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EXTREME SPECTRA REALIZATION BY REAL SYMMETRIC

TRIDIAGONAL AND REAL SYMMETRIC ARROW MATRICES∗

HUBERT PICKMANN† , JUAN C. EGAÑA‡ , AND RICARDO L. SOTO§

Abstract. We consider the following two problems: to construct a real symmetric arrow matrix

A and to construct a real symmetric tridiagonal matrix A, from a special kind of spectral information:

one eigenvalue λ(j) of the j×j leading principal submatrix Aj of A, j = 1, 2, . . . , n; and one eigenpair

(λ(n),x) of A. Here we give a solution to the first problem, introduced in [J. Peng, X.Y. Hu, and

L. Zhang. Two inverse eigenvalue problems for a special kind of matrices. Linear Algebra Appl.,

416:336-347, 2006.]. In particular, for both problems to have a solution, we give a necessary and

sufficient condition in the first case, and a sufficient condition in the second one. In both cases, we

also give sufficient conditions in order that the constructed matrices be nonnegative. Our results are

constructive and they generate algorithmic procedures to construct such matrices.

Key words. Real symmetric tridiagonal matrices, Real symmetric arrow matrices, Eigenprob-

lem.
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1. Introduction. A discrete undamped system, consisting of n masses mi >

0 connected by n springs of stiffness ki > 0, is characterized by the generalized

eigenvalue problem:

(Kn − λMn)u = 0, (1.1)

where λ = ω2, with ω a natural frequency and u the respective vibration mode, while
Mn = diag {m1,m2, . . . ,mn} and

Kn =

















k1 − k2 −k2

−k2 k2 + k3 −k3

. . .
. . .

. . .

−kn−1 kn−1 + kn −kn

−kn kn
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are the mass matrix and the stiffness matrix, respectively.

The generalized eigenvalue problem (1.1) can be expressed as the standard eigen-

value problem

(Jn − λIn)x = 0,

where Jn = M
− 1

2

n KnM
− 1

2

n and x = M
1

2

n u. It is well known that the system (Mn,Kn)

can be reconstructed from some spectral information of the matrix Jn. There are

several procedures to reconstruct Jn. One of the most popular procedures considers

the n eigenvalues of Jn, and the n − 1 eigenvalues of the submatrix Jn−1, obtained

by deleting the last (first) row and column of J (see [5]).

Recently, new spectral information to reconstruct the system (Mn,Kn) have been

considered by Huang et al. in [7]:

i. λi and λ∗
i , associate to the maximal and minimal natural frequencies of

(Mi,Ki) , i = 1, . . . , n, respectively.

ii. λi ∈ R
+, associate to the maximal (or minimal) frequency of (Mi,Ki) , i =

1, . . . , n, and x ∈ R
n, the mode corresponding to λn,

where (Mi,Ki) is the subsystem of (Mn,Kn), that is, obtained by fixing the mass

mi+1. Note that the subsystems (Mi,Ki) correspond to the leading principal subma-

trices of Jn.

Peng et al. [8] propose two inverse eigenvalue problems to reconstruct an arrow

matrix from similar spectral data. Unfortunately, the proposed solutions in [8] are

not correct. In [9], a correct solution is given for this problem, while in [10], a Jacobi

matrix is reconstructed from the same spectral data.

In this paper, we study two inverse eigenproblems. One of them related with the

construction of an n × n symmetric arrow matrix of the form

















a1 b1 b2 · · · bn−1

b1 a2

b2 a3

...
. . .

bn−1 an

















, aj , bj ∈ R, (1.2)

and the other one related with the construction of an n × n symmetric tridiagonal
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matrix of the form


















a1 b1

b1 a2 b2

b2 a3
. . .

. . .
. . . bn−1

bn−1 an



















, aj , bj ∈ R. (1.3)

The following eigenproblem was proposed and discussed in [8, Problem II]:

Problem 1.1. Given n real numbers λ(1), λ(2), . . . , λ(n), and a real vector x =

(x1, x2, . . . , xn)T , find an n × n symmetric arrow matrix A of the form (1.2), where

the ai are all distinct for i = 2, 3, . . . , n and the bi are all positive, and such that λ(j)

is an eigenvalue of the j × j leading principal submatrix Aj of A, j = 1, 2, . . . , n, and

(λ(n),x) is an eigenpair of A.

We observe that in this problem, the formulae to compute the ai and bi, given in

[8, Theorem 2], may lead us to a matrix which does not satisfy the requirements. For

instance, the numbers

λ(1) λ(2) λ(3) λ(4)

2 (5−
√

65)
2 −2 (5+

√
85)

2

and the vector

x =

(

1

2
(
√

85 − 1), 4, 2, 1

)T

satisfy the conditions in [8, Theorem 2]. However, the unique resultant matrix is

A =









2 4 2 1

4 3 0 0

2 0 3 0

1 0 0 3









,

which has repeated diagonal entries.

In this work, we rediscuss the above eigenproblem to give a necessary and suf-

ficient condition, which leads us to a correct solution. We also study the following

eigenproblem for real symmetric tridiagonal matrices:

Problem 1.2. Given n real numbers λ(j), j = 1, 2, . . . , n and a real vector

x = (x1, . . . , xn)
T
, find necessary and sufficient conditions for the existence of an

n×n symmetric tridiagonal matrix A of the form (1.3), such that λ(j) is an eigenvalue

of the j × j leading principal submatrix Aj of A, j = 1, 2, . . . , n, and (λ(n),x) is an

eigenpair of A.
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This family of matrices appears in certain symmetric inverse eigenvalue and in-

verse Sturm-Liouville problems, which arise in many applications, including modern

control theory and vibration analysis [1]–[10].

We shall denote as Ij the identity matrix of order j; as Aj the j × j leading

principal submatrix of A; as Pj (λ) the characteristic polynomial of Aj , and as λ(j)

an eigenvalue of Aj . σ(Aj) will denote the spectrum of Aj .

The paper is organized as follows: In Section 2, we consider Problem 1.1 with λ(j)

as the maximal eigenvalue of Aj , and in this case, we give a correct solution to the

eigenproblem in [8, Problem II]. We also give sufficient conditions in order that the

symmetric arrow solution matrix is nonnegative. In Section 3, we consider Problem

1.2 with λ(j) being the maximal eigenvalue of Aj , and give sufficient conditions for

the problem to have a solution with all its bi entries positive and also a nonnegative

solution. Finally, in Section 4, we show some examples to illustrate the results. Our

results are constructive, in the sense that they generate an algorithmic procedure to

construct the solution matrices.

2. Solution to Problem 1.1. We recall the following well known lemmas:

Lemma 2.1. Let A be an n × n matrix of the form (1.2) and let Pj (λ) the

characteristic polynomial of the j × j leading principal submatrix Aj, j = 1, 2, . . . , n,

of A. Then the sequence {Pj (λ)}n
j=1 satisfies the recurrence relation:

P1 (λ) = (λ − a1) ,

P2 (λ) = (λ − a2)P1 (λ) − b2
1,

Pj (λ) = (λ − aj)Pj−1 (λ) − b2
j−1

j−1
∏

i=2

(λ − ai) , j = 3, 4, . . . , n.

This recurrence relation can be written as:

Pj (λ) =

j
∏

i=1

(λ − ai) −
j−1
∑

k=1









b2
k

j
∏

i=2
i6=k+1

(λ − ai)









, j = 1, 2, . . . , n. (2.1)

Lemma 2.2. [8] Let A be an n× n matrix of the form (1.2) with all its diagonal

entries aj distinct, j = 2, 3, . . . , n, and all its entries bi positive, i = 1, 2, . . . , n − 1.

Then

i) the eigenvalues λ1, λ2, . . . , λn of A are all simple,

ii) the zeros of Pj−1 (λ) strictly separate those of Pj (λ).

Lemma 2.3. [9] Let P (λ) be a monic polynomial of degree n with all real zeroes.

If λ1 and λn are, respectively, the minimal and maximal zero of P (λ), then
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1. If µ < λ1, we have (−1)
n

P (µ) > 0,

2. If µ > λn, we have P (µ) > 0.

Lemma 2.4. [9] Let A be a matrix of the form (1.2) with bi 6= 0, i = 1, 2, . . . , n−1.

Let λ
(j)
1 and λ

(j)
j , respectively, be the minimal and the maximal eigenvalue of the

leading principal submatrix Aj, j = 1, 2, . . . , n, of A. Then

λ
(j)
1 < · · · < λ

(3)
1 < λ

(2)
1 < λ

(1)
1 < λ

(2)
2 < λ

(3)
3 < · · · < λ

(j)
j .

Lemma 2.5. [8] Let x1,x2, . . . ,xn be a set of orthonormal eigenvectors associated

to the eigenvalues λ1, λ2, . . . , λn of an n × n matrix A of the form (1.2), with all

its diagonal entries aj distinct, j = 2, 3, . . . , n, and all its entries bi positive, i =

1, 2, . . . , n − 1. Then xµj 6= 0 for µ, j = 1, 2, . . . , n, where xµj denotes the µ-th entry

of the vector xj.

Now we propose a solution to Problem 1.1.

Theorem 2.6. Given n real numbers λ(1) < λ(2) < · · · < λ(n) and a real vector

x = (x1, . . . , xn)
T
, then there exists a matrix A of the form (1.2), with all its diagonal

entries aj distinct, j = 2, 3, . . . , n, and all its entries bi positive, i = 1, 2, . . . , n−1, in

such a way that λ(j) is the maximal eigenvalue of the j×j leading principal submatrix

Aj, j = 1, 2, . . . , n, and (λ(n),x) is an eigenpair of A if and only if the following

conditions are satisfied:

x1xi > 0, i = 1, . . . , n, (2.2)

x2
1

x2
2

≥
4
(

λ(n) − λ(2)
)

λ(2) − λ(1)
, (2.3)

x2
1

x2
j

≥
4
(

λ(n) − λ(j)
) j−1

∏

i=2

(

λ(j) − ai

)

Pj−1

(

λ(j)
) , j = 3, 4, . . . , n, (2.4)

and

xk+1

xj+1
6= bk

bj

, j = 2, 3, . . . , n − 1 and k = 1, 2, . . . , j − 1. (2.5)

Proof. First, we observe that to prove the existence of a matrix A with the

required spectral properties is equivalent to show that the system of equations

Pj

(

λ(j)
)

= 0, j = 1, 2, . . . , n, (2.6)

Ax = λ(n)
x, (2.7)
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has real solutions aj and bj−1, such that aj 6= ak, j 6= k and bj−1 > 0.

From (2.6), it is clear that

a1 = λ(1).

For j = 2, 3, . . . , n, the entries aj and bj−1 can be obtained as follows: We rewrite

(2.7) as:

a1x1 + b1x2 + · · · + bn−1xn = λ(n)x1

bj−1x1 + ajxj = λ(n)xj , j = 2, 3, . . . , n











. (2.8)

From (2.2) we have xi 6= 0 for i = 1, . . . , n, and then

aj = λ(n) − bj−1
x1

xj

, j = 2, 3, . . . , n. (2.9)

By substituting (2.9) in (2.6), for j = 2, we obtain the following quadratic equation

in b1:

b2
1 − b1

x1

x2
P1

(

λ(2)
)

+
(

λ(n) − λ(2)
)

P1

(

λ(2)
)

= 0.

This equation has real solutions

b1 =
1

2

[

x1

x2
P1

(

λ(2)
)

±
√

△1

]

if

△1 =
x2

1

x2
2

[

P1

(

λ(2)
)]2

− 4
(

λ(n) − λ(2)
)

P1

(

λ(2)
)

≥ 0,

or, from Lemma 2.2, if

x2
1

x2
2

≥
4
(

λ(n) − λ(2)
)

P1

(

λ(2)
) ,

which is condition (2.3). Moreover, from Lemma 2.2 (ii) and Lemma 2.4,

4
(

λ(n) − λ(2)
)

P1

(

λ(2)
)

> 0

and

x1

x2
P1

(

λ(2)
)

>
∣

∣

∣

√

△1

∣

∣

∣ .

Then, it follows that b1 > 0.
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From Lemma 2.1, for j = 3, 4, . . . , n, it follows that

Pj

(

λ(j)
)

=
(

λ(j) − aj

)

Pj−1

(

λ(j)
)

− b2
j−1

j−1
∏

i=2

(

λ(j) − ai

)

= 0. (2.10)

By substituting (2.9) in (2.10) we obtain the quadratic equation

b2
j−1

j−1
∏

i=2

(

λ(j) − ai

)

− bj−1
x1

xj

Pj−1

(

λ(j)
)

+
(

λ(n) − λ(j)
)

Pj−1

(

λ(j)
)

= 0, (2.11)

whose real solutions are given by

bj−1 =

x1

xj

Pj−1

(

λ(j)
)

±
√

△j−1

2
j−1
∏

i=2

(

λ(j) − ai

)

if

△j−1 =
x2

1

x2
j

[

Pj−1

(

λ(j)
)]2

− 4
(

λ(n) − λ(j)
)

Pj−1

(

λ(j)
)

j−1
∏

i=2

(

λ(j) − ai

)

≥ 0,

or, from Lemma 2.2, if

x2
1

x2
j

≥
4
(

λ(n) − λ(j)
) j−1

∏

i=2

(

λ(j) − ai

)

Pj−1

(

λ(j)
) ,

which is condition (2.4). Moreover, from Lemma 2.2 and Lemma 4 in [9],

4
(

λ(n) − λ(j)
)

Pj−1

(

λ(j)
)

j−1
∏

i=2

(

λ(j) − ai

)

> 0

and

x1

xj

Pj−1

(

λ(j)
)

>
∣

∣

∣

√

△j−1

∣

∣

∣
.

Then it follows that bj−1 > 0.

Moreover, from (2.11), (2.1) and (2.9), we have

a1x1 + b1x2 + · · · + bn−1xn = a1x1 +

n−2
∑

k=1

bkxk+1 + bn−1xn
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= a1x1 +
n−2
∑

k=1

bkxk+1 +
x1Pn−1

(

λ(n)
)

n−1
∏

i=2

(

λ(n) − ai

)

= a1x1 +
n−2
∑

k=1

bkxk+1 + x1

n−1
∏

i=1

(

λ(n) − ai

)

−
n−2
∑

k=1






b2
k

n−1
∏

i=2
i6=k+1

(

λ(n) − ai

)







n−1
∏

i=2

(

λ(n) − ai

)

= a1x1 +

n−2
∑

k=1

bkxk+1 + x1

[

(

λ(n) − a1

)

− 1

x1

n−2
∑

k=1

bkxk+1

]

= λ(n)x1.

Thus, the first equation in (2.8) is satisfied.

Finally, from (2.5), we have for j = 2 and k = 1,

x2

x3
6= b1

b2
.

Then,

a3 = λ(n) − b2
x1

x3
6= λ(n) − b1

x1

x2
= a2.

For j = 3, 4, . . . , n − 1,

xk+1

xj+1
6= bk

bj

, k = 1, 2, . . . , j − 1.

Then,

aj+1 = λ(n) − bj

x1

xj+1
6= λ(n) − bk

x1

xk+1
= ak+1, k = 1, 2, . . . , j − 1,

and the entry aj+1, j = 2, 3, . . . , n−1 is distinct from each one of entries a2, a3, . . . , aj .

Hence, all diagonal entries ai, i = 2, 3, . . . , n are distinct. Thus, there exists A = An,

of the form (1.2), such that λ(j), j = 1, 2, . . . , n, is the maximal eigenvalue of the j×j

leading principal submatrix Aj of A, with ai distinct, i = 2, 3, . . . , n, and bi positive,

i = 1, 2, . . . , n − 1. Besides, as (2.7) holds, (λ(n),x) is an eigenpair of A.

To show the necessity, observe that condition (2.2) is obtained from Lemma 2.5.

The conditions (2.3) and (2.4) comes from the fact that bj > 0 for j = 1, 2, . . . , n− 1.

Finally, since ai, i = 2, 3, . . . , n, are all distinct and (2.9) holds, condition (2.5) is

satisfied.
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Remark 2.7. Theorem 2.6 also holds if we take λ(j) as the minimal eigenvalue

of Aj . In this case we must have λ(n) < · · · < λ(2) < λ(1) and condition (2.2) becomes

x1xi < 0, i = 1, . . . , n. The proof is completely similar.

Now we give sufficient conditions in order that the solution matrix A in Problem

1.1 be nonnegative.

Corollary 2.8. Given n real numbers λ(1) < λ(2) < · · · < λ(n) and a real

vector x = (x1, . . . , xn)
T
, there exists an n × n nonnegative matrix A of the form

(1.2), such that λ(j) is the maximal eigenvalue of the j×j leading principal submatrix

Aj, j = 1, 2, . . . , n and (λ(n),x) is an eigenpair of A, if the following conditions are

satisfied:

x1xi > 0, i = 1, . . . , n, (2.12)

x2
1

x2
2

≥
4
(

λ(n) − λ(2)
)

λ(2) − λ(1)
, (2.13)

x2
1

x2
j

≥
4
(

λ(n) − λ(j)
) j−1

∏

i=2

(

λ(j) − ai

)

Pj−1

(

λ(j)
) , j = 3, . . . , n, (2.14)

λ(1) ≥ 0; λ(n) ≥ bj−1
x1

xj

, j = 2, 3, . . . , n.

Proof. From the proof of Theorem 2.6, conditions (2.12), (2.13) and (2.14) guaran-

tee that the system of equations (2.6)-(2.7) has real solutions aj and positive solutions

bj−1. It remains to show the nonnegativity of the diagonal entries aj . Clearly, from

(2.14) and (2.9), a1 = λ(1) ≥ 0 and

aj = λ(n) − bj−1
x1

xj

≥ 0, j = 2, 3, . . . , n.

3. Solution to Problem 1.2. We start by recalling the following well known

result:

Lemma 3.1. Let A be an n × n symmetric tridiagonal matrix of the form (1.3).

Let Aj be the j × j leading principal submatrix of A, with characteristic polynomial

Pj (λ) , j = 1, 2, . . . , n. Then the sequence {Pj (λ)}n

j=1 satisfies

Pj (λ) = (λ − aj)Pj−1 (λ) − b2
j−1Pj−2 (λ) , j = 1, 2, . . . , n,
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where P0 (λ) = P−1 (λ) = 1 and b0 = 0.

The next result gives sufficient conditions for a solution to Problem 1.2 with

bi > 0, i = 1, 2, . . . , n − 1.

Theorem 3.2. Given n real numbers λ(1) < λ(2) < · · · < λ(n), and a real vector

x = (x1, . . . , xn)
T
, there exists an n × n matrix A of the form (1.3), with positive

entries bi, such that λ(j) is the maximal eigenvalue of the j × j leading principal

submatrix Aj of A, j = 1, 2, . . . , n, and (λ(n),x) is an eigenpair of A, if the following

conditions are satisfied:

xixi+1 > 0, i = 1, 2, . . . , n (3.1)

and

λ(n) > aj + bj−1
xj−1

xj

, j = 1, 2, . . . , n − 1. (3.2)

Proof. To show the existence of a matrix A of the form (1.3), with the desired

spectral properties, it is equivalent to show that the system of equations

Pj

(

λ(j)
)

= 0, j = 1, 2, . . . , n, (3.3)

Ax = λ(n)
x, (3.4)

has real solutions aj and bj−1 > 0, where (3.4) can be written as

a1x1 + b1x2 = λ(n)x1

b1x1 + a2x2 + b2x3 = λ(n)x2

b2x2 + a3x3 + b3x4 = λ(n)x3

...
...

bj−1xj−1 + ajxj + bjxj+1 = λ(n)xj

...
...

bn−2xn−2 + an−1xn−1 + bn−1xn = λ(n)xn−1

bn−1xn−1 + anxn = λ(n)xn































































. (3.5)

From (3.1), (3.3) and (3.5), it is clear that a1 = λ(1),

b1 =
(

λ(n) − a1

) x1

x2
> 0

and

bj =
(

λ(n) − aj

) xj

xj+1
− bj−1

xj−1

xj+1
, (3.6)

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 22, pp. 780-795, August 2011



ELA

790 H. Pickmann, J.C. Egaña, and R.L. Soto

j = 2, 3, . . . , n − 1. From (3.2),

(

λ(n) − aj

) xj+1

xj+1
> bj−1

xj−1

xj

and

(

λ(n) − aj

) xj

xj+1
> bj−1

xj−1

xj+1
.

Thus, bj > 0, j = 2, 3, . . . , n − 1. Besides, from (3.3) it follows that

Pj

(

λ(j)
)

=
(

λ(j) − aj

)

Pj−1

(

λ(j)
)

− b2
j−1Pj−2

(

λ(j)
)

= 0,

j = 2, 3, . . . , n, and

aj = λ(j) − b2
j−1

Pj−2

(

λ(j)
)

Pj−1

(

λ(j)
) , j = 2, 3, . . . , n.

Observe that from Lemma 2.3 we have Pj−1

(

λ(j)
)

> 0.

To show that the last equation in (3.5) is satisfied, we first show that

bj =
xj

xj+1

Pj

(

λ(n)
)

Pj−1

(

λ(n)
) , j = 1, 2, . . . , n − 1, (3.7)

where Pj−1

(

λ(n)
)

> 0 because of Lemma 2.3. For j = 1, we have

b1 =
x1

x2

(

λ(n) − a1

)

=
x1

x2

P1

(

λ(n)
)

P0

(

λ(n)
) .

Now, suppose that (3.7) is true for j = k:

bk =
xk

xk+1

Pk

(

λ(n)
)

Pk−1

(

λ(n)
) .
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Then, from (3.6),

bk+1 =
(

λ(n) − ak+1

) xk+1

xk+2
− bk

xk

xk+2

=
(

λ(n) − ak+1

) xk+1

xk+2
− bk

xk

xk+2





xk

xk+1

Pk

(

λ(n)
)

Pk−1

(

λ(n)
)

xk+1

xk

Pk−1

(

λ(n)
)

Pk

(

λ(n)
)





=
(

λ(n) − ak+1

) xk+1

xk+2
− bk

xk

xk+2



bk

xk+1

xk

Pk−1

(

λ(n)
)

Pk

(

λ(n)
)





=
xk+1

xk+2





(

λ(n) − ak+1

)

− b2
k

Pk−1

(

λ(n)
)

Pk

(

λ(n)
)





=
xk+1

xk+2





(

λ(n) − ak+1

)

Pk

(

λ(n)
)

− b2
kPk−1

(

λ(n)
)

Pk

(

λ(n)
)





=
xk+1

xk+2

Pk+1

(

λ(n)
)

Pk

(

λ(n)
) .

Thus, (3.7) holds and

xn−1 = bn−1

Pn−2

(

λ(n)
)

Pn−1

(

λ(n)
) .

Now,

bn−1xn−1 + anxn = bn−1xn−1 +



λ(n) − b2
n−1

Pn−2

(

λ(n)
)

Pn−1

(

λ(n)
)



 xn

= bn−1xn−1 + λ(n)xn − bn−1



bn−1

Pn−2

(

λ(n)
)

Pn−1

(

λ(n)
)



xn

= bn−1xn−1 + λ(n)xn − bn−1xn−1

= λ(n)xn,

and the last equation in (3.5) is true.

Hence, there exists A of the form (1.3), with positive entries bi, λ(j) being an

eigenvalue of the leading principal matrix Aj , j = 1, 2, . . . , n and (λ(n),x) an eigenpair

of A.
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Remark 3.3. Theorem 3.2 also holds if we take λ(j) as the minimal eigenvalue

of Aj . In this case we must have λ(n) < · · · < λ(2) < λ(1) and condition (3.1) become

xixi+1 < 0, i = 1, . . . , n. The proof is completely similar.

Now we give sufficient conditions in order that the solution matrix in Problem

1.2 (with λ(j) as the minimal eigenvalue of Aj) be nonnegative.

Corollary 3.4. Let the n real numbers λ(1) < λ(2) < · · · < λ(n), and a real

vector x = (x1, . . . , xn)
T

be given. If

xixi+1 < 0, i = 1, 2, . . . , n − 1, (3.8)

λ(n) > aj + bj−1
xj−1

xj

, j = 2, 3, . . . , n − 1, (3.9)

and

λ(1) ≥ 0 and λ(j) ≥ b2
j−1

Pj−2

(

λ(j)
)

Pj−1

(

λ(j)
) , j = 1, 2, . . . , n, (3.10)

then there exists an n×n nonnegative matrix A of the form (1.3), such that λ(j) is the

maximal eigenvalue of the j × j leading principal submatrix Aj of A, j = 1, 2, . . . , n

and (λ(n),x) is an eigenpair of A.

Proof. From Theorem 3.2, conditions (3.8) and (3.9) guarantee the existence of A

of the form (1.3) with positive entries bi, λ(j) being the maximal eigenvalue of Aj , and

(λ(n),x) an eigenpair of A. It only remains to show the nonnegativity of the diagonal

entries aj , j = 1, 2, . . . , n. From (3.10), it follows that a1 = λ(1) ≥ 0 and

aj = λ(j) − b2
j−1

Pj−2

(

λ(j)
)

Pj−1

(

λ(j)
) ≥ 0, j = 2, 3, . . . , n.

4. Examples.

Example 4.1. The real numbers

λ(1) λ(2) λ(3) λ(4) λ(5) λ(6)

3.7542 4.4013 9.7618 10.2563 11.5778 11.5789

and the real vector

x =
[

−0.6942 −0.0742 −0.5200 −0.2501 −0.4237 −0.0123
]T
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satisfy conditions of Corollary 2.8. Then we may construct the nonnegative symmetric

arrow matrix

A =



















3.7542 0.9006 6.1056 1.9487 4.0160 0.1232

0.9006 3.1479

6.1056 3.4273

1.9487 6.1696

4.0160 4.9990

0.1232 4.6291



















,

where the spectra of the matrices Aj are σ (A1) =
{

3.7542
}

,

σ (A2) =
{

2.5008 4.4013
}

,

σ (A3) =
{

−2.5863 3.1539 9.7618
}

,

σ (A4) =
{

−2.7960 3.1538 5.8848 10.2563
}

,

σ (A5) =
{

−3.7669 3.1535 4.5001 6.0335 11.5778
}

,

σ (A6) =
{

−3.7678 3.1535 4.4989 4.6301 6.0335 11.5789
}

,

and Ax = (11.5789)x.

Example 4.2. Now we consider the following spectral information:

λ(1) λ(2) λ(3) λ(4) λ(5) λ(6)

3.7542 2.5008 −2.5863 −2.7960 −3.7669 −3.7678

and

x =
[

−0.7097 0.0924 0.6022 0.1392 0.3251 0.0104
]T

.

Then, we obtain

A =



















3.7542 0.9006 6.1056 1.9487 4.0160 0.1232

0.9006 3.1479

6.1056 3.4273

1.9487 6.1696

4.0160 4.9990

0.1232 4.6291



















,

where

σ (A1) =
{

3.7542
}

,

σ (A2) =
{

2.5008 4.4013
}

,
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σ (A3) =
{

−2.5863 3.1539 9.7618
}

,

σ (A4) =
{

−2.7960 3.1538 5.8848 10.2563
}

,

σ (A5) =
{

−3.7669 3.1535 4.5001 6.0335 11.5778
}

,

σ (A6) =
{

−3.7678 3.1535 4.4989 4.6301 6.0335 11.5789
}

,

and Ax = (−3.7678)x.

Example 4.3. Given

λ(1) λ(2) λ(3) λ(4) λ(5) λ(6) λ(7)

0.6829 3.4716 4.4172 4.4194 4.4195 4.4198 4.4238

and the vector

x =
[

0.2275 0.5257 0.4566 0.0532 0.1407 0.1829 0.6383
]T

,

we construct the nonnegative symmetric tridiagonal matrix

A =























0.6829 1.6186

1.6186 2.5321 1.3716

1.3716 2.8277 0.1452

0.1452 0.6665 0.9498

0.9498 0.3571 2.8518

2.8518 1.0901 0.3266

0.3266 4.3302























,

with the required spectral properties, where

σ (A1) =
{

0.6829
}

,

σ (A2) =
{

−0.2566 3.4716
}

,

σ (A3) =
{

−0.4208 2.0463 4.4172
}

,

σ (A4) =
{

−0.4219 0.6569 2.0548 4.4194
}

,

σ (A5) =
{

−0.4642 −0.4101 1.4613 2.0599 4.4195
}

,

σ (A6) =
{

−2.3258 −0.4217 0.6992 2.0540 3.7309 4.4198
}

,

σ (A7) =
{

−2.3320 −0.4217 0.6964 2.0540 3.6512 4.4150 4.4238
}

,

and Ax = (4.4238)x.
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