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ON THE GROUP GL(2,R[X])*

VALERII FAIZIEVT

Abstract. Suppose that G is an arbitrary group and S is its subset such that S~1 = S. Let
gr(S) be the subgroup of G generated by S. Denote by ls(g) the length of element g € gr(S) relative
to the set S. Let V be a finite subset of a free group F' of countable rank and let the verbal subgroup
V(F) be a proper subgroup of F. For an arbitrary group G, denote by V(G) the set of values in
the group G of all the words from the set V. The present paper establishes the infinity of the set

{ls(9), g € V(@)}, where G = GL(2, R[z]), S = V(G) U V(G)_1 for an arbitrary field R.
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1. Introduction. In 1940, Ulam [26, 27] posed the following problem. Given a
group G, a metric group (G2, d), and a positive number ¢, does there exist a § > 0
such that if f : G1 — G2 satisfies d(f(zy), f(z)f(y)) < § for all z,y € Gy, then a
homomorphism T : G; — G4 exists with d(f(z),T(z)) < € for all z,y € G1?

The first affirmative answer was given by Hyers [12] in 1941.

THEOREM 1.1. Let Ey, E> be Banach spaces and let f : Ey — Es satisfy the
following condition: there is an € > 0 such that

|| f(z+y) — f(@) = f(y) |l <e for all z,y € Ei.
Then there exists T : E1 — Es such that

(1) T(x+y)—T(x)—T(y) =0 for all z,y € E;

(2) [| f(z) =T (x)|| <€ for all z € E;.

The subject rested there until Rassias [21] considered a generalized version of the
previous result which permitted the Cauchy difference to become unbounded. That
is, he assumed that

1 f(z+y) = f) = FW) | <e-([[=]]” +[ly|[") for all 2,y € Ex,

where 0 <p < 1.
By making use of a direct method, Rassias proved in this case too that there is
an additive function 7" from E; into E» given by the formula

1
T(x)= lim —f(2"x
(2) = lim —f(2")
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such that

IT(z) = f(@)| <k -e -],

where k depends on p as well as €.

Rassias [22], during the 27th International Symposium on Functional Equations,
asked whether such a theorem can also be proved for p > 1.

Gajda [10], following the same approach as [21], gave an affirmative solution to
this question for p > 1. Several papers were devoted to the generalization of these
results; see [13, 14, 15, 16, 17, 21, 22, 23]. In connection with these results, the
following question arises.

Let S be an arbitrary semigroup or group and let a mapping f : S — R satisfy
the following condition: the set {f(zy) — f(z) — f(y),z,y € S} is bounded. Is it true
that there is T : S — R satisfying the following conditions?

(1) T(zy) -T(x) -T(y) =0, =, y €S.

(2) The set {T'(x) — f(x), « € S} is bounded.

The negative answer was given by Forti [9] by means of the following example.
Let F(a,3) be the free group generated by the two elements a, . Let each word
x € F(a,p) be written in reduced form, i.e.,  does not contain pairs of the forms
aa~t  a la, BB, BB and has no exponents different from 1 and —1. Define the
function f : F(a,8) — R as follows. If r(z) is the number of pairs of the form af in
z and s(z) is the number of pairs of the form ~la~! in z, put f(z) = r(z) — s(x).

It is easily shown that for all z,y € F(a,3) we have f(xy) — f(z) — f(y) €
{-1,0,1}. Now, assume that there is T': F(a,8) — R such that the relations (1),
(2) hold.

But T is completely determined by its values T'(«) and T'(3), while f is identically
zero on the subgroups A and B generated by a and 3, respectively. For a € A we have
T(a™) =nT(a) and f(a™) =0 for n € N. Since T'(a™) — f(a™) =nT(a) for n € N,
it follows that T'(a) = 0. Similarly we have T'(8) = 0, so that T is identically zero
on F(a,B). Hence, f —T = f on F(a, ), where f is unbounded. This contradiction
proves that there is not a homomorphism 7' : F(a, 3) — R such that the relation (2)
holds.

It turns out that the existence of mappings that are “almost homomorphisms”
but are not small perturbations of homomorphisms has an algebraic nature.

DEFINITION 1.2. A quasicharacter of a semigroup S is a real-valued function f on
S satisfying the condition that the set {f(zy) — f(z) — f(y) | z, y € S} is bounded.

DEFINITION 1.3. By a pseudocharacter on a semigroup S (group S) we mean its
quasicharacter f that satisfies the following condition: f(z") = nf(z) V z € S and
VneN(andVn € Z,if S is group).

The set of quasicharacters of semigroup S is a vector space (with respect to the
usual operations of addition of functions and their multiplication by numbers), which
will be denoted by K X (S). The subspace of K X(S) consisting of pseudocharacters
will be denoted by PX(S) and the subspace consisting of real additive characters of
the semigroup S will be denoted by X (S5).
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We say that a pseudocharacter ¢ of the group G is nontrivial if ¢ ¢ X (G).

In connection with the example of Forti, note that in [5, 6] the set of all pseu-
docharacters of free groups was described.

Let H be a Hilbert space and let U(H) be the group of unitary operators of H
endowed by operator-norm topology. If H is n-dimensional, n € N, then denote the
group U(H) by U(n).

DEFINITION 1.4. Let 0 < € < 2. Let T be a mapping of a group G into U(H).
We say that T is an e-representation if for any z,y from group G the relation

IT(zy) = T(@)T ()l <e

holds.

V. Milman raised this question: Let p : G — U(H) be an e-representation with
small . Is it true that p is near to an actual representation 7 of the group G in H,
i.e., does there exist some small § > 0 such that ||p(z) — 7(z)|| < § for all z € G? In
answer to this question Kazhdan, in [18], obtained the following result.

THEOREM 1.5. There is a group T’ with the following property. For any0 <e <1
and any natural number n > g there exists an e-representation p such that for any
homomorphism © : G — U(n) the relation

o -l = sup{llp(e) — n(@)|l, = €T} > —

10
holds.

Note that the group I'" has the following presentation in terms of generations and
defining relations: T' = (z,y,a,b|| 2 'y zya—'b"'ab).

In [7], by using pseudocharacters, a stronger version of Kazhdan’s theorem was
established as follows. We say that a group G belongs to the class K if every nonunit
quotient group of G has an element of order two.

THEOREM 1.6. Let H be a Hilbert space and let U(H) be its group of unitary
operators. Suppose that groups A and B belong to the class K and the order of B is
more than two. Then the free product G = A x B has the following property. For any
€ > 0 there exists a mapping T : G — U(H) satisfying the following conditions:

(1) | T(zy) —T(z) - Tl <e Va,VyeQ,

(2) for any representation w: G — U(H) the relation

sup{||T(z) —n(z)l|, z € G} =2

holds.
In the present paper we consider an application of pseudocharacters to the prob-
lem of expressibility in groups.

2. The problem of expressibility in the group GL(2, R[x]). Let G be an
arbitrary group and let S be its subset such that S~! = S. Denote by gr(S) the
subgroup of G generated by S. We say that the width of the set S is finite if there is
k € N such that any element g of gr(S) is representable in the form
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3) g=5182-++5,, wheres; € SUS™! n<k.

The minimal k with this property we call the width of the set S in G and denote
it by wid(S, G).

We say that the width of the set S in the group G is infinite if for any k& €
N there is an element g € gr(S) which does not have a presentation of the form
(3). Many papers were devoted to the problem of the width of different subsets; see
[1, 2, 3, 11, 20, 24, 25].

In this paper we consider the problem of the width of verbal subgroups. Namely,
let V be a finite subset of the free group F of countable rank. We say that V' is proper
if the verbal subgroup V(F') is a proper subgroup of F.

Let G be an arbitrary group. Denote by V(G) the set of values in the group G
of all the words from the set V. By the width of verbal subgroup V(G) we mean the
width of the set V(G) UV(G) " in the group G.

Numerous papers devoted to the problem of the width of verbal subgroups have
been written (see [2, 11, 24] and references therein).

The present paper establishes that if V' is a proper finite subset of F', then the
width of V(GL(2, R[z])) is infinite for an arbitrary field R.

In [4] the following result was obtained.

THEOREM 2.1. Let f be a quasicharacter of semigroup S such that |f(zy) —
fl@)=fy)| <cVz yeS. Then the function

(4) @) = lim = @)

n—oo 21

~

is well defined and is the pseudocharacter of S such that |f(zy) — flz) - f(y)| <
4eVz, y€esS.

COROLLARY 2.2. Let f be a quasicharacter of group G such that |f(zy) — f(z) —
fly)| <cVz, y €G. Then the function

fl@) = tim —f(z*")

n—oo 27

-~ ~ -~

is well defined and is the pseudocharacter of G such that |f(zy) — f(z) — f(y)| <
4dcV iz, y€G. R
Proof. Theorem 2.1 implies that in order to prove that f is a pseudocharacter of

~ ~

group G it remains to verify that for each x € G the equality f(z~!) = — f(z) holds.

~ -~ -~ ~

From the relation f(z") =nf(z) V2 € G, Vn € N we obtain f(1") = nf(1).

~ ~

Hence, f(1) = 0 and for each x from G we have |f(1) — f(z) — f(z~')| < 4c and

~ ~

F@) + fa ) <de. o
Therefore, n|f(z) + f(z71)| = |f(@") + f((z ")) < 4cV 2z € G, Vn € N.
This is possible only if f(z~!) = —f(z). Now let k£ > 0. Then we have f(z~%) =

~

F((a*)~') = —f(z*) = —kf(z). The corollary is proved. O
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Let R be an arbitrary field and let R[z] be the ring of polynomials over R. Let
H be the subgroup of the group A = GL(2, R) consisting of matrices

a t *
[O ﬂ]’ where a, f € R*, t € R.

Let B be the subgroup of G = GL(2, R[z]) consisting of matrices

[ ]gl f(]jg :| , where kl; k2 € R*’ f(z) € R[Z]

It is clear that H C B. It is well known that the group G = L(2, R[z]) is an
amalgamated product G = A xg B. See [19].

LEMMA 2.3.
o={[1 o[z 1] zerp

(1) Let
Then @ is a system of representatives of left and right cosets of the group A by its

subgroup H.
_I 1 e
P_{[O 1],m€R}

(2) Elements
form a left and o right system of representatives of the group B by subgroup H and
Pl =P,

(8) P < B and B is the semidirect product B = H - P.

Proof. The proof is obtained by direct calculations. O

DEFINITION 2.4. By the reduced form of element ¢ € G\ H we mean its
presentation in the form

g =cica---ck, where ¢; € (AUB)\ H, ciciy1 ¢ (AU B).

For this reduced form of element g we set ¢ = ¢1, § = ck-

DEFINITION 2.5. By the regular subdivision of g we mean a presentation in the
form g = g1g2 - - - gk, where §;g;11 ¢ H.

Let X = {x,, n € N}. Denote by D a free semigroup over alphabet X. To each
element g of G we assign a word o(g) in alphabet X as follows. If g € A, then we set
o(g) = A, where A denotes the empty word. For any f(z) € R[z] denote by o(f(z))
the degree of f(z). Now if

b= [ h f(,j; ] € T(2, R[2),
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we denote by a(b) the degree of polynomial f(z).

If o(f(z)) = 0, then we set a(b) = A. If a(f(2)) > 0, then we set o(b) = z,(f())-
Let v = cic2 -+ - ¢ be a reduced form of the element v from G. Then we set o(v) =
To(c1)To(ea) *** To(cy)- Hence, to each element from G we assign a word from D. Tt is
obvious that the mapping o is well defined.

DEFINITION 2.6. We say that two words from D are conjugate if one of them is
obtained from another by cyclic permutation of letters.

The relation of conjugacy in D we denote by ~p. It is evident that if elements
u,v € G are conjugate, then the words o(u) and o(u) are conjugate to each other.

Now for each word v from the semigroup D we introduce the set of “beginnings”
H(v) and the set of “ends” K(v) as follows. If v € X, we put H(v) = K(v) = {. If

V=15 " Tiy ... Ty, N> 1, where z;; € X, we set
HWw) = {&i,Ti,Tiyye s TiyTig - - Tip_1 |
K(Ww) = A{miy - Ti,, iz Tipy--sTip_, Tin>Ti, |-

Let v € D. We set H(v) = H(v) U{v} and K(v) = K(v) U {v}.

For v =z, z;, -+ x;,, weset v* =z, x;, _, - Ti,-

Denote by |v| the length of a word v in the alphabet X. It is clear that H(w) N
K(w) = § if and only if H(w*) N K (w*) = 0.

Denote by P the set of words w in alphabet X such that H(w) N K(w) = § and
w #p w*. It is clear that if w € P, then |w| > 1.

For each pair of elements z,y from D we define measures i, on P as follows.

We set fi, ,(w) = 1 if there exist a and b such that a € K(z), b € H(y), and
w = ab; otherwise we set p, ,(w) = 0.

Let w € P and v € D and denote by 7, (v) the number of occurrences of w in the
word v. It is easy to see that the function v — n,,(v) is a quasicharacter of semigroup
D such that for any u,v from D the relation

(5) N (U0) — Ny (u) — Mo (V) = Hu,v (w)

holds.
Let us set

’(ﬁw(’U) = ﬂw(U) = Nw* (U)
From (5) we get
Yu (u0) — Yy (1) — Yoy (V) = pru,p (W) — P (W).

For any u,v € D we set Ay o (W) = 0 (W) — g, (W*).
Hence,

(6) (o (UU) — Yy (u) — Yy (U) = Au,v (w)

Whence for any uy,us,...,ur € D and any w € P the relation
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Yo (urug - - - ug) — Zf:1 Yu(ui) = Aupuseug (W) + Auy gy (W)
+...+ Auk—huk (w)

holds. It is easy to see that A, ,(w) € {-1,0,1}Vu,ve D, Vw € P.
Hence the function v — 1, (v) is a quasicharacter of D such that for any w,v
from D the following relations hold:

[P (u0) — oy (u) — Yoy (V)| < 1, hyy (V*) = —1hy (V).

Now define a function p,, on the group G as follows. For any g € G we set

pu(9) = Pu(a(g)). It is clear that pu(97") = —pu(9)- )
LEMMA 2.7. Suppose that the words g, t are reduced and gt ¢ H. One can choose
(at most siz) pairs of elements u;,v; € D such that for any w € P the relation

Puw(gt) = pu(g) + pul(t +ZEz wiw; (W), where g; € {—1,1},

holds.

Proof. Consider two cases: (a) §t ¢ B and (b) §t € B.

It is clear that the relations (a) and (b) do not depend on the reduced forms of
elements g and t.

It is obvious that in case (a) the equality o(gt) = o(g)o(t) holds. Hence, py, (gt) =
Pw(9) + pu(t) + Bo(g),o() (W) ‘

Consider case (b). Let o(g§) = b1, o(t) = ba, and g = g1b1, t = bat1, be a regular
subdivision.

It is clear that o(g) = o(g1)o(b1), o(t) = a(b2)o(t1).

Hence, o(gt) = o (g1)a(bib2)o(t1), o(g)o(t) = o(g1)a(bi)o(b2)o(tr).

Therefore, we obtain

Yu(o(gt)) = vuw(o(gr)o(biba)o(ti))
Yuw(0(g1)) + w0 (b1b2)) + uw(o(t1))
+A4(g1),0(b1b2)o(t1) (W) + Do (b1),0(t1) (W)

Yuw(o(g)o(t) = tuwlo(gr)o(bi)o(b)o(t1))
= u(0(g1)) + Yuw(o(b1)) + Yuw(o(b2))
+y(o(t1)) + Ay 91),0(51)0(52)‘7(751)(1”)
+A5(b1),0(b2)o(t1) (W) + Ag(by),o(tr) (W),

Yu(o(gt) — Yuw(o(g)a(t)) = u(o(brba)) — Yuw(o(b1)) — Yu(o(b2))
A5 (g1),0(b1b2)o(t) (W) + Ao (b1b),0(t) (W)
—Bo(g1),0(b1)a(b2)a(tr) (W)
—Bo(b1),0(b2)o(t2) (W) = Do (b),o(ts) (W)-
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Now taking into account that the length of each element w from P is at least two we
have 1, (o (b)) = 0 for any b € B.
Hence, we get

Yuw(0(gt) —Yuw(a(9)o(t)) = Agg),obrbe)o(ts) (W) + Ag(syb),o(t) (W)
_Aa(g1),o(b1)a(b2)a(t1) ('LU)
—Ag(b1),0(b2)o(tr) (W) = Ag(by),o(tr) (W)

Now, using (6), we obtain
Yuw(o(gt)) — Yuw(0(9)) = Yul(o®) = Asgr)o(bib)o(ts) (W)
FAg(b18),0(t1) (W)
_Aa(gl),a(b1)a(b2)a(t1)(w)

_Ao(bl),a(bg)a(h) (U))
=g (b2),0(t0) (W) + Do (g),008) (W)-

The lemma is proved. O
LEMMA 2.8. For any x,y from G one can choose (at most eight) pairs of elements

ui, v; € D such that for any w € P the relation
pw(my) = pw(:l:') + pw(y) + ZEiAuian (w)a where €; € {_17 1}’
i

holds. Hence,

lpw(zy) — pu(x) — pu(y)] < 8

and the function p,, is o quasicharacter of G.

Proof. Suppose that x = g - 21, y = z2 - t are regular subdivisions such that
2129 € H, gt € (AUB)\ H. Then we have o(z) = o(g)o(z1), o(y) = o(z2)a(t),
o(xy) = o(gt). It is easy to see that o(z2) = o(21)*. Hence, we have

Yu(0(2)) = Yu(a(9)a(21)) = Yu(0(9)) + Yu(0(21)) + Bo(g).o(z1) (W),
Yuw(0(y)) = Yulo(2)o(t) = Yu(o(t)) + Yuw(0(22)) + As(an).or) (w),
Pu(0(2)) + Yu(0(y) = Yuw(0(9)) + Puw(0 () + As(g).o(z1) (W) + Ag(z),0(1) (W),
Yu(o(zy)) = Yu(o(gt)),

Yu(0(zy)) — Yuw(o(z)) — Yu(o(y) = Yu(o(gl)) —Yuw(o(g)) — Yuwlo(t))
=B (g),0(21) (W) = Ag(zg),0(t) ().
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It was established in Lemma 2.7 that one can choose (at most six) pairs of elements
u;,v; € D such that

Pu(0(gt)) = Yu(o(g)) + Pu(o(t) + Z €il\u, v (W),

where €; € {—1,1}.
Hence, one can choose (at most eight) pairs of elements u;,v; € D such that

Yuw(o(zy)) — Yu(0(x)) — Yu(o(y)) = ZEiAui,v; (w),

where g; € {—1,1}. The lemma is proved. O
COROLLARY 2.9. For any g1,92, - - -,9n from G, one can choose (at most 8(n—1))
pairs of elements u;,v; € D such that for each w € P the relation

(7) Pw(glg2 o 'gn) = Z pw(gj) + ZEiAuz',vi (w)a

where €; € {—1,1}, holds.
Let

01 1 2"
az[l 0],1)”:[0 zl],xza(abl),yza(abz).

Consider the set M = {wy, = z*Fy?**zkyk k€ N}. Let M* = {w} | wyp € M}.
It can easily be checked that w; is not a subword of wy, for k # [ and also that

H(wg) N K(w;) =0 for all k,1 € N,
H(wy,) N K(wy) =0 if k # p,

H(wp) N K (wg) =0 if k # p.

It is easily shown that for any & and ¢, wj, is not a subword of wy.
Hence, M C P, M* C P, and for any u,v € D the relations

[M N supp pru,| <1, |[M* N supp pry,| <1

hold. Furthermore, we have the following estimation:

(8) IMNsupp Ayy| <2V u, veD.

COROLLARY 2.10. For any ¢1,92,---,9n from G the following assertions are
true:
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(1) there are at most 16(n — 1) elements w € M such that

puw(g1g2 - gn) # pr(gj),

(2) 1u(9192 -+ gn) — S0y pu(g5)] < 16(n — 1) ¥ w € M.

Proof. (1) From (7) it follows that if w € M, then there are at most 8(n — 1)
pairs of elements u;,v; such that w € U;supp Ay, ;. Now from (8), we get that there
are at most 16(n — 1) elements w € M such that py(g192 -+~ gn) # 2j—; Pw(9;)-

(2) This assertion follows from (7) and (8). O

Let m > 2. Then for any g € G, the set

Om(g9) ={w | w € M, py(g) Z0mod (m)}

is finite. Denote by 7,,(g) the cardinality of O,,(g). It is clear that for each g € G
the relation O,,(g) = Om(g~") holds. Hence, ¥ (g) = Ym(g71).

From Corollary 2.9 we have that for any g1, gs,- . ., gn from G one can choose (at
most 8(n — 1)) pairs of elements u;,v; € D such that the relation

9) Om(9192 -+ gn) CUj_1Om(g;) U Ui supp Ay, o,

holds. From (9) we obtain

n

(10) Ym(9192-+9n) <D Yml(95) + D Isupp Ay, o,
j=1 i

7

where |supp Ay, ;| denotes the cardinality of the set supp Ay, v;-
PRrROPOSITION 2.11. For any z,y € G the following relations hold:
(1) Ym(zy) < vm(z) +vm(y) + 16,
(2) [rm(z~ yz) — ym(y)] < 32,
(3) Ym(z™ 'y~ tay) < 48,
(4) Ym(a™) < 16(m —1).
Proof. Assertion (1) follows from (10). Let us prove assertion (2). We have

Om(zyz) ={w | w € M, pyp(z~tyz) # 0 mod (m)}.

From (7) we have that one can choose at most 16 pairs of elements u;,v; from D such
that

pu(x ™ yz) = pu(@™) + pu(y) + pu(@) + ZE"AW’“ (w).

Since py(z71) + pu(z) = 0, we have

Pw(xilym) = pu(y) + ZEiAUi,’Ui (w).
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Hence,
Om(z7'yz) = {w|we M, py(z~'yz) Z0mod (m)}
= {w|weM, pu(y) + X €ilu; v (w) # 0 mod (m)}
and

Om(z 7 yz) C Om(y) U U; supp AN

From the latter and (8) we get

Y (@ y2) <y (y) + D [ supp A |-
i

Hence, for any z,y € G we have

(11) Tm (2 y2) < Y (y) + 32.
Replacing y by zyz~! we obtain
Y (y) < Ym(zyz™") + 32.

Now replacing = by 7! we obtain

(12) Ym(y) < Ym(z " yz) + 32.

From (11), (12) we get

| Ym (27 yz) — Ym(y) | < 32.

Similarly, we verify that assertion (3) is true. Now let us prove assertion (4). From
(7) we get that for any x € G one can choose (at most 8(m — 1)) pairs of elements
u;,v; € D such that for each w € M the relation

pw(z_m) = mp’w(x) + ZeiAui,'Ui (w)7 where ¢; € {_17 1}7
i

holds.
Hence,

Om(z™) = {w]|weM, py(z™)Z 0mod (m)}

{w | weM, mpy(x) + 3, iy, v, (w) Z0mod (m)}
{w|weM, 3;eily; v (w) #Z0mod (m)}

C Ui(M N suppAy; ;)-

Taking into account (8), we get

<16(m —1).

Ym(2™) < Z | supp A, v,
i
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The proposition is proved. O

PROPOSITION 2.12. Let C' < G. Then there is a pseudocharacter ¢ of the group
G such that <p|C Z0.

Proof. There is an element g € C such that ¢ = aib; - --agbg, where k > 1,
a; EA\H, b; EB\H.

Since for every g from C and every ¢ from G the element tgt 'g and every cyclic
permutation of ¢ = a1b; ---aby belong to the subgroup C, we can assume that
a(br) > a(b;), o(br) > o(br).

Let v = 0(9) = To(by) =" = To(by,) = T, "~ Tiy,» Ti; € X. Suppose that v ~ v*.
Consider the element
0
e = |3

1] 1 z%m o 1] |1 22m—1 .

0 0 1 10 0 1

0 1 ) 1 zmt ) 0 1 ) 1 mz™+ 72zm*1

1 0 0 1 10 0 1|’
where m = o (by,).

Let us choose 71,72 such that the relation

1 zm+ szl -1
1CH I I B

holds. It is easy to verify that o(t) € P and that there is no cyclic permutation of
the word o (tgt—'g) containing o(¢~!) = o(t)* as subword. This implies the following
equalities:

Pot) (L9t ™' 9) = Yoy (a(tgt™ g)) = nyq) (o (tgt ' g)) = 1.

Let p,(¢) be a pseudocharacter of G defined by (4). Since for each n € N the word
(o(tgt~"g))"™ has no subword which is equal to o(t™'), we obtain p,) (tgt~"g) = 1.
Now consider the case when v o v*. The Lemma 8 from [8] implies that there is
w € P and m € N such that v ~ w™.

Hence py(g) = ¥w(o(g)) = nw(v) — nyw+(v). Taking into account the relations
m—1< nw(v) <m, nw*(v) =0wegetm—1< pw(g) <m.

Therefore for any k € N the relation km — 1 < p,,(g*) < km holds. This implies
the equality py, (b) = m. The proposition is proved. O

LEMMA 2.13. Let p € PX(G). Suppose that for any z,y € G we have |p(z-y) —
p(z) —p(y)| <e. Then

(1) the inequality |p(x1 -T2+ ... Tpt1) — Z;jll p(z;)| < n-e holds for any positive
integer n and any T1,Ts,...,T, € G;

(2) if ¢ is a bounded function, then ¢ = 0;

(3) p(a tba) = @(b) for any a,b € G.

Proof. Assertion (1) is easily proved by induction on n. Let us prove assertion
(2). If § is a positive number such that |p(z)| < 6 for any z € G, then for any positive
integer n we have n|p(z)| = |¢(z™)| < §. Therefore, p(z) = 0.
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Let us prove assertion (3). From assertion (1) it follows that |p((a='ba)™) —
p(a=)—p(b") —p(a)| < 2. Hence, [p(a~"b"a)—p(b")| < 2:¢, or nlip(a~ ba)—p(B)] <
2 - €. Since the latter inequality holds for all n > 1, we obtain p(a~ba) = o(b).

The lemma is proved. O

THEOREM 2.14. Let V be a finite subset of the free group F of countable rank
and let V(F) be a proper verbal subgroup of F. Then the width of verbal subgroup
V(G) is infinite relative to the set V(G) U V(G)_l.

Proof. Suppose that V(F) C F'. Let ¢ € PX(G) and for any z,y from G let
the relation |p(zy) — ¢(z) — ¢(y)| < r hold. From Lemma 2.13 it follows that for any
z,y € G we have p(z 1) + ¢(y lzy) = 0. Hence,

1 1 1

lp(z™ 'y ay)| = |p(a™ Yy ay) — pl@™") — oy ay)| <.

From the latter inequality it follows that if wid(V (G) U V(G)_l, G) < 0, then pseu-
docharacter ¢ is bounded on V(G). Indeed, since V is finite there is an integer [
such that each element of V' is a product of at most / commutators, and we deduce
that ¢(b) < (I — 1)r for all g € V(G). Hence, if wid(V(G) UV(G)™',G) < oo, it
follows that the pseudocharacter ¢ is bounded on V(G). By Lemma 2.13 we obtain
@ =0 on V(G). This contradicts Proposition 2.12. Now suppose that V(F) € F'.
Let V = {v1,va,...,v; } and let X = { 21, 22, ...} be the set of free generators of the
group F.

Then there is a positive integer n such that every element v; is uniquely repre-
sentable in the form

v; = zi"lzé"z gl “ug, li; >0, u; € F.

Let m be the maximal common factor of the numbers {|l;;|, i = 1,...,k, j =
1,...,n}. Since V(F) is a proper verbal subgroup of F, it follows that m > 2.
Proposition 2.12 implies that there is I € N such that for any u € V(G) the rela-
tion v, (u) < I holds. This implies that if the width of verbal subgroup V(G) is
finite, then the function 7, is bounded on V(G). Now consider elements gy, =
(ab1)3km (ab2)2km (abl)km (abz)km, k € N.

It is evident that g, € V(G) VY k € N and for any n € N and i < n the relation
Pwmi (gmG2m = * gnm) = 1 holds. .

Hence, Yo (9mg2m * - * gnm) > n. This contradicts the assumption that wid(V (G)U
V(@) ', G) < o

This completes the proof. O
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