THE MINIMUM ALGEBRAIC CONNECTIVITY OF CATERPILLAR UNICYCLIC GRAPHS*

WAI CHEE SHIU ${ }^{\dagger}$, JI-MING GUO ${ }^{\ddagger}$, AND JIANXI LI ${ }^{\dagger \S}$

Abstract

A caterpillar unicyclic graph is a unicyclic graph in which the removal of all pendant vertices makes it a cycle. In this paper, the unique caterpillar unicyclic graph with minimum algebraic connectivity among all caterpillar unicyclic graphs is determined.

Key words. Algebraic connectivity, Caterpillar unicyclic graph, Characteristic polynomial.

AMS subject classifications. 05C50.

1. Introduction. Let $G=(V, E)$ be a simple graph with vertex set $V=$ $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set E. Let $d\left(v_{i}\right)$ be the degree of the vertex $v_{i} \in V(G)$ $(i=1,2, \ldots, n)$, and $D=D(G)=\operatorname{diag}\left(d\left(v_{1}\right), d\left(v_{2}\right), \ldots, d\left(v_{n}\right)\right)$ be the diagonal matrix of vertex degrees. The Laplacian matrix $L(G)=D(G)-A(G)$ is the difference between $D(G)$ and the adjacency matrix $A(G)$. It is easy to see that $L(G)$ is a positive semidefinite symmetric matrix with the smallest eigenvalue 0 and the corresponding eigenvector is the all ones column vector, which is denoted by e. Denote its eigenvalues by

$$
\mu_{1}(G) \geq \mu_{2}(G) \geq \cdots \geq \mu_{n}(G)=0
$$

which are always enumerated in non-increasing order and repeated according to their multiplicity. Fiedler [4] showed that the second smallest eigenvalue of $L(G)$ is 0 if and only if G is disconnected. Thus, the second smallest eigenvalue of $L(G)$ is popularly known as the algebraic connectivity of G and is usually denoted by $\alpha(G)$. Let P_{n} and C_{n} be the path and the cycle on n vertices, respectively. It is a known fact that

$$
\alpha\left(P_{n}\right)=4 \sin ^{2} \frac{\pi}{2 n} \text { and } \alpha\left(C_{n}\right)=4 \sin ^{2} \frac{\pi}{n} .
$$

[^0]Let $Y \in \mathbb{R}^{n}$ be a column vector. It will be convenient to assume that the entry y_{i} of Y is corresponding to the vertex v_{i} of G. Such a Y is sometimes called a valuation of the graph G (see, [11]). In the following, y_{i} will be written as $Y\left(v_{i}\right)$ for convenient. If X is a unit eigenvector of G corresponding to $\alpha(G)$, we commonly call it a Fiedler vector of G. It is obvious that $X^{T} e=0$ and

$$
\alpha(G)=X^{T} L(G) X=\sum_{v_{i} v_{j} \in E}\left(X\left(v_{i}\right)-X\left(v_{j}\right)\right)^{2}=\min _{\substack{Y \in \mathbb{R}^{n} \backslash\{0\} \\ Y^{T}(e=0}} \frac{Y^{T} L(G) Y}{Y^{T} Y}
$$

Furthermore, from $L(G) X=\alpha(G) X$, we also have the set of equations below, known as eigenvalue equations of G :

$$
(d(v)-\alpha(G)) X(v)=\sum_{u \in N(v)} X(u) \text { for } v \in V(G)
$$

where $N_{G}(v)$ (or $N(v)$ for short) denotes the set of vertices which are adjacent to v in G.

A caterpillar unicyclic graph is a unicyclic graph in which the removal of all pendant vertices makes it a cycle. Let $C_{g}=v_{1} v_{2} \cdots v_{g} v_{1}$ be a cycle with length g, where $v_{i} v_{i+1} \in E\left(C_{g}\right)$ for $i=1,2, \ldots, g-1$ and $v_{g} v_{1} \in E\left(C_{g}\right)$, and let $C_{g ; i_{1}, i_{2}, \ldots, i_{k}}^{n_{1}, n_{2}, \ldots, n_{k}}$ be the caterpillar unicyclic graph obtained from C_{g} by attaching n_{j} pendant edges at $v_{i_{j}}\left(1 \leq i_{1}<\cdots<i_{k} \leq g\right)$, respectively. By symmetry, we may always assume that $i_{1}=1$. For example, $C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1}^{n_{1}, n_{2}}$ and $C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1,\left\lfloor\frac{g}{2}\right\rfloor+2}^{n_{1}, n_{2}, n_{2}}$ (see Fig. 1.1) are two caterpillar unicyclic graphs which will be used in the next section. If $C_{g ; i_{1}, i_{2}, \ldots, i_{k}}^{n_{1}, n_{2}, \ldots, n_{k}}$ has n vertices, then it is easy to see that $n_{1}+n_{2}+\cdots+n_{k}=n-g$.

FIG. 1.1. Two caterpillar unicyclic graphs $C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1}^{n_{1}, n_{2}}$ and $C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1,\left\lfloor\frac{g}{2}\right\rfloor+2}^{n_{1}, n_{2}, n_{2}}$.

In [1], Fallat and Kirkland proved that for some choice of the parameters n_{1}, n_{2}, \ldots, n_{g}, the graph $C_{g ; 1,2, \ldots, g}^{n_{1}, n_{2}, \ldots, n_{g}}$ maximizes the algebraic connectivity over the
class of unicyclic graphs with girth g. In particular, they proved that among all unicyclic graphs on n vertices with girth 3 , the graph $C_{3 ; 1}^{n-3}$ has the maximum algebraic connectivity. In [2], Fallat, Kirkland and Pati proved that the graph $C_{4 ; 1}^{n-4}$ has the maximum algebraic connectivity among all unicyclic graphs on n vertices with girth 4. Furthermore, they proved that there is an N such that for each $n>N$, the graph $C_{g ; 1}^{n-g}$ has the maximum algebraic connectivity among all unicyclic graphs on n vertices with girth g. On the other hand, when g is large relative to n, they showed that this graph does not maximize the algebraic connectivity. For the minimum algebraic connectivity, Guo [7] proved that the graph $C_{n, g}$ has the minimum algebraic connectivity among all connected graphs with girth g, where $C_{n, g}$ is called the lollipop graph, which is obtained by appending a g-cycle C_{g} to a pendant vertex of a path on $n-g$ vertices. This confirmes the conjecture proposed by Fallat and Kirkland (see [1], [3]).

In this paper, we prove that the graph $C_{g ; 1,\left\lfloor\frac{q}{2}\right\rfloor+1}^{\left\lceil\frac{n-g}{2}\right\rceil\left\lfloor\frac{n-g}{2}\right\rfloor}$ has the minimum algebraic connectivity among all caterpillar unicyclic graphs on n vertices with girth g.

Throughout this paper, we shall denote by $\Phi(B)=\Phi(B ; x)=\operatorname{det}(x I-B)$ the characteristic polynomial of the square matrix B. In particular, if $B=L(G)$, we write $\Phi(L(G))$ by $\Phi(G ; x)$ or simply by $\Phi(G)$ and call $\Phi(G)$ the Laplacian characteristic polynomial of G.
2. Lemmas and results. Let G be a graph and let $G^{\prime}=G+e$ be the graph obtained from G by inserting a new edge e into G. The following lemma follows from Courant-Weyl inequalities (see [9]).

Lemma 2.1. The Laplacian eigenvalues of G and G^{\prime} interlace, that is,

$$
\mu_{1}\left(G^{\prime}\right) \geq \mu_{1}(G) \geq \mu_{2}\left(G^{\prime}\right) \geq \mu_{2}(G) \geq \cdots \geq \mu_{n}\left(G^{\prime}\right)=\mu_{n}(G)=0
$$

By Lemma 2.1, we immediately have the following:
Corollary 2.2. Let G be a connected graph and v be a pendant vertex of G. Then $\alpha(G) \leq \alpha(G-v)$.

The following inequalities are known as Cauchy's inequalities and the whole theorem is also known as interlacing theorem [9].

Lemma 2.3. Let A be a Hermitian matrix with eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ and B be a principal sub-matrix of A. Let B has eigenvalues $\rho_{1} \geq \rho_{2} \geq \cdots \geq \rho_{m}$ $(m \leq n)$. Then the inequalities $\lambda_{n-m+i} \leq \rho_{i} \leq \lambda_{i}$ hold for $i=1,2, \ldots, m$.

Lemma 2.4. [5] Let $G_{1}=\left(V, E_{1}\right)$ be a graph on n vertices and $G_{2}=\left(V, E_{2}\right)$ be

ELA

a graph obtained from G_{1} by removing an edge and adding a new edge that was not there before. Then

$$
\mu_{i}\left(G_{1}\right) \geq \mu_{i+1}\left(G_{2}\right) \text { and } \mu_{i}\left(G_{2}\right) \geq \mu_{i+1}\left(G_{1}\right) \text { for } 1 \leq i \leq n-1
$$

Lemma 2.5. [8] Suppose that $g \geq 4$. Then $\alpha\left(C_{n, g}\right)>\alpha\left(C_{n, g-1}\right)$.
For $U \subseteq V(G)$, let $L_{U}(G)$ be the principal sub-matrix of $L(G)$ formed by deleting the rows and columns corresponding to all vertices in U. If $U=\{v\}$, then we simple write $L_{U}(G)$ as $L_{v}(G)$. Let H_{n} be the matrix of order n obtained from $L\left(P_{n+2}\right)$ by deleting the rows and columns corresponding to two end vertices of P_{n+2}.

Lemma 2.6. [7] Set $\Phi\left(P_{0}\right)=0, \Phi\left(H_{0}\right)=1$. Then we have
(1) $\Phi\left(P_{n}\right)=x \Phi\left(H_{n-1}\right),(n \geq 1)$;
(2) $\Phi\left(P_{m}\right) \Phi\left(P_{n}\right)-\Phi\left(P_{m-1}\right) \Phi\left(P_{n+1}\right)=\Phi\left(P_{m-1}\right) \Phi\left(P_{n-1}\right)-\Phi\left(P_{m-2}\right) \Phi\left(P_{n}\right), \quad(m \geq$ $2, n \geq 1)$.

Corollary 2.7. For $m \geq k+1, n \geq 1$,

$$
\Phi\left(P_{m}\right) \Phi\left(P_{n}\right)-\Phi\left(P_{m-k}\right) \Phi\left(P_{n+k}\right)=\Phi\left(P_{m-1}\right) \Phi\left(P_{n-1}\right)-\Phi\left(P_{m-k-1}\right) \Phi\left(P_{n+k-1}\right)
$$

Proof. From Lemma 2.6, we have

$$
\begin{aligned}
& \Phi\left(P_{m}\right) \Phi\left(P_{n}\right)-\Phi\left(P_{m-k}\right) \Phi\left(P_{n+k}\right) \\
= & \Phi\left(P_{m}\right) \Phi\left(P_{n}\right)-\Phi\left(P_{m-1}\right) \Phi\left(P_{n+1}\right)+\Phi\left(P_{m-1}\right) \Phi\left(P_{n+1}\right) \\
& -\Phi\left(P_{m-2}\right) \Phi\left(P_{n+2}\right)+\Phi\left(P_{m-2}\right) \Phi\left(P_{n+2}\right)-\cdots-\Phi\left(P_{m-k+1}\right) \Phi\left(P_{n+k-1}\right) \\
& +\Phi\left(P_{m-k+1}\right) \Phi\left(P_{n+k-1}\right)-\Phi\left(P_{m-k}\right) \Phi\left(P_{n+k}\right) \\
= & \Phi\left(P_{m-1}\right) \Phi\left(P_{n-1}\right)-\Phi\left(P_{m-2}\right) \Phi\left(P_{n}\right)+\Phi\left(P_{m-2}\right) \Phi\left(P_{n}\right)-\Phi\left(P_{m-3}\right) \Phi\left(P_{n+1}\right) \\
& +\Phi\left(P_{m-3}\right) \Phi\left(P_{n+1}\right)-\cdots-\Phi\left(P_{m-k}\right) \Phi\left(P_{n+k-2}\right) \\
& +\Phi\left(P_{m-k}\right) \Phi\left(P_{n+k-2}\right)-\Phi\left(P_{m-k-1}\right) \Phi\left(P_{n+k-1}\right) \\
= & \Phi\left(P_{m-1}\right) \Phi\left(P_{n-1}\right)-\Phi\left(P_{m-k-1}\right) \Phi\left(P_{n+k-1}\right) .
\end{aligned}
$$

Suppose G_{1} and G_{2} are two disjoint graphs. $u \in V\left(G_{1}\right)$ and $v \in V\left(G_{2}\right)$. Let $G=G_{1} u: v G_{2}$ be the graph obtained by joining the vertex u of the graph G_{1} to the vertex v of the graph G_{2} with an edge.

Lemma 2.8. [6] Let G_{1} and G_{2} be two disjoint graphs. Then

$$
\Phi\left(G_{1} u: v G_{2}\right)=\Phi\left(G_{1}\right) \Phi\left(G_{2}\right)-\Phi\left(G_{1}\right) \Phi\left(L_{v}\left(G_{2}\right)\right)-\Phi\left(L_{u}\left(G_{1}\right)\right) \Phi\left(G_{2}\right)
$$

By a similar argument as the proof of Lemma 2.8, which was shown in [6], we also have the following result.

Corollary 2.9. Let G_{1} and G_{2} be two disjoint graphs. Suppose w is a vertex of G_{1} which is different from u. Then

$$
\begin{aligned}
\Phi\left(L_{w}\left(G_{1} u: v G_{2}\right)\right)= & \Phi\left(L_{w}\left(G_{1}\right)\right) \Phi\left(G_{2}\right)-\Phi\left(L_{w}\left(G_{1}\right)\right) \Phi\left(L_{v}\left(G_{2}\right)\right) \\
& -\Phi\left(L_{\{w, u\}}\left(G_{1}\right)\right) \Phi\left(G_{2}\right)
\end{aligned}
$$

Let G and H be two disjoint graphs with $|V(G)|=s \geq 2,|V(H)|=t \geq 2$. Let $u \in V(G)$ and $r \in V(H)$. Let $G u \cdot r H$ be the graph obtained from G and H by identifying the two vertices u and r (suppose that the new vertex is still u). It is easy to see that $G u \cdot r H$ has $n=s+t-1$ vertices.

Lemma 2.10. Suppose u and v are two distinct vertices of G. Suppose X is a Fiedler vector of $G u \cdot r H$. If $(X(v)-X(u)) \sum_{\substack{w \in V(H) \\ w \neq r}} X(w) \geq 0$, then $\alpha(G u \cdot r H) \geq$ $\alpha(G v \cdot r H)$. Moreover, the inequality is strict if $X(u) \neq X(v)$.

Proof. Let Y be a valuation of $G v \cdot r H$ defined by

$$
Y(w)= \begin{cases}X(w)-\frac{(t-1)(X(v)-X(u))}{n}, & w \in V(G) ; \\ X(w)+\frac{s(X(v)-X(u))}{n}, & w \in V(H), w \neq r .\end{cases}
$$

It is easy to see that $Y^{T} e=0, Y^{T} L(G v \cdot r H) Y=X^{T} L(G u \cdot r H) X=\alpha(G u \cdot r H)$ and

$$
\begin{aligned}
& Y^{T} Y= X^{T} X-2 \sum_{w \in V(G)} \frac{(t-1)(X(v)-X(u))}{n} X(w)+\frac{s(t-1)^{2}(X(v)-X(u))^{2}}{n^{2}} \\
&+2 \sum_{\substack{w \in V(H) \\
w \neq r}} \frac{s(X(v)-X(u))}{n} X(w)+\frac{(t-1) s^{2}(X(v)-X(u))^{2}}{n^{2}} \\
&= 1+2(X(v)-X(u)) \sum_{\substack{w \in V(H) \\
w \neq r}} X(w)+\frac{s(t-1)(X(v)-X(u))^{2}}{n} \\
& \geq 1 .
\end{aligned}
$$

Clearly, the inequality is strict if $X(v) \neq X(u)$.
Thus, we have

$$
\alpha(G u \cdot r H)=X^{T} L(G u \cdot r H) X \geq \frac{Y^{T} L(G v \cdot r H) Y}{Y^{T} Y} \geq \alpha(G v \cdot r H)
$$

ELA

and the inequality is strict if $X(v) \neq X(u)$.
From Lemma 2.10, we immediately have the following.
Corollary 2.11. Let u, v be two vertices of a connected graph G and there exist s pendant edges $u u_{1}, u u_{2}, \ldots, u u_{s}$ at u. Suppose X is a Fiedler vector of G. Let $G^{\prime}=G-u u_{1}-u u_{2}-\cdots-u u_{s}+v u_{1}+v u_{2}+\cdots+v u_{s}$. If $X(v) \geq X(u) \geq 0$, then $\alpha(G) \geq \alpha\left(G^{\prime}\right)$. Moreover, the inequality is strict if $X(v) \neq X(u)$.

Lemma 2.12. Let $C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1}^{n_{1}, n_{2}}$ be the caterpillar unicyclic graph defined in Section 1. Then for $n \geq g+1$,

$$
\alpha\left(C_{g ; 1,\left\lfloor\frac{2}{2}\right\rfloor+1}^{n_{1}, n_{2}}\right)<\alpha\left(P_{g-\left\lfloor\frac{g}{2}\right\rfloor}\right) .
$$

Proof. From Corollary 2.2 and Lemma 2.5, we have

$$
\begin{aligned}
\alpha\left(C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1}^{n_{1}, n_{2}}\right) \leq \alpha\left(C_{g+1, g}\right) & <\alpha\left(C_{g+1}\right)=4 \sin ^{2} \frac{\pi}{g+1} \\
& \leq 4 \sin ^{2} \frac{\pi}{2\left(g-\left\lfloor\frac{g}{2}\right\rfloor\right)}=\alpha\left(P_{g-\left\lfloor\frac{g}{2}\right\rfloor}\right)
\end{aligned}
$$

Remark 1. Since $\alpha\left(P_{n}\right)$ is a decreasing function on $n, \alpha\left(C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1}^{n_{1}, n_{2}}\right)<\alpha\left(P_{j}\right)$ for $j \leq g-\left\lfloor\frac{g}{2}\right\rfloor$.

Lemma 2.13. [10] Let G be a connected graph with a cut vertex v. Then $\alpha(G) \leq 1$, the equality holds if and only if v is adjacent to every vertex of G.

Lemma 2.14. Let $C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1}^{n_{1}, n_{2}}$ and $C_{g ; 1, i}^{n_{1}, n_{2}}\left(2 \leq i \leq\left\lfloor\frac{g}{2}\right\rfloor\right)$ be the caterpillar unicyclic graphs defined in Section 1. Then for $n_{1}, n_{2} \geq 1$,

$$
\alpha\left(C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1}^{n_{1}, n_{2}}\right) \leq \mu_{n-2}\left(C_{g ; 1, i}^{n_{1}, n_{2}}\right)
$$

Proof. If $\mu_{n-2}\left(C_{g ; 1, i}^{n_{1}, n_{2}}\right) \geq 1$, then the result follows from Lemma 2.13. Thus, in the following, we assume that $\mu_{n-2}\left(C_{g ; 1, i}^{n_{1}, n_{2}}\right)<1$. From Corollary 2.2 and Lemma 2.3, we have

$$
\alpha\left(C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1}^{n_{1}, n_{2}}\right) \leq \alpha\left(C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1}^{n_{1}, 0}\right)=\alpha\left(C_{g ; 1}^{n_{1}}\right) \leq \lambda_{g+n_{1}-2}\left(L_{v_{i}}\left(C_{g ; 1}^{n_{1}}\right)\right) \leq \mu_{n-2}\left(C_{g ; 1, i}^{n_{1}, n_{2}}\right),
$$

where $\lambda_{g+n_{1}-2}\left(L_{v_{i}}\left(C_{g ; 1}^{n_{1}}\right)\right)$ denotes the second smallest eigenvalue of $L_{v_{i}}\left(C_{g ; 1}^{n_{1}}\right)$.
Lemma 2.15. For $2 \leq i \leq\left\lfloor\frac{g}{2}\right\rfloor$ and $n_{1}, n_{2} \geq 1$, we have

$$
\alpha\left(C_{g ; 1, i}^{n_{1}, n_{2}}\right)>\alpha\left(C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1}^{n_{1}, n_{2}}\right)
$$

Proof. Applying Lemma 2.8 and Corollary 2.9 for n_{1} times, we have

$$
\left.\begin{array}{rl}
& \Phi\left(C_{g ; 1, i}^{n_{1}, n_{2}}\right)-\Phi\left(C_{g ; 1,\lfloor }^{n_{1}, n_{2}} \frac{g}{2}\right\rfloor+1
\end{array}\right) .
$$

Note that $\left.C_{g ; 1, i}^{0, n_{2}}=C_{g ; 1,2}^{0, n_{2}}{ }_{2}\right\rfloor+1=C_{g ; 1}^{n_{2}}$. Then from the above equation, we have

$$
\begin{equation*}
\left.\Phi\left(C_{g ; 1, i}^{n_{1}, n_{2}}\right)-\Phi\left(C_{g ; 1, l}^{n_{1}, n_{2}}\right\rfloor+1\right)=n_{1} x(x-1)^{n_{1}-1}\left[\Phi\left(L_{v_{1}}\left(C_{\left.g ; 1,1, \frac{2}{2}\right]+1}^{0, n_{2}}\right)\right)-\Phi\left(L_{v_{1}}\left(C_{g ; 1, i}^{0, n_{2}}\right)\right)\right] \tag{2.1}
\end{equation*}
$$

Applying Corollary 2.9 again, we have

$$
\begin{aligned}
& \Phi\left(L_{v_{1}}\left(C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1}^{0, n_{2}}\right)\right)-\Phi\left(L_{v_{1}}\left(C_{g ; 1, i}^{0, n_{2}}\right)\right) \\
&=(x-1) \Phi\left(L_{v_{1}}\left(C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1}^{0, n_{2}-1}\right)\right)-x(x-1)^{n_{2}-1} \Phi\left(H_{\left\lfloor\frac{g}{2}\right\rfloor-1}\right) \Phi\left(H_{g-\left\lfloor\frac{g}{2}\right\rfloor-1}\right) \\
&-(x-1) \Phi\left(L_{v_{1}}\left(C_{g ; 1, i}^{0, n_{2}-1}\right)\right)+x(x-1)^{n_{2}-1} \Phi\left(H_{i-2}\right) \Phi\left(H_{g-i}\right) \\
& \vdots \\
&=(x-1)^{n_{2}} \Phi\left(L_{v_{1}}\left(C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1}^{0,0}\right)\right)-n_{2} x(x-1)^{n_{2}-1} \Phi\left(H_{\left\lfloor\frac{g}{2}\right\rfloor-1}\right) \Phi\left(H_{g-\left\lfloor\frac{g}{2}\right\rfloor-1}\right) \\
&-(x-1)^{n_{2}} \Phi\left(L_{v_{1}}\left(C_{g ; 1, i}^{0,0}\right)\right)+n_{2} x(x-1)^{n_{2}-1} \Phi\left(H_{i-2}\right) \Phi\left(H_{g-i}\right)
\end{aligned}
$$

Note that $L_{v_{1}}\left(C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1}^{0,0}\right)=L_{v_{1}}\left(C_{g ; 1, i}^{0,0}\right)=L_{v_{1}}\left(C_{g}\right)=\Phi\left(H_{g-1}\right)$. Thus, from the above equation, we have

$$
\begin{align*}
& \Phi\left(L_{v_{1}}\left(C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1}^{0, n_{2}}\right)\right)-\Phi\left(L_{v_{1}}\left(C_{g ; 1, i}^{0, n_{2}}\right)\right) \\
= & n_{2} x(x-1)^{n_{2}-1}\left[\Phi\left(H_{i-2}\right) \Phi\left(H_{g-i}\right)-\Phi\left(H_{\left\lfloor\frac{g}{2}\right\rfloor-1}\right) \Phi\left(H_{g-\left\lfloor\frac{g}{2}\right\rfloor-1}\right)\right] \tag{2.2}
\end{align*}
$$

Substituting (2.2) into (2.1), and from Lemma 2.6 and Corollary 2.7, we have

$$
\begin{aligned}
& \Phi\left(C_{g ; 1, i}^{n_{1}, n_{2}}\right)-\Phi\left(C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1}^{n_{1}, n_{2}}\right) \\
= & n_{1} n_{2} x^{2}(x-1)^{n_{1}+n_{2}-2}\left[\Phi\left(H_{i-2}\right) \Phi\left(H_{g-i}\right)-\Phi\left(H_{\left\lfloor\frac{g}{2}\right\rfloor-1}\right) \Phi\left(H_{g-\left\lfloor\frac{g}{2}\right\rfloor-1}\right)\right] \\
= & n_{1} n_{2}(x-1)^{n_{1}+n_{2}-2}\left[\Phi\left(P_{i-1}\right) \Phi\left(P_{g-i+1}\right)-\Phi\left(P_{\left\lfloor\frac{g}{2}\right\rfloor}\right) \Phi\left(P_{g-\left\lfloor\frac{g}{2}\right\rfloor}\right)\right] \\
= & -n_{1} n_{2}(x-1)^{n_{1}+n_{2}-2} \Phi\left(P_{\left\lfloor\frac{g}{2}\right\rfloor-i+1}\right) \Phi\left(P_{g-\left\lfloor\frac{g}{2}\right\rfloor-i+1}\right) .
\end{aligned}
$$

Let $\alpha=\alpha\left(C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1}^{n_{1}, n_{2}}\right)$. From Lemma 2.12, we have

$$
\begin{aligned}
& (-1)^{n_{1}+n_{2}+g-1}\left[\Phi\left(C_{g ; 1, i}^{n_{1}, n_{2}}, \alpha\right)-\Phi\left(C_{g ; 1,\left\lfloor\frac{9}{2}\right\rfloor+1}^{n_{1}, n_{2}}, \alpha\right)\right] \\
= & (-1)^{n_{1}+n_{2}+g}\left[n_{1} n_{2}(\alpha-1)^{n_{1}+n_{2}-2} \Phi\left(P_{\left\lfloor\frac{g}{2}\right\rfloor-i+1}, \alpha\right) \Phi\left(P_{g-\left\lfloor\frac{g}{2}\right\rfloor-i+1}, \alpha\right)\right] .
\end{aligned}
$$

By Remark 1 and the fact $0<\alpha<1$, the above expression is positive. Note that $n_{1}+n_{2}+g=n$ is the order of the graph $C_{g ; 1, i}^{n_{1}, n_{2}}$. So $(-1)^{n-1} \Phi\left(C_{g ; 1, i}^{n_{1}, n_{2}}, \alpha\right)>0$. Thus, from Lemma 2.14, we have $\alpha\left(C_{g ; 1, i}^{n_{1}, n_{2}}\right)>\alpha\left(C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1}^{n_{1}, n_{2}}\right)$.

LEMMA 2.16. For $n_{1} \geq n_{2}+2, \alpha\left(C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1}^{n_{1}, n_{2}}\right)>\alpha\left(C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1}^{n_{1}-1, n_{2}+1}\right)$.
Proof. We separate the proof into two cases.
Case 1. $n_{2} \geq 1$.
Applying Lemma 2.8 and Corollary 2.9 for several times, we have

$$
\begin{aligned}
& \Phi\left(C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1}^{n_{1}-1, n_{2}+1}\right)-\Phi\left(C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1}^{n_{1}, n_{2}}\right) \\
= & (x-1) \Phi\left(C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1}^{n_{1}-1, n_{2}}\right)-x(x-1)^{n_{2}} \Phi\left(L_{v_{\left\lfloor\frac{g}{2}\right\rfloor+1}}\left(C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1}^{n_{1}-1,0}\right)\right) \\
& -(x-1) \Phi\left(C_{g ; 1,\left\lfloor\left\lfloor\frac{g}{2}\right\rfloor+1\right.}^{n_{2}}\right)+x(x-1)^{n_{1}-1} \Phi\left(L_{v_{1}}\left(C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1}^{0, n_{2}}\right)\right) \\
= & x(x-1)^{n_{1}-1} \Phi\left(L_{v_{1}}\left(C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1}^{0, n_{2}}\right)\right)-x(x-1)^{n_{2}} \Phi\left(L_{v_{\left\lfloor\frac{g}{2}\right\rfloor+1}}\left(C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1}^{n_{1}-1,0}\right)\right) \\
= & x(x-1)^{n_{1}} \Phi\left(L_{v_{1}}\left(C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1}^{0, n_{2}-1}\right)\right)-x^{2}(x-1)^{n_{1}+n_{2}-2} \Phi\left(H_{\left\lfloor\frac{g}{2}\right\rfloor-1}\right) \Phi\left(H_{g-\left\lfloor\frac{g}{2}\right\rfloor-1}\right) \\
& -x(x-1)^{n_{2}+1} \Phi\left(L_{v_{\left\lfloor\left\lfloor\frac{g}{2}\right\rfloor+1\right.}}\left(C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1}^{n_{1}-2,0}\right)\right) \\
& +x^{2}(x-1)^{n_{1}+n_{2}-2} \Phi\left(H_{\left\lfloor\frac{g}{2}\right\rfloor-1}\right) \Phi\left(H_{g-\left\lfloor\frac{g}{2}\right\rfloor-1}\right) \\
= & x(x-1)^{n_{1}} \Phi\left(L_{v_{1}}\left(C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1}^{0, n_{2}}\right)\right)-x(x-1)^{n_{2}+1} \Phi\left(L_{v_{\left\lfloor\frac{g}{2}\right\rfloor+1}}\left(C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1}^{n_{1}-2,0}\right)\right) \\
= & x(x-1)^{n_{1}+n_{2}-1} \Phi\left(L_{v_{1}}\left(C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1}^{0,0}\right)\right) \\
& -n_{2} x^{2}(x-1)^{n_{1}+n_{2}-2} \Phi\left(H_{\left\lfloor\frac{g}{2}\right\rfloor-1}\right) \Phi\left(H_{g-\left\lfloor\frac{g}{2}\right\rfloor-1}\right) \\
& -x(x-1)^{n_{1}+n_{2}-1} \Phi\left(L_{v_{\left\lfloor\frac{g}{2}\right\rfloor+1}}\left(C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1}^{0,0}\right)\right) \\
& +\left(n_{1}-1\right) x^{2}(x-1)^{n_{1}+n_{2}-2} \Phi\left(H_{\left\lfloor\frac{g}{2}\right\rfloor-1}\right) \Phi\left(H_{g-\left\lfloor\frac{g}{2}\right\rfloor-1}\right) .
\end{aligned}
$$

Note that $L_{v_{1}}\left(C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1}^{0,0}\right)=L_{v_{\left\lfloor\frac{g}{2}\right\rfloor+1}}\left(C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1}^{0,0}\right)=L_{v_{1}}\left(C_{g}\right)$. Then from Lemma 2.6 and the above equation we have

$$
\begin{aligned}
& \Phi\left(C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1}^{n_{1}-1, n_{2}+1}\right)-\Phi\left(C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1}^{n_{1}, n_{2}}\right) \\
= & x^{2}(x-1)^{n_{1}+n_{2}-2}\left(n_{1}-n_{2}-1\right) \Phi\left(H_{\left\lfloor\frac{g}{2}\right\rfloor-1}\right) \Phi\left(H_{g-\left\lfloor\frac{g}{2}\right\rfloor-1}\right) \\
= & (x-1)^{n_{1}+n_{2}-2}\left(n_{1}-n_{2}-1\right) \Phi\left(P_{\left\lfloor\frac{g}{2}\right\rfloor}\right) \Phi\left(P_{g-\left\lfloor\frac{g}{2}\right\rfloor}\right) .
\end{aligned}
$$

Let $\alpha=\alpha\left(C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1}^{n_{1}, n_{2}}\right)$. From Lemma 2.4, we have $\alpha \leq \mu_{n-2}\left(C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1}^{n_{1}-1, n_{2}+1}\right)$.

Thus, similar to the proof of Lemma 2.15, we have

$$
\begin{aligned}
& (-1)^{n_{1}+n_{2}+g-1}\left[\Phi\left(C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1}^{n_{1}-1, n_{2}+1}, \alpha\right)-\Phi\left(C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1}^{n_{1}, n_{2}}, \alpha\right)\right] \\
= & (-1)^{n_{1}+n_{2}+g-1}(\alpha-1)^{n_{1}+n_{2}-2}\left(n_{1}-n_{2}-1\right) \Phi\left(P_{\left\lfloor\frac{g}{2}\right\rfloor}, \alpha\right) \Phi\left(P_{g-\left\lfloor\frac{g}{2}\right\rfloor}, \alpha\right)<0 .
\end{aligned}
$$

Then, we have $\alpha\left(C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1}^{n_{1}, n_{2}}\right)>\alpha\left(C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1}^{n_{1}-1, n_{2}+1}\right)$.
Case 2. $n_{2}=0$.
From Lemma 2.8 and Corollary 2.9, we have

$$
\begin{aligned}
& \Phi\left(C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1}^{n_{1}-1,1}\right)-\Phi\left(C_{g ; 1}^{n_{1}}\right) \\
= & (x-1) \Phi\left(C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1}^{n_{1}-1,0}\right)-x \Phi\left(L_{v_{\left\lfloor\frac{g}{2}\right\rfloor+1}}\left(C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1}^{n_{1}-1,0}\right)\right) \\
& -(x-1) \Phi\left(C_{g ; 1}^{n_{1}-1}\right)+x(x-1)^{n_{1}-1} \Phi\left(L_{v_{1}}\left(C_{g ; 1}^{0}\right)\right) \\
= & x(x-1)^{n_{1}-1} \Phi\left(L_{v_{1}}\left(C_{g ; 1}^{0}\right)\right)-x \Phi\left(L_{v_{\left\lfloor\frac{g}{2}\right\rfloor+1}}\left(C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1}^{n_{1}-1,0}\right)\right) \\
= & x(x-1)^{n_{1}-1} \Phi\left(L_{v_{1}}\left(C_{g ; 1}^{0}\right)\right)-x(x-1)^{n_{1}-1} \Phi\left(L_{v_{\left\lfloor\frac{g}{2}\right\rfloor+1}}\left(C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1}^{0,0}\right)\right) \\
& +\left(n_{1}-1\right) x^{2}(x-1)^{n_{1}-2} \Phi\left(H_{\left\lfloor\frac{g}{2}\right\rfloor-1}\right) \Phi\left(H_{g-\left\lfloor\frac{g}{2}\right\rfloor-1}\right) \\
= & \left(n_{1}-1\right) x^{2}(x-1)^{n_{1}-2} \Phi\left(H_{\left\lfloor\frac{g}{2}\right\rfloor-1}\right) \Phi\left(H_{g-\left\lfloor\frac{g}{2}\right\rfloor-1}\right) .
\end{aligned}
$$

By a similar argument as that of Case 1, the result follows.
Now we give the main result of this paper.
ThEOREM 2.17. Let G be a caterpillar unicyclic graph on n vertices with girth g. Then

$$
\alpha(G) \geq \alpha\left(C_{g ; 1,\left\lfloor\frac{q}{2}\right\rfloor+1}^{\left\lceil\frac{n-g}{2}\right\rceil\left\lfloor\left\lfloor\frac{n-g}{2}\right\rfloor\right.}\right)
$$

and the equality holds if and only if $G=C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1}^{\left.\left\lceil\frac{n-g}{2}\right\rceil, \frac{n-g}{2}\right\rfloor}$.
Proof. Since G is a caterpillar unicyclic graph on n vertices with girth g, we may assume that

$$
G=C_{g ; i_{1}, i_{2}, \ldots, i_{k}}^{n_{1}, n_{2}, \ldots, n_{k}}, \quad n_{j} \geq 1 \text { for } 1 \leq j \leq k \leq g ; 1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq g .
$$

For $k=1$, the result follows from Case 2 of the proof of Lemma 2.16. For $k=2$, the result follows from Lemmas 2.15 and 2.16.

For $k=3$, let X be a Fiedler vector of $G=C_{g ; i_{1}, i_{2}, i_{3}}^{n_{1}, n_{2}, n_{3}}$. Since $-X$ is also a Fiedler vector of G, without loss of generality, we may assume that there are at least two of $X\left(v_{i_{1}}\right), X\left(v_{i_{2}}\right)$ and $X\left(v_{i_{3}}\right)$ being nonnegative. By renumbering, we may assume that $G \cong C_{g ; 1, i, j}^{n_{1}, n_{2}, n_{3}}$ with $X\left(v_{j}\right) \geq X\left(v_{i}\right) \geq X\left(v_{1}\right)$ and $X\left(v_{i}\right) \geq 0$. Suppose $X\left(v_{j}\right)>X\left(v_{i}\right)$. Then by Corollary 2.11, $\alpha(G)>\alpha\left(C_{g ; 1, j}^{n_{1}, n_{2}+n_{3}}\right)$. By renumbering of the vertices, we

ELA

may assume that $j \leq\left\lfloor\frac{g}{2}\right\rfloor+1$. By Lemmas 2.15 and 2.16 if necessary, we obtain the result.

So now we assume that $X\left(v_{j}\right)=X\left(v_{i}\right)$. If the distance between v_{1} and v_{i} or the distance between v_{1} and v_{j} less than $\left\lfloor\frac{g}{2}\right\rfloor$, then (by renumbering the vertices if necessary) we may assume that $i \leq\left\lfloor\frac{g}{2}\right\rfloor$. Then by Corollary 2.11, Lemmas 2.15 and 2.16, we obtain that $\alpha(G) \geq \alpha\left(C_{g ; 1, i}^{n_{1}, n_{2}+n_{3}}\right)>\alpha\left(C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1}^{n_{1}, n_{2}+n_{3}}\right) \geq \alpha\left(C_{g ; 1,\left\lfloor\frac{n}{2}\right\rfloor+1}^{\left\lfloor\frac{n-g}{2}\right\rfloor,\left\lceil\frac{n-g}{2}\right\rceil}\right)$.

Thus, we have to deal with the case that the distance between v_{1} to both v_{i} and v_{j} are $\left\lfloor\frac{g}{2}\right\rfloor$. Note that the necessary condition for the occurrence of this case is g being odd. So now $G \cong C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1,\left\lfloor\frac{g}{2}\right\rfloor+2}^{n_{1}, n_{2}, n_{3}}$ with $X\left(v_{\left\lfloor\frac{g}{2}\right\rfloor+1}\right)=X\left(v_{\left\lfloor\frac{g}{2}\right\rfloor+2}\right)$. Note that

$$
\alpha(G)=X^{T} L\left(C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+1,\left\lfloor\frac{g}{2}\right\rfloor+2}^{n_{1}, n_{2} n_{3}}\right) X=X^{T} L\left(C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+2}^{n_{1}, n_{2}+n_{3}}\right) X \geq \alpha\left(C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+2}^{n_{1}, n_{2}+n_{3}}\right) .
$$

Suppose that $\alpha(G)=\alpha\left(C_{g ; 1,\left\lfloor\frac{9}{2}\right\rfloor+2}^{n_{1}, n_{2}+n_{3}}\right)$. From the above equation we can see that X is also a Fiedler vector of $C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+2}^{n_{1}, n_{2}+n_{3}}$. From the eigenvalue equations of G, we have

$$
\begin{aligned}
&\left(d_{G}\left(v_{\left\lfloor\frac{g}{2}\right\rfloor+1}\right)-\alpha(G)\right) X\left(v_{\left\lfloor\frac{g}{2}\right\rfloor+1}\right) \\
&=\sum_{w \in N\left(v_{\left\lfloor\frac{g}{2}\right\rfloor+1}\right)} X(w)=X\left(v_{\left\lfloor\frac{g}{2}\right\rfloor+1}\right)+X\left(v_{\left\lfloor\frac{g}{2}\right\rfloor}\right)+\sum_{\substack{w \in N\left(v\left(\frac{g}{2}\right\rfloor+1 \\
w \neq v_{\left\lfloor\frac{g}{2}\right\rfloor}\right) \\
\left\lfloor\frac{g}{2}\right\rfloor+2}} X(w) .
\end{aligned}
$$

Note that for $w \in N\left(v_{\left\lfloor\frac{g}{2}\right\rfloor+1}\right) \backslash\left\{v_{\left\lfloor\frac{g}{2}\right\rfloor}, v_{\left\lfloor\frac{g}{2}\right\rfloor+2}\right\},(1-\alpha(G)) X(w)=X\left(v_{\left\lfloor\frac{g}{2}\right\rfloor+1}\right)$. Thus, the above equation becomes

$$
\begin{equation*}
X\left(v_{\left\lfloor\frac{g}{2}\right\rfloor}\right)=\left(d_{G}\left(v_{\left\lfloor\frac{g}{2}\right\rfloor+1}\right)-1-\alpha(G)-\frac{d_{G}\left(v_{\left\lfloor\frac{g}{2}\right\rfloor+1}\right)-2}{1-\alpha(G)}\right) X\left(v_{\left\lfloor\frac{g}{2}\right\rfloor+1}\right) . \tag{2.3}
\end{equation*}
$$

Similarly, from the eigenvalue equations of $C_{g ; 1,\left\lfloor\frac{2}{2}\right\rfloor+2}^{n_{1}, n_{2}+n_{3}}$, we have

$$
\left(2-\alpha\left(C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+2}^{n_{1}, n_{2}+n_{3}}\right)\right) X\left(v_{\left\lfloor\frac{g}{2}\right\rfloor+1}\right)=X\left(v_{\left\lfloor\frac{g}{2}\right\rfloor+2}\right)+X\left(v_{\left\lfloor\frac{g}{2}\right\rfloor}\right) .
$$

Then

$$
\begin{equation*}
X\left(v_{\left\lfloor\frac{g}{2}\right\rfloor}\right)=\left(1-\alpha\left(C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+2}^{n_{1}, n_{2}+n_{3}}\right)\right) X\left(v_{\left\lfloor\frac{g}{2}\right\rfloor+1}\right) \tag{2.4}
\end{equation*}
$$

Combining (2.3) and (2.4), we have

$$
\left(d_{G}\left(v_{\left\lfloor\frac{g}{2}\right\rfloor+1}\right)-2-\frac{d_{G}\left(v_{\left\lfloor\frac{g}{2}\right\rfloor+1}\right)-2}{1-\alpha(G)}\right) X\left(v_{\left\lfloor\frac{g}{2}\right\rfloor+1}\right)=0 .
$$

Since $n_{2} \geq 1, d_{G}\left(v_{\left\lfloor\frac{g}{2}\right\rfloor+1}\right)>2$. Thus, we have $X\left(v_{\left\lfloor\frac{g}{2}\right\rfloor+1}\right)=0$. From the eigenvalue equations of G, it is easy to see that $X=\mathbf{0}$. It yields a contradiction. So $\alpha(G)>$ $\alpha\left(C_{g ; 1,\left\lfloor\frac{g}{2}\right\rfloor+2}^{n_{1}, n_{2}+n_{3}}\right)$.

For $k \geq 4$, from Corollary 2.11, there exists some caterpillar unicyclic graph, say $C_{g ; 1, i, j}^{n_{1}, n_{2}, n_{3}}$ for $n_{1}, n_{2}, n_{3} \geq 1$ and $1<i<j$, such that $\alpha(G) \geq \alpha\left(C_{g ; 1, i, j}^{n_{1}, n_{2}, n_{3}}\right)$. This case is referred to the case when $k=3$.

Hence, the proof is completed.

REFERENCES

[1] S. Fallat and S. Kirkland. Extremizing algebraic connectivity subject to graph theoretic constraints. Electron. J. Linear Algebra., 3:48-74, 1998.
[2] S. Fallat, S. Kirkland, and S. Pati. Maximizing algebraic connectivity over unicyclic graphs. Linear Multilinear Algebra, 51:221-241, 2003.
[3] S. Fallat, S. Kirkland, and S. Pati. Minimizing algebraic connectivity over connected graphs with fixed girth. Discrete Math., 254:115-142, 2002.
[4] M. Fiedler. Algebraic connectivity of graphs. Czech. Math. J., 23:298-305, 1973.
[5] R. Grone, R. Merris, and V.S. Sunder. The Laplacian spectrum of a graph. SIAM J. Matrix Anal. Appl., 11:218-238, 1990.
[6] J-M. Guo. On the second largest Laplacian eigenvalue of trees. Linear Algebra Appl., 404:251261, 2005.
[7] J-M. Guo. A conjecture on the algebraic connectivity of connected graphs with fixed girth. Discrete Math., 308:702-711, 2008.
[8] J-M. Guo, W.C. Shiu, and J. Li. The algebraic connectivity of lollipop graph. Linear Algebra Appl., 434:2204-2210, 2011.
[9] R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge University Press, New York, 1985.
[10] S. Kirkland, A bound on the algebraic connectivity of a graph in terms of the number of cutpoints, Linear Multilinear Algebra, 47:93-103, 2000.
[11] R. Merris, Laplacian graph eigenvectors, Linear Algebra Appl., 278:221-236, 1998.

[^0]: *Received by the editors on February 18, 2011. Accepted for publication on August 25, 2011. Handling Editor: Xingzhi Zhan.
 ${ }^{\dagger}$ Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P.R. China (wcshiu@hkbu.edu.hk). Supported by FRG, Hong Kong Baptist University.
 ${ }^{\ddagger}$ Department of Applied Mathematics, China University of Petroleum, Dongying, Shandong, P.R. China (jimingguo@hotmail.com). Supported by the National Science Foundation of China (No. 10871204).
 §Department of Mathematics and Information Science, Zhangzhou Normal University, Zhangzhou, Fujian, P.R. China (ptjxli@hotmail.com). Supported by the National Science Foundation of China (No. 11101358).

