrast to the Sylvester equation, there are not many references in the literature for

the equations (1.2) and the existing ones seem to be scattered and not well-known in

the Linear Algebra community. However, equations (1.2) have attracted recently the

attention of several researchers as a consequence of their relationship with palindromic

eigenvalue problems. Our purpose in this note is to gather some results published in

the literature on the existence of solutions for these equations, and then to develop a

new efficient numerical algorithm to compute the solution.

The first reference we know on equation (1.2) is [29]. In this paper, Wimmer

provides necessary and sufficient conditions for the existence of solutions over the

complex field in the case ⋆ = ∗. After this work, which, despite of its relevance,

seems to have passed quite unnoticed, equations (1.2) have been considered by several

authors. Braden refers in [4] to the existence of a simple explicit expression for the

solution of (1.2) for the case ⋆ = T as an open problem. More recently, equation (1.2)

has been solved in [7] for bounded linear g-invertible operators (where ⋆ now denotes

the adjoint operator) and for a very particular case in which the operators A, B, and

C, and their Moore-Penrose generalized inverses satisfy certain specific identities. The

solution is given in terms of the operators A,B,C, their adjoints and their Moore-

Penrose generalized inverses. Also, equations (1.2) for m = n have appeared in [5,
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Lemma 5.10] in connection with structured condition numbers of deflating subspaces

of regular palindromic pencils G + λGT . Reference [5] only considers the case ⋆ =

T and establishes necessary and sufficient conditions for the existence of a unique

solution for every right-hand side C. These conditions are modified to cover the case

⋆ = ∗ in [23, Lemma 8], where the equation (1.2) arises in the context of a structure-

preserving QR algorithm for computing the eigenvalues of regular palindromic pencils.

The following particular case of (1.2)

(1.3) AX + X⋆A = 0

has been considered in [9, 10], where the authors present a (non-numerical) method

to find the set of solutions of (1.3) through the use of the canonical form of the

matrix A under ⋆-congruence [20]. References [9, 10] pay special attention to the

relationship between (1.3) and the orbit of A under the action of ⋆-congruence. More

precisely, the dimension of the solution space of (1.3) is shown to be equal to the

codimension of this orbit. Hence, since the authors determine the dimension of the

solution space of (1.3), they also obtain the dimension of the ⋆-congruence orbit of A.

The much simpler version AT X ± XT A = B of (1.2) was solved in [4]. In this case,

the fact that (AT X)T = XT A simplifies considerably the analysis. The main result

in [4] has been extended in [11] to the equation A∗X + X∗A = C, where A,C,X

are linear bounded operators and A is of closed range (here ∗ stands for the adjoint

operator). Reference [4] is related to the much older references [18] and [27]. In

[18] the author considers the equation X⋆A + A⋆X = C over finite fields, and with

C being symmetric, skew-symmetric or Hermitian. He obtains explicit formulas for

the number of solutions and provides also conditions for the solvability. In [27] the

eigenvalues of the linear transformation g(X) = AT X + XT A are determined. This

allows the establishment of necessary and sufficient conditions for the existence of a

unique solution of AT X + XT A = C for every C. Somewhat connected to [4], [27],

and equation (1.3), we mention [1, Theorem 2] that gives necessary and sufficient

conditions for the consistency of AX + X∗A = C with A = A∗ and positive definite.

The results discussed in this paragraph are the only ones that have been published for

the equations (1.2), as far as we know. We want to mention also the recent manuscript

[6], which includes results related to the ones in the present work.

The necessary and sufficient conditions on the existence and uniqueness of solu-

tions of equations (1.2) developed in [5, 23, 29] are stated and reviewed in Section 2,

with the goal of bringing these results to the attention of researchers interested in the

solution of this equation. In this reviewing process, we have extended Wimmer’s nec-

essary and sufficient condition for consistency in the complex field and ⋆ = ∗. More

precisely, we provide a necessary and sufficient condition for the existence of solutions

of AX +X⋆B = C in a much more general case, that is, for rectangular matrices with

entries in any field F of characteristic different from two and ⋆ = T or ⋆ = ∗. This
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result is presented in Theorem 2.3 below. The proof uses different techniques than

the ones used in [29]. The condition has the same flavor as Roth’s criterion for the

standard Sylvester equation, although a very important difference must be observed:

Roth’s criterion involves block-diagonalization through similarity, while Theorem 2.3

involves block-antidiagonalization through ⋆-congruence. This fact has motivated us

to call AX + X⋆B = C the Sylvester equation for ⋆-congruence.

In Section 3, we focus on real or complex square equations (1.2) that satisfy the

conditions of Lemma 8 in [23] for the existence of a unique solution for every right-

hand side C. We present an efficient numerical method to find this solution, and

this is our main original contribution. The cost of this algorithm is O(n3) flops and

is in the spirit of the Bartels-Stewart algorithm for the standard Sylvester equation.

The method we propose uses the generalized Schur form of the pencil A − λB⋆ [15,

Theorem 7.7.1], something natural once the conditions in [23, Lemma 8] are known,

and is also related to solution methods of generalized Sylvester equations [22]. In

addition, we will discuss briefly the rounding errors committed by this procedure.

The paper is organized as follows. Section 2 deals with the existence and unique-

ness of solutions of (1.2) and Section 3 presents the numerical algorithm mentioned

above for computing the solution. Finally, some conclusions and lines of future re-

search are discussed in Section 4.

2. Existence and uniqueness of solutions of Sylvester equation for ⋆-

congruence.

2.1. Uniqueness of solutions. We start with Lemma 8 in [23], which deals

with the existence of a unique solution of (1.2) when A and B are both complex

square matrices with the same size. This result solves completely the question of

uniqueness for every right-hand side C in the complex field, since we will discuss

in Section 2.2 that if A and B are rectangular matrices, then equation (1.2) never

has a unique solution for every C. First, we need to define that a set of complex

numbers {λ1, . . . , λn} ⊂ C is ⋆-reciprocal free if λi 6= 1/λ⋆
j for any 1 ≤ i, j ≤ n. This

definition admits 0 and/or ∞ as elements of {λ1, . . . , λn}. Note that for numbers the

(·)⋆-operator is simply λT
j = λj or λ∗

j = λ̄j . We will denote by Λ(A,B⋆) the set of

eigenvalues of the pencil A − λB⋆. Recall also that the pencil A − λB⋆ is regular if

det(A − λB⋆) 6≡ 0.

Lemma 2.1 (Lemma 8 in [23]). Let A,B ∈ C
n×n be given. The matrix equation

AX + X⋆B = C has a unique solution X for every right-hand side C ∈ C
n×n if and

only if the following conditions hold:

1) The pencil A − λB⋆ is regular, and

2a) if ⋆ = T , Λ(A,BT )\{1} is T -reciprocal free and if 1 ∈ Λ(A,BT ), then it has
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algebraic multiplicity 1, or

2b) if ⋆ = ∗, Λ(A,B∗) is ∗-reciprocal free.

2.2. Consistency of the equation. To prove Theorem 2.3 we will use a result

obtained by Wimmer in [28] on the consistency of pairs of generalized Sylvester equa-

tions. Before describing this result, we need to introduce some notation and basic

definitions. Given an arbitrary field F, we denote by F
m×n the space of m × n

matrices with entries in F. Two matrix pencils E1 − λF1 and E2 − λF2, with

E1, F1, E2, F2 ∈ F
m×n are strictly equivalent if there exist two nonsingular matri-

ces P ∈ F
m×m and Q ∈ F

n×n such that P (E1 − λF1)Q = E2 − λF2. Next theorem

appeared in [28, Theorem 1.1]. It was proved independently in [26, Theorem 2.3], and

also in [3, Theorem 5.1] for the complex field F = C.

Theorem 2.2 (Theorem 1.1 in [28]). Given A1, A2 ∈ F
m×n, B1, B2 ∈ F

p×k, and

C1, C2 ∈ F
m×k, the pair of generalized Sylvester equations

A1X + Y B1 = C1 ,

A2X + Y B2 = C2

has a solution (X,Y ) if and only if the matrix pencils

[
A1 − λA2 C1 − λC2

0 B1 − λB2

]
and

[
A1 − λA2 0

0 B1 − λB2

]

are strictly equivalent.

Given an arbitrary field F, the operator (·)⋆ on F
m×n denotes the transpose of a

matrix, except in the particular case F = C, where it may denote either the transpose

or the conjugate transpose of a matrix. Two matrices A,B ∈ F
n×n are ⋆-congruent

if there exists a nonsingular matrix P ∈ F
n×n such that P ⋆AP = B. Theorem 2.3

extends the equivalence (a) ⇔ (b) of Theorem 2 in [29], which is stated only for

matrices over the complex field C and for the case ⋆ = ∗. Theorem 2.3 establishes a

necessary and sufficient condition for the consistency of the Sylvester equation for ⋆-

congruence for rectangular matrices with entries in any field of characteristic different

from two.

Theorem 2.3. Let F be a field of characteristic different from two and let A ∈

F
m×n, B ∈ F

n×m, C ∈ F
m×m be given. There is some X ∈ F

n×m such that

(2.1) AX + X⋆B = C

if and only if

(2.2)

[
C A

B 0

]
and

[
0 A

B 0

]
are ⋆-congruent.
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Proof. Let us first prove the necessary condition. Let X ∈ F
n×m be a solution of

the equation (2.1). Then we have

[
Im −X⋆

0 In

] [
C A

B 0

] [
Im 0

−X In

]
=

[
C − AX − X⋆B A

B 0

]
=

[
0 A

B 0

]
,

so the matrices in (2.2) are ⋆-congruent, with P =
[

Im

−X
0

In

]
as a congruency matrix.

Let us prove the sufficient condition. Assume that the matrices in (2.2) are ⋆-

congruent. Then, there is a nonsingular matrix P such that

(2.3) P ⋆

[
C A

B 0

]
P =

[
0 A

B 0

]
.

The (·)⋆ operator applied on (2.3) gives

(2.4) P ⋆

[
C⋆ B⋆

A⋆ 0

]
P =

[
0 B⋆

A⋆ 0

]
,

and equation (2.3) minus λ times (2.4) produces

P ⋆

[
C − λC⋆ A − λB⋆

B − λA⋆ 0

]
P =

[
0 A − λB⋆

B − λA⋆ 0

]
.

A permutation of the block columns of previous equation allows us to see that the

matrix pencils

[
A − λB⋆ C − λC⋆

0 B − λA⋆

]
and

[
A − λB⋆ 0

0 B − λA⋆

]

are strictly equivalent. Now, Theorem 2.2 implies that the system

(2.5)
AY + ZB = C

B⋆Y + ZA⋆ = C⋆

has a solution (Y,Z). Apply the (·)⋆ operator to the second equation in (2.5), sum

the result to the first equation, and get

A(Y + Z⋆) + (Z + Y ⋆)B = 2C.

So, if the characteristic of F is not two, then X = 1

2
(Y + Z⋆) satisfies (2.1). Hence,

the sufficiency follows.

Observe that if m 6= n, then the equation (2.1) never has a unique solution for

every right-hand side C, that is, the operator X 7→ AX + X⋆B is never invertible.
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This follows from the fact that X ∈ F
n×m, while AX + X⋆B ∈ F

m×m. Therefore the

domain and the codomain of the operator have different dimensions and the operator

cannot be invertible. To make this argument fully precise, observe that the Sylvester

equation for congruence, and the corresponding operator, is linear in F if ⋆ = T , but

not if ⋆ = ∗. If ⋆ = ∗, then equation (2.1) is equivalent to a real linear system of two

matrix equations having as unknowns the real and imaginary parts of X.

It is worth to compare the block structure of the matrices in (2.2) with the ones

appearing in Roth’s criterion (1.1) for the standard Sylvester equation. We want to

remark in this respect that the ⋆-congruence of the matrices in (2.2) does not imply

in general the ⋆-congruence of

[
A C

0 B

]
and

[
A 0

0 B

]
.

As a counterexample, consider, for instance, A = B = C = 1. We have that

H =

[
1 1

1 0

]
and G =

[
0 1

1 0

]

are T -congruent, because PT HP = G with P =
[

1

−1/2

0

1

]
. However,

E =

[
1 1

0 1

]
and F =

[
1 0

0 1

]

are not T -congruent, since PT EP is never symmetric for nonsingular P .

3. Solution of the equation AX + X⋆B = C via the generalized Schur

decomposition of the pair (A,B⋆). Throughout this section, we consider the

Sylvester equation for ⋆-congruence only for square real or complex matrices, that

is, we assume that A,B,C ∈ F
n×n with F = R or C. In addition, we will as-

sume that the conditions of Lemma 2.1 hold, that is, we assume that the equation

AX +X⋆B = C has a unique solution for every C. In this context, the reader should

note that if F = R, then the unique solution of AX + X⋆B = C is necessarily real

both for ⋆ = T and ⋆ = ∗. This is obvious for AX + XT B = C, because nonsingular

linear systems with real matrix coefficient and real right-hand side have a unique real

solution. For AX + X∗B = C, if X is a solution, then by conjugating the equation,

X is also a solution and, by the uniqueness assumption, X = X, implying that X is

real. Therefore, if F = R, then one only needs to consider ⋆ = T . For brevity, we deal

simultaneously with the real and complex cases, and with ⋆ = T and ⋆ = ∗.

As in the study of the standard Sylvester equation, well-known properties of

the Kronecker product [19, Chapter 4] can be used to write the matrix equation

AX + XT B = C as a standard linear system for the unknown vec(X) ∈ F
n2

, where
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the vec operator stacks the columns of a matrix into one long column vector. This

system is

(3.1)
[
(In ⊗ A) + (BT ⊗ In)Π

]
vec(X) = vec(C),

where ⊗ denotes the Kronecker product, Π ∈ R
n2

×n2

is a permutation matrix that

satisfies vec(XT ) = Πvec(X) for every X ∈ F
n×n [19, Theorem 4.3.8], and In is the

identity matrix. One may apply directly Gaussian elimination with partial pivoting

(GEPP) to solve (3.1) with a cost of O(n6) flops, which is prohibitive except for very

small n. Similar techniques allow us to write AX+X∗B = C, in the complex case, as a

standard real linear system for the unknown
[
(vec(Re X))

T
(vec(Im X))

T
]T

∈ F
2 n2

,

where Re X and ImX are the real and imaginary parts of X. GEPP on this linear

system leads again to a prohibitive cost of O(n6) flops.

Next, we present an algorithm for computing the unique solution of AX +X⋆B =

C with a cost of O(n3) flops. This algorithm is based on the generalized Schur decom-

position of the pair (A,B⋆), and involves four steps, as also happens for generalized

Schur algorithms for other types of linear matrix equations [22]. Only Step 3 in this

procedure requires a careful development, that will be presented in detail in Algorithm

3.2.

Algorithm 3.1. (Algorithm to solve AX + X⋆B = C) Given A,B,C ∈

F
n×n, with F = R or C, such that A and B satisfy the conditions 1) and 2) in Lemma

2.1, this algorithm computes the unique solution X ∈ F
n×n of AX + X⋆B = C in

O(n3) flops.

Step 1 Compute the generalized Schur decomposition of the pair (A,B⋆) using the

QZ algorithm [15, Section 7.7]

(3.2) A = URV, B⋆ = USV.

In general, U, V ∈ C
n×n are unitary matrices and R,S ∈ C

n×n are upper

triangular matrices. However, if A,B ∈ R
n×n, then one can use only real

arithmetic and compute the generalized real Schur decomposition, for which

U, V ∈ R
n×n are real orthogonal matrices, S ∈ R

n×n is upper triangular, but

R ∈ R
n×n is upper quasi-triangular, that is, block upper triangular with 1×1

or 2 × 2 diagonal blocks.

Step 2 Compute

E = U∗C (U⋆)
∗

.

Observe that (U⋆)
∗

= U if ⋆ = ∗, and that (U⋆)
∗

= U if ⋆ = T . In addition,

if U ∈ R
n×n, then U∗ = UT and U = U .
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Step 3 Use Algorithm 3.2 below to solve the transformed equation

(3.3) RW + W ⋆S⋆ = E

for the unknown W ∈ F
n×n. Equation (3.3) is obtained from AX +X⋆B = C

with the decompositions (3.2) and the change of variable W = V X (U⋆)
∗

.

The pencils R − λS and A − λB⋆ are strictly equivalent, so Lemma 2.1

guarantees that the Sylvester equation for ⋆-congruence (3.3) has a unique

solution W for every right-hand side E.

Step 4 Compute X = V ∗WU⋆.

Let us explain how to solve the transformed equation (3.3). To cover the possible

case of generalized real Schur decompositions in (3.2) when F = R (recall that in this

case ⋆ = T ), we consider R and S partitioned into p × p blocks as

(3.4) R =




R11 R12 · · · R1p

R22

...
. . . Rp−1,p

Rpp




, S =




S11 S12 · · · S1p

S22

...
. . . Sp−1,p

Spp




,

where Rij , Sij ∈ F
ni×nj for 1 ≤ i, j ≤ p, and nk = 1 or 2 for 1 ≤ k ≤ p. The diagonal

blocks Sii are always upper triangular matrices, but the diagonal blocks Rii may be

not if A,B ∈ R
n×n. If complex generalized Schur decompositions are computed in

(3.2), then p = n and nk = 1 for 1 ≤ k ≤ n. We also partition into p × p blocks the

unknown W and the right-hand side E as

(3.5) W =




W11 W12 · · · W1p

W21 W22 W2p

...
...

. . .
...

Wp1 Wp2 · · · Wpp


 , E =




E11 E12 · · · E1p

E21 E22 E2p

...
...

. . .
...

Ep1 Ep2 · · · Epp


 ,

where the sizes of the blocks are Wij , Eij ∈ F
ni×nj , that is, the same sizes as in the par-

titions (3.4). As strategy to solve (3.3), we propose to determine first simultaneously

the last block column and the last block row of W , then to determine simultaneously

the last block column and the last block row of W (1 : p − 1, 1 : p − 1) := [Wij ]
p−1

i,j=1,

then to determine simultaneously the last block column and the last block row of

W (1 : p − 2, 1 : p − 2), and, so on until we determine W11. Observe that we have

extended in the previous discussion standard MATLAB notation for submatrices from

indices of entries to block-indices, since W (1 : p − 1, 1 : p − 1) denotes the submatrix

of W consisting of block rows 1 through p−1 and block columns 1 through p−1. Let

us show the procedure for the last block column and the last block row of W . From

the (p, p) block-entry of equation (3.3) we obtain

(3.6) RppWpp + W ⋆
ppS

⋆
pp = Epp,
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that has a unique solution Wpp in the conditions of Lemma 2.1, because these con-

ditions are inherited by the matrix pencil Rpp − λSpp and (3.6) is again a Sylvester

equation for ⋆-congruence. Equation (3.6) can be transformed into a standard linear

system for vec(Wpp), if ⋆ = T , or for [ ReWpp Im Wpp ]
T
, if ⋆ = ∗ (recall that in

this case all blocks are 1 × 1). This linear system can be solved by GEPP, since

it has at most 4 unknowns when Rpp, Spp, Epp ∈ R
2×2. Assume now that we have

computed Wpp,Wp,p−1,Wp−1,p,Wp,p−2,Wp−2,p, . . . , Wp,k+1,Wk+1,p. Then, from the

block-entries (p, k) and (k, p) of (3.3) we obtain, after applying (·)⋆ to the equation

coming from (p, k) and performing some algebraic manipulations,

SkkWkp + W ⋆
pkR⋆

pp = E⋆
pk −

p∑

j=k+1

SkjWjp ,(3.7)

RkkWkp + W ⋆
pkS⋆

pp = Ekp −

p∑

j=k+1

RkjWjp .(3.8)

The right-hand sides of equations (3.7)-(3.8) are known by our assumptions, so (3.7)-

(3.8) are a pair of generalized Sylvester equations that have a unique solution for

Wkp and W ⋆
pk. The uniqueness follows again from the conditions of Lemma 2.1, that

guarantee that the regular pencils Rkk−λSkk and S⋆
pp−λR⋆

pp have no common eigen-

values (see [25, Theorem 1.11, Chapter VI]). Using the properties of the Kronecker

product, equations (3.7)-(3.8) can be transformed into a standard linear system for[
(vec(Wkp))

T
(
vec(W ⋆

pk)
)T

]T

that can be solved with GEPP, since it has at most

8 unknowns when Wkp,W
⋆
pk ∈ R

2×2. We have just shown that solving first (3.6) and

then the system (3.7)-(3.8) for k = p − 1, p − 2, . . . , 1 gives a procedure to compute

the last block column and the last block row of W . The next step is to compute the

last block column and last block row of W (1 : p − 1, 1 : p − 1). To this purpose we

introduce the notation W11 := W (1 : p − 1, 1 : p − 1), R11 = R(1 : p − 1, 1 : p − 1),

S11 := S(1 : p − 1, 1 : p − 1), and E11 = E(1 : p − 1, 1 : p − 1), and partition the

matrices W,R, S and E in (3.3) as follows:

(3.9) W =

[
W11 W12

W21 Wpp

]
, R =

[
R11 R12

0 Rpp

]
, S =

[
S11 S12

0 Spp

]
, W =

[
E11 E12

E21 Epp

]
.

Here W21 = W (p, 1 : p − 1), W12 = W (1 : p − 1, p) and Wpp are known. With the

partitions (3.9), the block entries (1 : p− 1, 1 : p− 1) of equation (3.3) can be written

(3.10) R11W11 + W⋆
11S

⋆
11 = E11 −R12W21 −W⋆

21S
⋆
12.

Observe that equation (3.10) for the unknown W11 is of the same type as equation

(3.3). Therefore, the last block column and the last block row of W11 can be computed

in the same way as the last block column and the last block row of W . This discussion

leads us to Algorithm 3.2.
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Algorithm 3.2. (Solution of RW + W⋆S⋆ = E for (quasi) triangular co-

efficient matrices) Given E = [Eij ]
p
i,j=1 ∈ F

n×n, R = [Rij ]
p
i,j=1 ∈ F

n×n upper

triangular if F = C and upper quasi-triangular if F = R, and S = [Sij ]
p
i,j=1 ∈ F

n×n

upper triangular, with Eij , Rij , Sij ∈ F
ni×nj for 1 ≤ i, j ≤ p and nk = 1 or 2 for

1 ≤ k ≤ p, such that the pencil R − λS satisfies the conditions 1) and 2) in Lemma

2.1, this algorithm computes the unique solution W ∈ F
n×n of RW + W ⋆S⋆ = E in

O(n3) flops. The solutions of the (matrix) equations appearing in the algorithm are

computed by GEPP applied to the corresponding vectorized linear systems.

for j = p : −1 : 1

solve RjjWjj + W ⋆
jjS

⋆
jj = Ejj to get Wjj

for i = j − 1 : −1 : 1

solve

{
SiiWij + W ⋆

jiR
⋆
jj = E⋆

ji −
∑j

k=i+1
SikWkj

RiiWij + W ⋆
jiS

⋆
jj = Eij −

∑j
k=i+1

RikWkj

}
to get Wij ,Wji

end

E(1 : j − 1, 1 : j − 1) = E(1 : j − 1, 1 : j − 1) − R(1 : j − 1, j)W (j, 1 : j − 1)

−(S(1 : j − 1, j)W (j, 1 : j − 1))⋆

end

Note that in the last line of Algorithm 3.2, we have used again MATLAB’s nota-

tion for submatrices through block-indices, as it was explained above.

Let us analyze the computational costs of Algorithms 3.1 and 3.2. Assume first

that F = R. The cost of Algorithm 3.2 is 2n3+O(n2) flops, if Rii ∈ R
1×1 for all i. The

cost of the QZ algorithm in Step 1 of Algorithm 3.1 is 66n3 + O(n2) flops (see [15, p.

385]). In addition, Steps 2 and 4 in Algorithm 3.1 amount to 4 matrix multiplications

of n× n matrices. Therefore the total cost of Algorithm 3.1 is 76n3 + O(n2) flops. If

F = C, this cost is multiplied by a factor up to 6.

The way Algorithm 3.2 is written shows clearly that is of the same type as the

classical Bartels-Stewart algorithm for the standard Sylvester equation with quasi-

triangular coefficients [2]. However, it is known that the Bartels-Stewart algorithm

may perform poorly in modern computer architectures, due to the dominance of

level-2 BLAS operations. This has motivated the development of recursive blocked

algorithms for the Sylvester equation that take advantage of level-3 BLAS operations

[21]. Therefore, it might be also more efficient to use a recursive blocked formulation

to solve the Sylvester equation for ⋆-congruence with quasi-triangular coefficients.

3.1. Rounding error analysis of Algorithm 3.1. The rounding error analysis

of Algorithm 3.1 is standard and very similar to the one of the classical Bartels-Stewart

algorithm [2] for the Sylvester equation AX − XB = C. As a consequence, we only

sketch the main ideas in the style of [16, Section 2] or [17, Section 16.1].
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The QZ algorithm used in Step 1 of Algorithm 1 is normwise backward stable

[15, pp. 385-386]. In addition, floating point multiplication by unitary (orthogonal)

matrices that are products of Householder and/or Givens transformations is also a

normwise backward stable process [8, Section 3.4.3], [17, Lemmas 19.3 and 19.9].

Therefore, Steps 2 and 4 of Algorithm 3.1 are also normwise backward stable. It only

remains to analyze Step 3, that is, Algorithm 3.2. For brevity, we focus only in the

case ⋆ = T . The case ⋆ = ∗ is similar, although somewhat more complicated since in

order to get a linear equation, it is necessary to separate the Sylvester equation for

∗-congruence into its real and imaginary parts.

Let R̂ and Ŝ be the matrices computed in Step 1 of Algorithm 3.1, and Ê the

matrix computed in Step 2. Recall that the equation R̂W + WT ŜT = Ê can be

written as the standard linear system

[
(In ⊗ R̂) + (Ŝ ⊗ In)Π

]
vec(W ) = vec(Ê).

Suppose that we permute the entries of vec(W ) ∈ C
n2

to put, starting from the

bottom, the vectors vec(Wij), i, j = 1, . . . , p, corresponding to the blocks in (3.5) in

the order that they are computed by Algorithm 3.2 (we insist again in the fact that

in the complex case F = C all blocks are 1 × 1, and vec(Wij) are simply equal to

the entries wij of W ). Let us denote the vector so obtained by Π2vec(W ), where

Π2 ∈ C
n2

×n2

is a certain permutation matrix. Observe now that Algorithm 3.2 is

equivalent in floating point arithmetic to solve the (block) upper triangular linear

system

(3.11) P (Π2vec(W ) ) = vec(Ê), where P =
[
(In ⊗ R̂) + (Ŝ ⊗ In)Π

]
ΠT

2 ,

by (block) backward substitution. The matrix P is (block) upper triangular since we

can compute each vec(Wij) after computing the entries below it in (Π2vec(W ) ), for

every upper (quasi) triangular matrix R̂ and every upper triangular matrix Ŝ. The

solution of the system (3.11) by (block) backward substitution is again a normwise

backward stable process, under the very mild assumption that GEPP computes in a

backward stable way all vec(Wjj) and
[
(vec(Wij))

T
(vec(Wji))

T
]T

, for i 6= j. This

follows from well-known results on solving linear systems by block algorithms (apply

[17, Theorem 13.6] noting that in our case it is not necessary to compute a block LU

factorization since the system (3.11) is already block upper triangular). Therefore,

Algorithm 3.2 computes a solution vec(Ŵ ) of (3.11) such that

(3.12) (P + ∆P ) (Π2vec(Ŵ ) ) = vec(Ê),
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with

‖∆P‖F ≤ β un2 ‖P‖F ≤ β un2

∥∥∥
[
(In ⊗ R̂) + (Ŝ ⊗ In)Π

]
ΠT

2

∥∥∥
F

≤ β un5/2
(
‖R̂‖F + ‖Ŝ‖F

)
,(3.13)

where u denotes the unit roundoff, β a small integer constant and ‖ ·‖F the Frobenius

norm. The backward error bound ‖∆P‖F ≤ β un2 ‖P‖F comes essentially from the

traditional error analysis of backward substitution in [17, Theorem 8.5], taking into

account that the size of the system is in this case n2 × n2. The fact that the system

is block upper triangular does not change the dependence n2 on the size of the error,

but it may change the numerical constants. Now, let ‖ · ‖2 be the Euclidean vector

norm, then from (3.12)-(3.13), we obtain for the residual

‖R̂Ŵ + ŴT ŜT − Ê‖F = ‖P (Π2vec(Ŵ ) ) − vec(Ê)‖2 = ‖(∆P ) (Π2vec(Ŵ ) )‖2

≤ ‖(∆P )‖F ‖vec(Ŵ )‖2

≤ β un5/2
(
‖R̂‖F + ‖Ŝ‖F

)
‖Ŵ‖F .(3.14)

The residual bound (3.14) can be combined with the backward errors of the QZ

algorithm and the multiplication by unitary matrices to show that the solution X̂

computed by Algorithm 3.1 satisfies

(3.15) ‖AX̂ + X̂T B − C‖F ≤ α un5/2 (‖A‖F + ‖B‖F ) ‖X̂‖F ,

where α is a small integer constant independent of the size of the matrices.

Equation (3.15) proves that Algorithm 3.1 computes solutions with tiny relative

residual of order unit roundoff. However this does not guarantee a small backward

error in the input matrices A, B and C. In this respect, Algorithm 3.1 for the Sylvester

equation for ⋆-congruence has a similar behavior to the Bartels-Stewart algorithm for

the standard Sylvester equation [16], [17, Section 16.2]. We plan to study in near

future the backward error for the Sylvester equation for ⋆-congruence.

4. Conclusions. We have reviewed necessary and sufficient conditions for the

existence and uniqueness of solutions of the Sylvester equation for ⋆-congruence.

These conditions were proved by Wimmer [29] and Byers, Kressner, Schröder, and

Watkins [5, 23]. In this review, we have extended to any field of characteristic differ-

ent from two, and ⋆ = T or ∗, the original Wimmer’s condition, which has required

to develop a new proof. Wimmer’s characterization of consistency is in the spirit

of Roth’s criterion for the standard Sylvester equation. However, both criteria are

very different, because Roth’s criterion involves block diagonalization through simi-

larity transformations, while Wimmer’s condition involves block anti-diagonalization

through ⋆-congruence transformations. When the solution of the Sylvester equation
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for ⋆-congruence is unique for every right-hand side, according to the conditions by

Kressner, Schröder, and Watkins [23], we have developed a numerical method to com-

pute efficiently its solution based on the generalized Schur decomposition of the pair

(A,B⋆). This method requires to use the QZ algorithm for matrix pencils, which

represents a significant difference with respect the classical Bartels-Stewart algorithm

to solve the standard Sylvester equation that does not require to deal with matrix

pencils. The rounding errors committed by the new algorithm have been analyzed

and we have shown that it produces a relative residual of order of the unit roundoff

of the computer. In addition, this work may motivate to investigate several open

problems as, for instance, to study the set of solutions of the Sylvester equation for

⋆-congruence when the solution is not unique, to develop the perturbation theory

for this equation, and the analysis of the backward errors committed by the new

algorithm that we have presented.
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