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SPECTRAL CHARACTERIZATION OF †-SHAPE TREES∗

FENJIN LIU† , QIONGXIANG HUANG† , AND QINGHAI LIU†

Abstract. The †-shape tree is the coalescence of the star K1,4 and the path Pn−4 with respect

to two pendent vertices. In this paper, it is showed that the †-shape tree is determined by its

adjacency spectrum if and only if n 6= 2k + 9 (k = 0, 1, . . .). Furthermore, all the cospectral mates

of the †-shape tree are found when n = 2k + 9.

Key words. †-shape tree, Adjacency spectrum, Spectral characterization, Cospectral graphs.

AMS subject classifications. 05C50.

1. Introduction. In this paper, we are concerned only with simple undirected

graphs (loops and multiple edges are not allowed). Let G = (V,E) be a graph with

vertex set V (G) = {v1, . . . , vn} and edge set E(G) = {e1, . . . , em}. Let A(G) be the

(0, 1)-adjacency matrix of G, the polynomial PG(λ) = det(λI − A(G)), where I is

the identity matrix, is the characteristic polynomial of G with respect to A(G). Since

A(G) is real and symmetric, its eigenvalues are all real numbers, which will be ordered

as λ1 ≥ λ2 ≥ · · · ≥ λn and be called the adjacency eigenvalues of G. The eigenvalues

of G together with their multiplicities is called the adjacency spectrum of G. Two

graphs G and H are said to be cospectral if they share the same spectrum (i.e., equal

characteristic polynomial). A graph G is said to be determined by its adjacency

spectrum (DAS for short) if for any graph H, PG(λ) = PH(λ) implies that H is

isomorphic to G. Up to now, numerous examples of cospectral but non-isomorphic

graphs have been found. On the other hand, only few graphs with very special

structures have been proved to be determined by their spectra, see [4, 6, 7, 8, 11, 13, 15]

for some examples.

Determining which graphs are determined by their spectrum is a difficult problem,

far from resolved, in the theory of graph spectra. In [4], van Dam and Haemers

proposed the following more modest problem: which trees are determined by their

spectrum? It is well-know that the path Pn is DAS (see [4]). It is proved by Shen et

al. [13] that the graph Zn is DAS and by Wang and Xu [15] that all T -shape trees

are DAS except for a few well-defined cases. In 1973, Schwenk [12] proved the most
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striking result that almost all trees are cospectral. For a recent survey of the subject,

one can consult [5].

There have been some attempts to characterize graphs having spectral radius at

most a given number, for example, the class of all graphs G whose largest eigenvalue

λ1 is bounded by 2 has been completely determined by Smith [14]. Subsequently,

Cvetković et al. [2] gave a nearly complete description of all graphs G with 2 < λ1 ≤
√

2 +
√

5 and their description was completed by Brouwer and Neumaier [1]. Later

Woo and Neumaier [16] examine the structure of graphs G with
√

2 +
√

5 < λ1 ≤ 3
2

√
2

and their result is presented in Section 2.

Most of the connected graphs with spectral radius at most 2 are known to be

DAS [4, 13, 15]. Ghareghani [7] showed that all connected graphs except for three

well-defined trees with spectral radius in the interval (2,
√

2 +
√

5] are DAS. They

also posed a problem to determine all DAS ones among the graphs characterized in

[16]. Now we cite some terminologies used in the paper [16].

H1 = OQ3(a1, a2, a3, a4, a5, a6, a7)

1 2 n − 4

Dn
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H2 = CQ2(b1, b2, b3, b4)

v

v1 v2 v3

w1 w2

1 1

1

c2

v̄c1 c3

GsGr GtT (c1, c2, c3)

1

d1

1 d2
w̄

L(d1, d2)

Fig. 1.1. Graphs Dn, H1, H2, T (c1, c2, c3), L(d1, d2), Gr, Gs, Gt.

An open quipu is a tree G of maximum degree 3 such that all vertices of degree

3 lie on a path. A closed quipu is a connected graph G of maximum degree 3 such

that all vertices of degree 3 lie on a cycle, and no other cycle exists. Let OQn (CQn)

denote the set of open quipus (closed quipus) with exactly n vertices of degree 3, e.g.,

OQ3(a1, . . . , a7) and CQ2(b1, . . . , b4) is shown in Fig. 1.1. A †-shape tree Dn (n ≥ 7)

is the coalescence of the star K1,4 and the path Pn−4 with respect to two pendent

vertices (see Fig. 1.1). A T -shape tree is a tree with exactly one of its vertices having

maximum degree 3. Denote by T (c1, c2, c3) the T -shape tree such that deleting the

unique vertex of degree 3 leaves three disjoint paths Pc1
∪Pc2

∪Pc3
(see Fig. 1.1). The

lollipop graph L(d1, d2) is obtained from the cycle Cd1+1 by appending a path Pd2
(also

see Fig. 1.1). Without loss of generality, in what follows we always assume that a1 ≥
a2 > 0, a3 > 0, a4 ≥ a5 > 0, a6, a7 ≥ 0; b1 ≥ b2 ≥ 0, b3 ≥ b4 > 0; c1 ≥ c2 ≥ c3 > 0;

d1 ≥ 2, d2 > 0 where ai, bi, ci, di correspond to the lengths of paths that are combined
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to form the graphs in Fig. 1.1. Throughout this paper G − v and G − uv denote the

graph obtained from G by deleting a vertex v and an edge uv, respectively. The

degree sequence of a graph G is written as π(G) = (0x0 , 1x1 , ..., kxk , ...,∆x∆) where

kxk means that G has xk vertices of degree k and x0 +x1 + · · ·+x∆ = n. The notion

and symbols not defined here are standard, see [3] for any undefined terms.

In this paper, we complete the spectral characterization of one of the three graphs

determined by Woo and Neumaier. Our main result is the following.

Theorem 1.1. The †-shape tree Dn is determined by its adjacency spectrum if

and only if n 6= 2k + 9 (k = 0, 1, 2, . . .). If n = 2k + 9 then when k is odd the unique

cospectral mate of Dn is OQ3(k + 1, 1, 1, 1, 1, 1, k) while when k = 2ℓ is even the

cospectral mates of Dn are OQ3(k+1, 1, 1, 1, 1, 1, k) and OQ3(1, 1, ℓ+1, 1, 1, 2ℓ+1, ℓ).

The paper is organized as follows. In Section 2, some useful lemmas are cited. In

Section 3, the degree sequences of graphs which are cospectral with †-shape tree Dn

are determined. In Section 4, the spectral characterization of the †-shape tree Dn and

graphs with degree sequence (15, 2n−8, 33) is finished. In Section 5, our main result

is obtained.

2. Preliminaries. First, we give some lemmas that will be frequently used in

the next section. Most of them are basic tools in studying the graph DAS problem,

moreover, it is worth to mention that Lemma 2.8 [16] plays an important role in our

research.

Lemma 2.1. [3] Let uv be an edge of a graph G, C (u) and C (uv) be the sets of

all cycles Z containing u or uv, respectively. Then

(i) PG(λ) = λPG−u(λ) −
∑

uv∈E(G) PG−u−v(λ) − 2
∑

Z∈C (u) PG−V (Z)(λ).

(ii) PG(λ) = PG−uv(λ) − PG−u−v(λ) − 2
∑

Z∈C (uv) PG−V (Z)(λ).

Lemma 2.2 (Interlacing). [3] Suppose that A is a symmetric n × n matrix with

eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. Then the eigenvalues µ1 ≥ µ2 ≥ · · · ≥ µm of a

principal submatrix of A of size m satisfy λi ≥ µi ≥ λn−m+i for i = 1, ...,m.

Lemma 2.3. [3] Let G be a connected graph and H be a proper subgraph of G.

Then λ1(G) > λ1(H).

Lemma 2.4. [4] Let G be a graph. For the adjacency matrix the following can be

deduced from the spectrum:

(1) The number of vertices.

(2) The number of edges.

(3) The number of closed walks of any fixed length.

Let NG(H) be the number of subgraphs of a graph G which are isomorphic to
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H and let NG(i) be the number of closed walks of length i in G. Let N ′

H(i) be the

number of closed walks of H of length i which contain all the edges of H and Si(G)

be the set of all the connected subgraphs H of G such that N ′

H(i) 6= 0. Then

(2.1) NG(i) =
∑

H∈Si(G)

NG(H)N ′

H(i).

The following two lemmas can be obtained from (2.1) and it provides some formulae

for calculating the number of closed walks of length 2, 3, 4 for any graphs and 6, 8 for

graphs without cycles Ci (i = 3, 4, 5, 7).

Lemma 2.5. [10] The number of closed walks of length 2, 3, 4 of a graph G are

giving in the following where m is number of edges of G.

(i) NG(2) = 2m, NG(3) = 6NG(C3).

(ii) NG(4) = 2m + 4NG(P3) + 8NG(C4).

Lemma 2.6. [9] Let G be a connected graph without cycles Ci (i = 3, 4, 5, 7).

Then

(i) NG(6) = 2m + 12NG(P3) + 6NG(P4) + 12NG(K1,3) + 12NG(C6).

(ii) NG(8) = 2m + 28NG(P3) + 32NG(P4) + 72NG(K1,3) + 8NG(P5)

+ 16NG(T (2, 1, 1)) + 48NG(K1,4) + 96NG(C6) + 16NG(Gr) + 48NG(Gs)

+ 48NG(Gt) + 16NG(C8) (see Fig. 1.1).

Let PPr
(λ) be the characteristic polynomial of the path Pr. For the sake of

simplicity, we denote PPr
(λ) by Pr if there is no confusion. By convention, let P0 = 1,

P−1 = 0 and P−2 = −1.

Lemma 2.7. [11] Pr = x2r+2
−1

xr+2−xr and PPr
(2) = r+1, where x satisfies x2−λx+1 =

0.

Lemma 2.8. [16] A connected graph G whose largest eigenvalue λ1 satisfies 2 <

λ1 ≤ 3
2

√
2 is either an open quipu, a closed quipu, or a dagger.

Lemma 2.9. Let H be a graph cospectral with the †-shape tree Dn, then H is

either an open quipu or the union of a closed quipu and an induced subgraph of a

T -shape tree.

Proof. Clearly, removing the only vertex of degree 4 of Dn leaves three isolated

vertices and a path. By Lemma 2.2 λ1(Dn) > 2 > λ1(Dn − v) ≥ λ2(Dn). Since H

and Dn are cospectral, λ1(H) = λ1(Dn), λ2(H) = λ2(Dn) < 2. It follows that H has

at most one component which contains cycles. Moreover, Lemma 2.8 implies that the

component of H corresponding to the maximal eigenvalue is the induced subgraph of

the open quipu or the closed quipu. Note that Dn is a tree, we get if H contains no

cycle, then H is an open quipu. Otherwise H is the union of a closed quipu and an
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induced graph of an open quipu. Observe that λ2(H) < 2, it is easy to see that the

open quipu cannot have two vertices of degree 3, thus is a T -shape tree.

3. Degree sequences of graphs cospectral with a †-shape tree. In this

section, we determine the degree sequences of graphs which are cospectral with the

†-shape tree Dn. Let H be a graph cospectral with the †-shape tree Dn, by Lemma

2.4, Dn and H have the same number of vertices, edges and closed walks of any

given length. Denote by xi and yi the number of vertices of degree i in Dn and H,

respectively. By counting the number of vertices, edges and closed walks of length 4

in Dn and H, we have the following three equations:

∆
∑

i=0

xi = n =
∆′

∑

i=0

yi,

∆
∑

i=0

ixi = 2(n − 1) =

∆′

∑

i=0

iyi,

∆
∑

i=0

ixi + 4
∆

∑

i=0

(

i

2

)

xi + 8n4 = 6n + 2 =
∆′

∑

i=0

iyi + 4
∆′

∑

i=0

(

i

2

)

yi + 8n′

4,

where n4 = NDn
(C4) = 0 and n′

4 = NH(C4). From the structure of Dn we see that

∆ = 4, x0 = 0, x1 = 4, x2 = n − 5, x3 = 0 and x4 = 1. By adding up these three

equations with coefficients 4, −5 and 1, respectively, we have

(3.1) 6 =

∆′

∑

i=0

(i2 − 3i + 2)yi + 4n′

4.

The following lemma gives the degree sequence of H according to n′

4 = 1 or n′

4 = 0.

Lemma 3.1. Let H be a graph cospectral with the †-shape tree Dn. Let n′

4 be

the number of C4 in H. Then π(H) is (01, 2n−1) or (13, 2n−4, 31) if n′

4 = 1; π(H) is

either (14, 2n−5, 41), (15, 2n−8, 33) or (01, 12, 3n−5, 42) if n′

4 = 0.

Proof. If n′

4 = 1, Eq. (3.1) yields
∑∆′

i=0(i
2 − 3i + 2)yi = 2, this implies that

y0 + y3 = 1 and yi = 0 for i ≥ 4. Thus, π(H) is (01, 2n−1) or (13, 2n−4, 31).

If n′

4 = 0, Eq. (3.1) gives
∑∆′

i=0(i
2 − 3i + 2)yi = 6, this implies that y0 + y3 +

3y4 = 3 and yi = 0 for i ≥ 5. So (y0, y1, y2, y3, y4) ∈ {(0, 4, n − 5, 0, 1), (0, 5, n −
8, 3, 0), (1, 2, n − 5, 2, 0), (2,−1, n − 2, 1, 0), (3,−4, n + 1, 0, 0)}, i.e., π(H) is one of

(14, 2n−5, 41), (15, 2n−8, 33) and (01, 12, 2n−5, 32).

Moreover, we can say further that if H is cospectral with the †-shape tree Dn,

then H has no cycle C4, thus the degree sequences (01, 2n−1) and (13, 2n−4, 31) do

not need to be considered.
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Lemma 3.2. Let H be a graph cospectral with the †-shape tree Dn, then H has

no cycle C4.

Proof. Suppose that H contains C4, then Lemma 3.1 gives the two possible degree

sequences of H. First suppose that π(H) = (01, 2n−1). Lemma 2.9 implies that H has

only one cycle, thus H = C4 ∪K1, however 5 = |V (H)| < 6 < |V (Dn)|, contradicting

H and Dn are cospectral. Next suppose that π(H) = (13, 2n−4, 31), also by Lemma

2.9 we get H = C4∪T (c1, c2, c3) or L(3, d2)∪Pr. If H = C4∪T (c1, c2, c3), then 2 is an

eigenvalue of H, but it is easy to see that λ1(Dn) > 2 > λ2(Dn), therefore they are not

cospectral and this case is impossible. If H = L(3, d2)∪Pr, then λ1(H) = λ1(L(3, d2)),

however by Lemma 2.3, λ1(L(3, d2)) ≥ λ1(L(3, 1)) = 2.1358 · · · > 3
2

√
2 ≥ λ1(Dn), we

also get a contradiction.

We complete this section by a remark.

Remark 3.3. Let H be a graph cospectral with the †-shape tree Dn, if π(H) =

(14, 2n−5, 41), we claim that H is connected, then Lemma 2.8 implies that H = Dn.

Suppose by the contradiction that H is not connected, then π(H) and Lemma 2.8 give

that H is the union of a †-shape tree Dn′ (n ≥ n′+3) and some cycles. Clearly, Dn′ is

a proper subgraph of Dn, by Lemma 2.3, λ1(H) = λ1(Dn′) < λ1(Dn), a contradiction.

In the next two sections we investigate H with degree sequences (15, 2n−8, 33) and

(01, 12, 2n−5, 32), respectively.

4. †-shape tree and graphs with degree sequence (15, 2n−8, 33). Let H be

a graph with degree sequence (15, 2n−8, 33), from Lemma 2.9 one can easily get the

following result.

Lemma 4.1. Let H be a graph cospectral with the †-shape tree Dn (n ≥ 7)

and π(H) = (15, 2n−8, 33), then H may be one of the following graphs: Ha =

OQ3(a1, . . . , a7); Hb = CQ3 ∪ Pr; Hc = CQ2(b1, . . . , b4) ∪ T (c1, c2, c3).

In addition, we have more properties of the †-shape tree Dn below.

Lemma 4.2. Let Dn (n ≥ 7) be the †-shape tree and PDn
(λ) be its characteristic

polynomial. Let x satisfy x2 − λx + 1 = 0, then

(i) PDn
(2) = −4n + 20.

(ii) PDn
(λ) = (x2+1)2(xn+2

−2xn+2x6−n
−x4−n)

x4(x2−1) .

(iii) NDn
(6) = 20n + 40.

(iv) NDn
(8) = 70n + 282.

Proof. Let v be the vertex of degree 4 of Dn. Use Lemma 2.1 (i) at v to get

(4.1) PDn
(λ) = λ4PPn−4

(λ) − 3λ2PPn−4
(λ) − λ3PPn−5

(λ).

By Lemma 2.7, PPr
(2) = r + 1, substituting this into (4.1) gives PDn

(2) = −4n + 20.
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Also by Lemma 2.7 PPr
(λ) = x2r+2

−1
xr+2−xr where x satisfy x2 − λx + 1 = 0. Putting

this into (4.1) and using Maple we obtain PDn
(λ) = (x2+1)2(xn+2

−2xn+2x6−n
−x4−n)

x4(x2−1) .

For an acyclic graph Γ, Lemma 2.6 (i) implies

(4.2) NΓ(6) = 2|E(Γ)| + 12NΓ(P3) + 6NΓ(P4) + 12NΓ(K1,3).

For any triangle free graph Γ, let us define

d(uv) = (d(u) − 1)(d(v) − 1), where uv ∈ E(Γ).

It is easy to verify NΓ(P3) =
∑

v∈V (Γ)

(

d(v)
2

)

, NΓ(P4) =
∑

uv∈E(Γ) d(uv) and NΓ(K1,3)

=
∑

v∈V (Γ)

(

d(v)
3

)

. Set Γ = Dn, we have |E(Dn)| = n − 1, NDn
(P3) = 1 ×

(

4
2

)

+ (n −
5) ×

(

2
2

)

= n + 1, NDn
(K1,3) = 4. NDn

(P4), related to the structure of H, is more

complicated. It is easy to see that for an edge uv ∈ E(Dn), d(uv) ∈ {0, 1, 3}. uv is

said to be the edge of i-type if d(uv) = i (i = 0, 1, 3). It is clear that uv is 0-type if

and only if uv is a pendent edge; uv is 1-type if and only if d(u) = d(v) = 2; uv is

3-type if and only if {d(u), d(v)} = {2, 4}. Denote by mi(Dn) the number of i-type

edges in Dn. Then

(4.3) m0(Dn) + m1(Dn) + m2(Dn) + m4(Dn) = |E(Dn)| = n − 1.

Since Dn has four pendent edges, m0(Dn) = 4. Moreover, m3(Dn) = 1 and so

m1(Dn) = n − 6 and

NDn
(P4) =

∑

uv∈E(Dn)

d(uv) = m1 + 3m3 = n − 3.

By (4.2), NDn
(6) = 20n + 40.

Since Dn has no cycle, Lemma 2.6 (ii) implies

NDn
(8) =2|E(Dn)| + 28NDn

(P3) + 32NDn
(P4) + 72NDn

(K1,3) + 8NDn
(P5)

+ 16NDn
(T (2, 1, 1)) + 48NDn

(K1,4).
(4.4)

It is easy to verify that NDn
(P5) = n − 4, NDn

(T (2, 1, 1)) = 3 and NDn
(K1,4) = 1.

Thus, by (4.4), NDn
(8) = 70n + 282.

4.1. †-shape tree and open quipus. In this subsection, all cospectral graphs

of the †-shape tree Dn that are open quipus are determined.

Lemma 4.3. Let Ha = OQ3(a1, . . . , a7) be an open quipu with three vertices

of degree 3 and be cospectral with the †-shape tree Dn (n ≥ 7), then NHa
(P4) =

n − 1 and Ha is one of the following graphs: H1
a = OQ3(1, 1, 1, 1, 1, n − 8, 0), H2

a =
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OQ3(a1, 1, 1, 1, 1, a6, a7) (a1, a6, a7 > 0), H3
a = OQ3(1, 1, a3, 1, 1, a6, a7) (a3, a6, a7 >

0).

Proof. Since Ha and Dn are cospectral, they have the same number of closed walks

of length 6. From the structure of Ha we see that |E(Ha)| = n− 1, NHa
(P3) = n + 1

and NHa
(K1,3) = 3. By Lemma 4.2 (iii) and (4.2),

2|E(Ha)| + 12NHa
(P3) + 6NHa

(P4) + 12NHa
(K1,3) = NHa

(6) = NDn
(6) = 20n + 40.

Solving the above equation gives NHa
(P4) = n − 1.

Analogously to Dn, for an edge uv ∈ E(Ha), d(uv) ∈ {0, 1, 2, 4}. It is clear

that uv is 0-type if and only if uv is a pendent edge; uv is 1-type if and only if

d(u) = d(v) = 2; uv is 2-type if and only if {d(u), d(v)} = {2, 3} and uv is 4-type if

and only if d(u) = d(v) = 3. Denote by mi(Ha) the number of i-type edges in Ha,

respectively. Hence,

(4.5) NHa
(P4) =

∑

uv∈E(Ha)

d(uv) = m1(Ha) + 2m2(Ha) + 4m4(Ha).

Since Ha has five pendent edges, m0(Ha) = 5. We claim that m4(Ha) ≤ 1. Otherwise,

from the structure of Ha we have m4(Ha) = 2, then m1(Ha)+m2(Ha) = n−8. Thus,

by (4.5), NHa
(P4) ≥ m1(Ha) + m2(Ha) + 4m4(Ha) = n, a contradiction.

Now if m4(Ha) = 1, we obtain
{

m1(Ha) + m2(Ha) = n − 7,

m1(Ha) + 2m2(Ha) = n − 5,

so, m1(Ha) = n−9 and m2(Ha) = 2. It is easy to check that Ha = OQ3(1, 1, 1, 1, 1, n−
8, 0).

Finally, if m4(Ha) = 0, then we have
{

m1(Ha) + m2(Ha) = n − 6,

m1(Ha) + 2m2(Ha) = n − 1,

thus, m1(Ha) = n − 11 and m2(Ha) = 5. One can easily obtain that Ha =

OQ3(a1, 1, 1, 1, 1, a6, a7) (a1, a6, a7 > 0), or OQ3(1, 1, a3, 1, 1, a6, a7) (a3, a6, a7 > 0).

Lemma 4.4. Let PT (c1,c2,c3)(λ) (c1 ≥ c2 ≥ c3 > 0) be the characteristic polyno-

mial of the T -shape tree T (c1, c2, c3), then PT (c1,c2,c3)(2) = c1 + c2 + c3 + 2− c1c2c3.

Proof. Let v be the vertex of degree 3 of T (c1, c2, c3). Apply Lemma 2.1 (i) at v

to get

PT (c1,c2,c3)(λ) = λPPc1
(λ)PPc2

(λ)PPc3
(λ) − PPc1−1

(λ)PPc2
(λ)PPc3

(λ)

− PPc1
(λ)PPc2−1

(λ)PPc3
(λ) − PPc1

(λ)PPc2
(λ)PPc3−1

(λ).
(4.6)
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By Lemma 2.7 PPr
(2) = r + 1, substituting this into (4.6) gives PT (c1,c2,c3)(2) =

c1 + c2 + c3 + 2 − c1c2c3.

Theorem 4.5. Let both the open quipu H1
a = OQ3(1, 1, 1, 1, 1, n − 8, 0) and the

†-shape tree Dn (n ≥ 7) be of order n. Then H1
a is cospectral with Dn if and only if

n = 9.

Proof. Suppose that H1
a and Dn are cospectral. Let v2 be the middle vertex of

degree 3 of H1
a . Applying Lemma 2.1 (i) at v2 to obtain

PH1
a
(λ) =λ2PT (n−8,1,1)(λ)PP3

(λ) − λPT (n−9,1,1)(λ)PP3
(λ)

− PT (n−8,1,1)(λ)PP3
(λ) − λ3PT (n−8,1,1)(λ).

(4.7)

By Lemma 2.7 and Lemma 4.4, PP3
(2) = 4, PT (n−8,1,1)(2) = PT (n−9,1,1)(2) = 4.

Putting them into (4.7), we get PH1
a
(2) = −16. Lemma 4.2 (i) gives PDn

(2) =

−4n + 20, thus, −16 = −4n + 20, i.e., n = 9.

Conversely, it is easy to check that OQ3(1, 1, 1, 1, 1, 1, 0) and D9 are cospectral.

Theorem 4.6. Let both the open quipu H2
a = OQ3(a1, 1, 1, 1, 1, a6, a7) (a1, a6,

a7 > 0) and the †-shape tree Dn (n ≥ 7) be of order n where n = a1 + a6 + a7 + 7.

Then H2
a is cospectral with Dn if and only if a1 = a7 + 1, a6 = 1 and n = 2a7 + 9.

Proof. Suppose that H2
a and Dn are cospectral. Let v2 be the middle vertex of

degree 3 of H2
a . Again using Lemma 2.1 (i) at v2 we get

PH2
a
(λ) =λ2PT (a1,a6,1)(λ)PT (a7,1,1)(λ) − PT (a1,a6,1)(λ)PT (a7,1,1)(λ)

− λPT (a1,a6−1,1)(λ)PT (a7,1,1)(λ) − λPT (a1,a6,1)(λ)PT (a7−1,1,1)(λ).
(4.8)

By Lemma 4.4, PT (a1,a6,1)(2) = a1 +a6 +3−a1a6, PT (a7,1,1)(2) = PT (a7−1,1,1)(2) = 4,

PT (a1,a6−1,1)(2) = 2a1 +a6 +2−a1a6, PT (a1,a6,1)(2) = a1 +a6 +3−a1a6, substituting

them into (4.8) implies PH2
a
(2) = 4a1a6 − 12a1 − 4a6 − 4. By Lemma 4.2, PDn

(2) =

−4n + 20, thus

{

−4n + 20 = 4a1a6 − 12a1 − 4a6 − 4

n = a1 + a6 + a7 + 7,

so, 2a1 = a1a6 +a7 +1. Since a1, a6, a7 are positive integers, this implies a6 = 1, a1 =

a7 + 1 and n = 2a7 + 9.

Conversely, one can easily verify that OQ3(a7 + 1, 1, 1, 1, 1, 1, a7) and D2a7+9 are

cospectral.

Theorem 4.7. Let both the open quipu H3
a = OQ3(1, 1, a3, 1, 1, a6, a7) (a3 >

0, a6 ≥ a7 > 0) and the †-shape tree Dn (n ≥ 7) be of order n where n = a3+a6+a7+7.

Then H3
a is cospectral with Dn if and only if a3 = a7+1, a6 = 2a7+1 and n = 4a7+9.
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Proof. Suppose that H3
a and Dn are cospectral. Let v2 be the middle vertex of

degree 3 of H3
a . Applying Lemma 2.1 (i) at v2 to obtain

PH3
a
(λ) =λPT (a6,1,1)(λ)PT (a7,1,1)(λ)PPa3

(λ) − PT (a6−1,1,1)(λ)PT (a7,1,1)(λ)PPa3
(λ)−

PT (a6,1,1)(λ)PT (a7−1,1,1)(λ)PPa3
(λ) − PT (a6,1,1)(λ)PT (a7,1,1)(λ)PPa3−1

(λ).

(4.9)

By Lemma 2.7 and Lemma 4.4, PPa3
(2) = a3 + 1, PPa3−1

(2) = a3, PT (a6,1,1)(2) =

PT (a6−1,1,1)(2) = PT (a7,1,1)(2) = PT (a7−1,1,1)(2) = 4. Putting them into (4.9) we get

PH3
a
(2) = −16a3. By Lemma 4.2, PDn

(2) = −4n + 20, thus

{

−4n + 20 = −16a3

n = a3 + a6 + a7 + 7,

so, n = 4a3 + 5, a7 = 3a3 − a6 − 2.

By putting n = 4a3 + 5 into Lemma 4.2 (ii) we have

PD4a3+5
(λ) = x−5(x2 − 1)−1(x2 + 1)2(x4a3+8 − 2x4a3+6 + 2x−4a3+2 − x−4a3),

we denote by N1(x) = x4a3+8 − 2x4a3+6 + 2x−4a3+2 − x−4a3 .

Similarly, from Lemma 2.7, (4.6), (4.9), by substituting a7 = 3a3 − a6 − 2 into

(4.9) one can use Maple to verify that

PH3
a
(λ) =x−5(x2 − 1)−1(x2 + 1)2(x4a3+8 − 2x4a3+6 + x2a3+4 − x4−2a3 + 2x2−4a3

− x−4a3 − x2a6−2a3+6 + x2a6−4a3+6 − x4a3−2a6+2 + x2a3−2a6+2).

Denote by N2(x) = x4a3+8−2x4a3+6+x2a3+4−x4−2a3+2x2−4a3−x−4a3−x2a6−2a3+6+

x2a6−4a3+6 −x4a3−2a6+2 +x2a3−2a6+2. Since H3
a and D4a3+5 are cospectral, H3

a(λ) =

D4a3+5(λ), then

N2(x) − N1(x) =x2a3+4 − x4−2a3 − x2a6−2a3+6 + x2a6−4a3+6

− x4a3−2a6+2 + x2a3−2a6+2 = 0.

Thus, x2a3+4 − x2a6−2a3+6 = 0 or x2a3+4 − x4a3−2a6+2 = 0. This implies

(a)

{

2a3 + 4 = 2a6 − 2a3 + 6

a7 = 3a3 − a6 − 2,
or (b)

{

2a3 + 4 = 4a3 − 2a6 + 2

a7 = 3a3 − a6 − 2.

Option (a) leads to a3 = a7 + 1 and a6 = 2a7 + 1. While option (b) gives a6 = a3 − 1

and a7 = 2a3 − 1, this contradicts a6 ≥ a7. Thus, a3 = a7 + 1, a6 = 2a7 + 1 and

n = 4a7 + 9.

Conversely, it is easy to verify that OQ3(1, 1, a7 + 1, 1, 1, 2a7 + 1, a7) and D4a7+9

are cospectral.
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4.2. †-shape tree and closed quipus. In this subsection, it is shown that no

closed quipus union a tree are cospectral with the †-shape tree Dn.

Lemma 4.8. Let both Hb = CQ3∪Pr and the †-shape tree Dn (n ≥ 7) be of order

n, then Hb is not cospectral with the †-shape tree Dn.

Proof. Similar to Ha = OQ3, denote by mi(Hb) (i = 0, 1, 2, 4) the number of

i-type edges in Hb, respectively. Since Hb has no odd cycle, from the structure of

Hb we have |E(Hb)| = n − 1, NHb
(P3) = n + 1, NHb

(K1,3) = 3, 4 ≤ m0(Hb) ≤ 5

and m4(Hb) ≤ 2. We also have 2 ≤ m2(Hb) ≤ 5 if m4(Hb) = 2; 4 ≤ m2(Hb) ≤ 7 if

m4(Hb) = 1; or 6 ≤ m2(Hb) ≤ 9 if m4(Hb) = 0. Since

NHb
(P4) = m1(Hb) + 2m2(Hb) + 4m4(Hb)

= (n − 1 − m0(Hb) − m2(Hb) − m4(H4)) + 2m2(Hb) + 4m4(Hb)

= n − 1 − m0(Hb) + m2(Hb) + 3m4(Hb),

(4.10)

we obtain NHb
(P4) ≥ n + 2 if m4(Hb) = 2; NHb

(P4) ≥ n + 1 if m4(Hb) = 1;

NHb
(P4) ≥ n if m4(Hb) = 0. Thus NHb

(P4) > n − 1, by Lemma 2.6 (i),

NHb
(6) = 2|E(Hb)| + 12NHb

(P3) + 6NHb
(P4) + 12NHb

(K1,3) + 12NHb
(C6)

> 2(n − 1) + 12(n + 1) + 6(n − 1) + 12 × 3 = 20n + 40.

Recall that NDn
(6) = 20n + 40 and cospectral graphs must have the same number

of closed walks of any given length, thus Hb is not cospectral with the †-shape tree

Dn.

Lemma 4.9. Let both Hc = CQ2(b1, . . . , b4)∪T (c1, c2, c3) (b1 ≥ b2 ≥ 0, b3 ≥ b4 >

0, c1 ≥ c2 ≥ c3 > 0) and the †-shape tree Dn (n ≥ 7) be of order n, then Hc is not

cospectral with the †-shape tree Dn.

Proof. Suppose that Hc and the †-shape tree Dn are cospectral. Similar to

Ha = OQ3, denote by mi(Hc) (i = 0, 1, 2, 4) the number of i-type edges in H2,

respectively. From the structure of Hc we have |E(Hc)| = n − 1, NHc
(P3) = n + 1,

NHc
(K1,3) = 3, m0(Hc) = 5 and m4(H2) ≤ 1. We also have 2 ≤ m2(Hc) ≤ 7 if

m4(Hc) = 1; or 4 ≤ m2(Hc) ≤ 9 if m4(Hc) = 0.

First if m4(Hc) = 1, analogous to (4.10),

NHc
(P4) = n − 1 − m0(Hc) + m2(Hc) + 3m4(Hc) ≥ n − 1 − 5 + 2 + 3 = n − 1,

and equality holds if and only if m2(Hc) = 2, i.e., Hc = CQ2(n− 8, 0, 1, 1)∪K1,3. By

Lemma 2.6 (i),

NHc
(6) = 2|E(Hc)| + 12NHc

(P3) + 6NHc
(P4) + 12NHc

(K1,3) + 12NHc
(C6)

= 2(n − 1) + 12(n + 1) + 6NHc
(P4) + 36 + 12NHc

(C6),
(4.11)
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thus,

NHc
(6) ≥ 14n + 10 + 6(n − 1) + 36 + 12NHc

(C6) = 20n + 40 + 12NHc
(C6),

hence, NHc
(6) = 20n + 40 if and only if NHc

(C6) = 0, i.e., Hc = CQ2(n− 8, 0, 1, 1)∪
K1,3 (n > 12). Now let w1w2 be the unique 4-type edge of CQ2(n − 8, 0, 1, 1), using

Lemma 2.1 (ii) at w1w2 we get

PCQ2(n−8,0,1,1)(λ) = PPn−4
(λ) − λ2PPn−8

(λ) − 2λ2.

It is easy to see that PK1,3
(λ) = λ4 − 3λ2, so,

(4.12)

PHc
(λ) = PCQ2(n−8,0,1,1)(λ)PK1,3

(λ) = (PPn−4
(λ) − λ2PPn−8

(λ) − 2λ2)(λ4 − 3λ2).

Substituting PPr
(2) = r + 1 into (4.12) leads to PHc

(2) = −12n + 68. By Lemma 4.2

(i), PDn
(2) = −4n + 20, note that Hc and Dn are cospectral, thus PHc

(2) = PDn
(2),

i.e., n = 6, this contradicts n > 12.

Second if m4(Hc) = 0, by (4.11) we see that NHc
(6) = 20n + 40 if and only

if NHc
(P4) = (n − 1) and NHc

(C6) = 0 or NHc
(P4) = (n − 3) and NHc

(C6) = 1.

However, similar to (4.10),

(4.13) NHc
(P4) = n − 1 − m0(Hc) + m2(Hc) ≥ n − 1 − 5 + 4 = n − 2,

thus the cases NHc
(P4) = (n−3) and NHc

(C6) = 1 are eliminated. Also by (4.13), we

have NHc
(P4) = n−1 if and only if m2(Hc) = 5, i.e., Hc = CQ2(b1, b2, 1, 1)∪T (c1, 1, 1)

(b1 + b2 > 4, c1 ≥ 2) or Hc = CQ2(b1, b2, b3, 1) ∪K1,3 (b1 + b2 > 4, b3 ≥ 2), denote by

them H1
c and H2

c , respectively. We continue to count the number of closed walks of

length 8.

Let H1
c = CQ2(b1, b2, 1, 1)∪T (c1, 1, 1). We will split this into three general cases

(a): b1 ≥ b2 = 1 and c1 ≥ 3; (b): b1 ≥ b2 ≥ 2 and c1 ≥ 3 or b1 ≥ b2 = 1 and c1 = 2;

(c): b1 ≥ b2 ≥ 2 and c1 = 2. Then

NH1
c
(P5) =















b1 + b2 + 7 + c1 − 3 + 2 = n − 1 if in case (a);

b1 + b2 + 6 + c1 − 3 + 2 = n − 2 if in case (b);

b1 + b2 + 6 = n − 3 if in case (c);

NH1
c
(K1,4) = 0, NH1

c
(T (2, 1, 1)) = 5, by Lemma 2.6 (ii),

NH1
c
(8) = 2|E(H1

c )| + 28NH1
c
(P3) + 32NH1

c
(P4) + 72NH1

c
(K1,3) + 8NH1

c
(P5)

+ 16NH1
c
(T (2, 1, 1)) + 16NH1

c
(C8)

=















70n + 282 + 16NH1
c
(C8) if in case (a);

70n + 274 + 16NH1
c
(C8) if in case (b);

70n + 266 + 16NH1
c
(C8) if in case (c).
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Note that NDn
(8) = 70n + 282, thus, NH1

c
(8) = 70n + 282 if and only if b1 ≥ b2 = 1,

c1 ≥ 3 and NH1
c
(8) = 0 or b1 ≥ b2 ≥ 2 = c1 and NH1

c
(8) = 1, that is H1

c ∈
{CQ2(b1, 1, 1, 1)∪T (c1, 1, 1)(b1 > 5, c1 ≥ 3), CQ2(4, 2, 1, 1)∪T (2, 1, 1), CQ2(3, 3, 1, 1)∪
T (2, 1, 1)}. However, direct computation shows that CQ2(4, 2, 1, 1) ∪ T (2, 1, 1) and

CQ2(3, 3, 1, 1) ∪ T (2, 1, 1) are not cospectral with D15. Denote H̄1
c = CQ2(b1, 1, 1, 1)

∪T (c1, 1, 1) (b1 > 5, c1 ≥ 3), we show that H̄1
c is also not cospectral with the †-shape

tree Dn.

Let w1b2 be the 2-type edge of CQ2(b1, 1, 1, 1) (see Fig. 1.1 H2, where b2 = b3 =

b4 = 1). Applying Lemma 2.1 (ii) at w1b2 we get

PCQ2(b1,1,1,1)(λ) = PT (b1+2,1,1)(λ) − λPb1+2(λ) − 2λ2,

thus,

(4.14) PH̄1
c
(λ) = (PT (b1+2,1,1)(λ) − λPb1+2(λ) − 2λ2)PT (c1,1,1)(λ).

Denote by N3(x) = −2xc1+7 + 2xc1+3 + 2xc1−b1+2 − xc1−b1 + xb1−c1+6 − 2xb1−c1+4 −
2x3−c1 +2x−1−c1 , from Lemma 2.7, (4.6), (4.14), n = b1 + c1 +8 and using Maple we

get

PH̄1
c
(λ) = x−4(x2 − 1)(x2 + 1)2(xn+2 − 2xn + 2x6−n − x4−n + N3(x)).

Since the leading term of N3(x) is −2xc1+7 or xb1−c1+6 or their sum, clearly, it is not

equal to zero. We obtain N3(x) 6= 0. Recall that

PDn
(λ) = x−4(x2 − 1)(x2 + 1)2(xn+2 − 2xn + 2x6−n − x4−n),

thus, PH̄1
c
(λ) 6= PDn

(λ), i.e., H̄1
c is not cospectral with Dn.

Let H2
c = CQ2(b1, b2, b3, 1) ∪ T (1, 1, 1), we will also split this into three general

cases (d): b1 ≥ b2 = 1 and b3 ≥ 3; (e): b1 ≥ b2 = 1 and b3 = 2 or b1 ≥ b2 ≥
2 and b3 ≥ 3; (f): b1 ≥ b2 ≥ 2 and b3 = 2. Then

NH2
c
(P5) =















b1 + b3 + 9 = n + 1 if in case (d);

b1 + b2 + b3 + 7 = n if in case (e);

b1 + b2 + 8 = n − 1 if in case (f);

NH2
c
(K1,4) = 0, NH2

c
(T (2, 1, 1)) = 5, by Lemma 2.6 (ii),

NH2
c
(8) = 2|E(H2

c )| + 28NH2
c
(P3) + 32NH2

c
(P4) + 72NH2

c
(K1,3) + 8NH2

c
(P5)

+ 16NH2
c
(T (2, 1, 1)) + 16NH2

c
(C8)

=















70n + 298 + 16NH2
c
(C8) if in case (d);

70n + 290 + 16NH2
c
(C8) if in case (e);

70n + 282 + 16NH2
c
(C8) if in case (f);
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hence, NH2
c
(8) = 70n + 282 if and only if b1 ≥ b2 ≥ 2 = b3 and NH2

c
(C8) = 0, that is

H2
c = CQ2(b1, b2, 2, 1) ∪ K1,3 (b1 + b2 > 6, b1 ≥ b2 ≥ 2).

Let w2 be the right vertex of degree 3 of CQ2(b1, b2, 2, 1) (b1+b2 > 6, b1 ≥ b2 ≥ 2).

Applying Lemma 2.1 (i) at w2 we get

PCQ2(b1,b2,2,1)(λ) =λ2PT (b1,b2,2)(λ) − PT (b1,b2,2)(λ) − λPT (b1−1,b2,2)(λ)

− λPT (b1,b2−1,2)(λ) − 2λ(λ2 − 1).
(4.15)

By Lemma 4.4, PT (b1,b2,2)(2) = b1+b2+4−2b1b2, PT (b1−1,b2,2)(2) = b1+3b2+3−2b1b2,

PT (b1,b2−1,2)(2) = 3b1 + b2 + 3− 2b1b2, PK1,3
(2) = 4, substituting them into (4.15) we

have PCQ2(b1,b2,2,1)(2) = 2b1b2 − 5b1 − 5b2 − 12. Thus

PH2
c
(2) = PCQ2(b1,b2,2,1)(2)PK1,3

(2) = 8b1b2 − 20b1 − 20b2 − 48.

Recall that PDn
(2) = −4n + 20 and n = b1 + b2 + 9, we obtain

(4.16) 8b1b2 − 20b1 − 20b2 − 48 = −4(b1 + b2 + 9) + 20,

which is equivalent to b1 = 2 + 8
b2−2 . Note that b1 ≥ b2, thus (4.16) has integral

solution (b1, b2) = (10, 3) or (6, 4). But it is easy to verify that CQ2(10, 3, 2, 1)∪K1,3

and CQ2(6, 4, 2, 1) ∪ K1,3 are not cospectral with D22, D19, respectively.

5. †-shape tree and graphs with degree sequence (01, 12, 2n−5, 32). Let

Hd be a graph with degree sequence (01, 12, 2n−5, 32). From Lemma 2.9 we obtain if

Hd is cospectral with the †-shape tree Dn, then Hd may be CQ2(b1, b2, b3, b4) ∪ K1

(b1 ≥ b2 ≥ 0, b3 ≥ b4 > 0). Furthermore, we can prove the following result.

Lemma 5.1. Let both Hd = CQ2(b1, b2, b3, b4) ∪ K1 (b1 ≥ b2 ≥ 0, b3 ≥ b4 > 0)

and the †-shape tree Dn (n ≥ 7) be of order n, then Hd is not cospectral with Dn.

Proof. Similar to Ha, denote by mi(Hd) (i = 0, 1, 2, 4) the number of i-type edges

in Hd, respectively. From the structure of Hd we get |E(Hd)| = n−1, NHd
(P3) = n+1,

NHd
(K1,3) = 2, m0(Hd) = 2 and m4(Hd) ≤ 1. We also have 2 ≤ m2(Hd) ≤ 4 if

m4(Hd) = 1 or 4 ≤ m2(Hd) ≤ 6 if m4(Hd) = 0. First if m4(Hd) = 1, similar to

(4.10),

NHd
(P4) = n − 1 − m0(Hd) + m2(Hd) + 3m4(Hd) ≥ n − 1 − 2 + 2 + 3 = n + 2.

Next if m4(Hd) = 0, also analogous to (4.10),

NHd
(P4) = n − 1 − m0(Hd) + m2(Hd) ≥ n − 1 − 2 + 4 = n + 1,

and equality holds if and only if m2(Hd) = 4, i.e., Hd = CQ2(b1, b2, 1, 1) ∪ K1. By

Lemma 2.6 (i),

NHd
(6) = 2|E(Hd)| + 12NHd

(P3) + 6NHd
(P4) + 12NHd

(K1,3) + 12NHd
(C6)

≥ 2(n − 1) + 12(n + 1) + 6(n + 1) + 24 + 12NHd
(C6)

= 20n + 40 + 12NHd
(C6).
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Hence, NHd
(6) = 20n + 40 if and only if NHd

(P4) = n + 1 and NHd
(C6) = 0, that is

Hd = CQ2(b1, b2, 1, 1) ∪ K1 (b1 + b2 > 4).

Let w2 be the right vertex of degree 3 of CQ2(b1, b2, 1, 1). Applying Lemma 2.1

(i) at w2 we get

PCQ2(b1,b2,1,1)(λ) =λ2PT (b1,b2,1)(λ) − PT (b1,b2,1)(λ) − λPT (b1−1,b2,1)(λ)

− λPT (b1,b2−1,1)(λ) − 2λ2.
(5.1)

By Lemma 4.4, PT (b1,b2,1)(2) = b1 + b2 +3− b1b2, PT (b1−1,b2,1)(2) = b1 +2b2 +2− b1b2

and PT (b1,b2−1,1)(2) = 2b1 + b2 + 2 − b1b2. Substituting them into (5.1) we have

PCQ2(b1,b2,1,1)(2) = b1b2 − 3b1 − 3b2 − 7. Thus,

PHd
(2) = 2PCQ2(b1,b2,1,1)(2) = 2b1b2 − 6b1 − 6b2 − 14.

Note that PDn
(2) = −4n + 20 and n = b1 + b2 + 5, we obtain

(5.2) 2b1b2 − 6b1 − 6b2 − 14 = −4(b1 + b2 + 5) + 20,

which is equivalent to b1 = 1 + 8
b2−1 . Recall that b1 ≥ b2, thus (5.2) has integral

solution (b1, b2) = (9, 2) or (5, 3). But it is easy to verify that CQ2(9, 2, 1, 1)∪K1 and

CQ2(5, 3, 1, 1) ∪ K1 are not cospectral with D16, D13, respectively.

Now our main result Theorem 1.1 follows from Lemmas 3.1, 4.1, 4.3, Theorems

4.5, 4.6, 4.7, and Lemmas 4.8, 4.9, 5.1.
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