LINEAR MAPS PRESERVING THE IDEMPOTENCY OF JORDAN PRODUCTS OF OPERATORS*

LI FANG ${ }^{\dagger}$

Abstract

Let $\mathcal{B}(\mathcal{X})$ be the algebra of all bounded linear operators on a complex Banach space \mathcal{X} and let $\mathcal{I}^{*}(\mathcal{X})$ be the set of non-zero idempotent operators in $\mathcal{B}(\mathcal{X})$. A surjective map $\varphi: \mathcal{B}(\mathcal{X}) \rightarrow \mathcal{B}(\mathcal{X})$ preserves nonzero idempotency of the Jordan products of two operators if for every pair $A, B \in \mathcal{B}(\mathcal{X})$, the relation $A B+B A \in \mathcal{I}^{*}(\mathcal{X})$ implies $\varphi(A) \varphi(B)+\varphi(B) \varphi(A) \in \mathcal{I}^{*}(\mathcal{X})$. In this paper, the structures of linear surjective maps on $\mathcal{B}(\mathcal{X})$ preserving the nonzero idempotency of Jordan products of two operators are given.

Key words. Banach space, Preserver, Idempotent, Jordan product.

AMS subject classifications. 47B49.

1. Introduction. This paper is a continuation of our recent work on preserver problems concerning certain properties of products or triple Jordan products of operators [3, 4, 13], and the related works in [2] and [7].

Let \mathcal{X} be a complex Banach space, and let $\mathcal{B}(\mathcal{X})$ be the algebra of all bounded linear operators on \mathcal{X}. The dual of \mathcal{X} is denoted by \mathcal{X}^{\prime} and the adjoint of $T \in \mathcal{B}(\mathcal{X})$ by T^{\prime}. Let $\mathcal{I}^{*}(\mathcal{X}), \mathcal{I}_{1}(\mathcal{X})$ and $\mathcal{N}_{1}(\mathcal{X})$ be the set of nonzero idempotent operators, the set of rank-one idempotent operators and the set of rank-one nilpotent operators in $\mathcal{B}(\mathcal{X})$, respectively. If \mathcal{X} has dimension n with $2 \leq n<\infty$, then $\mathcal{B}(\mathcal{X})$ is identified with the algebra \mathcal{M}_{n} of $n \times n$ complex matrices and $\mathcal{I}_{n}(\mathcal{X})$ refers to the set of idempotent matrices in \mathcal{M}_{n}. For an operator $T \in \mathcal{B}(\mathcal{X})$, the range, the kernel and the rank of T are denoted by $R(T), N(T)$ and rank T, respectively. Let $\mathcal{F}(\mathcal{X})$ and $\mathcal{F}_{1}(\mathcal{X})$ denote the set of finite rank operators and the set of rank-one operators in $\mathcal{B}(\mathcal{X})$, respectively. For a non-zero vector $x \in \mathcal{X}$ and a non-zero $f \in \mathcal{X}^{\prime}$, we denote by $x \otimes f$ the rank one operator defined by $(x \otimes f) y=f(y) x, y \in \mathcal{X}$. Note that every bounded linear rank one operator on \mathcal{X} can be written in this form. The rank-one operator $x \otimes f$ is an idempotent operator if and only if $f(x)=1$, and $x \otimes f$ is a nilpotent operator if and only if $f(x)=0$. Given $P, Q \in \mathcal{I}(\mathcal{X}), P \leq Q$ if $P Q=Q P=P$ and $P<Q$ if $P \leq Q$ with $P \neq Q$.

[^0]In this paper, we are interested in determining the structure of linear surjective maps $\varphi: \mathcal{B}(\mathcal{X}) \rightarrow \mathcal{B}(\mathcal{X})$ for every pair $A, B \in \mathcal{B}(\mathcal{X})$ having the property that

$$
A B+B A \in \mathcal{I}^{*}(\mathcal{X}) \Rightarrow \varphi(A) \varphi(B)+\varphi(B) \varphi(A) \in \mathcal{I}^{*}(\mathcal{X})
$$

We will derive the following two theorems regarding the structure.
ThEOREM 1.1. Let φ be a linear map on \mathcal{M}_{n} with $n \geq 3$. Then φ preserves the nonzero idempotency of Jordan products of two operators if and only if there exist an invertible matrix $A \in \mathcal{M}_{n}$ and a constant $\lambda \in\{1,-1\}$ such that one of the following holds.
(1) $\varphi(X)=\lambda A X A^{-1}$ for all $X \in \mathcal{M}_{n}$;
(2) $\varphi(X)=\lambda A X^{t} A^{-1}$ for all $X \in \mathcal{M}_{n}$, where X^{t} is the transpose of X.

Theorem 1.2. Let \mathcal{X} be a complex infinite dimensional Banach space and let φ be a linear surjective map on $\mathcal{B}(\mathcal{X})$. Then φ preserves the nonzero idempotency of Jordan products of two operators if and only if there exist a bounded invertible linear or conjugate-linear operator $A: \mathcal{X} \rightarrow \mathcal{X}$ and a constant $\lambda \in\{1,-1\}$ such that

$$
\varphi(X)=\lambda A X A^{-1} \text { for all } X \in \mathcal{B}(\mathcal{X})
$$

or, only if \mathcal{X} is reflexive, there exist a bounded invertible linear or conjugate-linear operator $A: \mathcal{X}^{\prime} \rightarrow \mathcal{X}$ and a constant $\lambda \in\{1,-1\}$ such that

$$
\varphi(X)=\lambda A X^{\prime} A^{-1} \text { for all } X \in \mathcal{B}(\mathcal{X})
$$

2. Preliminary results. Assume that \mathcal{X} is a complex Banach space with dimension at least 3. In this section, we introduce some elementary results that will be used in the proofs of main theorems.

Definition 2.1. [11] Let \mathcal{U} and \mathcal{V} be vector spaces over a filed \mathbb{F}. Linear operators $T_{1}, \ldots, T_{n}: \mathcal{U} \rightarrow \mathcal{V}$ are locally linearly dependent if $T_{1} u, \ldots, T_{n} u$ are linearly dependent for every $u \in \mathcal{U}$.

Lemma 2.2. [11] Assume that the operators A, B, I are locally linearly dependent. Then there exist scalars λ and μ such that $(A-\lambda)(B-\mu)=0$ and either $(A-\lambda)^{2}=0$ or $(B-\mu)^{2}=0$.

Lemma 2.3. Let $P, Q \in \mathcal{B}(\mathcal{X})$ be two idempotent operators. Then $z P+(1-z) Q \in$ $\mathcal{I}^{*}(\mathcal{X})$ for any $z \in \mathbf{C} \backslash\{0,1\}$ if and only if $P+Q=P Q+Q P$.

Proof. We obtain the desired result by direct calculation.

Lemma 2.4. Let $A \in \mathcal{B}(\mathcal{X})$ and $x \otimes f \in \mathcal{B}(\mathcal{X})$ be with $f(x) \neq 0$. Then $A x \otimes f+$ $x \otimes f A \in \mathcal{I}^{*}(\mathcal{X})$ if and only if $A x=\frac{1}{2 f(x)} x$ or $A^{\prime} f=\frac{1}{2 f(x)} f$.

Proof. Note that $A x \otimes f+x \otimes f A \in \mathcal{I}^{*}(\mathcal{X})$ implies that $A x \otimes\left[f(A x) f+f(x) A^{\prime} f-\right.$ $f]+x \otimes\left[f\left(A^{2} x\right) f+f(A x) A^{\prime} f-A^{\prime} f\right]=0$. If $A x$ and x as well as $A^{\prime} f$ and f are linearly independent, then $f(A x)=1, f(x)=0$ and $f\left(A^{2} x\right)=0$. But this contradicts the hypothesis $f(x) \neq 0$. Hence, either $A x$ and x are linearly dependent or $A^{\prime} f$ and f are linearly dependent. Then we can compute that $A x=\frac{1}{2 f(x)} x$ or $A^{\prime} f=\frac{1}{2 f(x)} f$. \square

The idea of the following lemma comes from [10].
Lemma 2.5. Let $A \in \mathcal{B}(\mathcal{X})$ be any non-scalar operator and let α be any fixed complex number. Then there exists an idempotent operator $P \in \mathcal{B}(\mathcal{X})$ of rank one such that α is an eigenvalue of $A+2 P$.

Proof. As A is a non-scalar operator, we can find $x \in \mathcal{X}$ such that x and $A x$ are linearly independent. Define $P \in \mathcal{B}(\mathcal{X})$ by

$$
P x=\frac{\alpha}{2} x-\frac{1}{2} A x, \quad P A x=\alpha\left(\frac{\alpha}{2}-1\right) x-\left(1-\frac{\alpha}{2}\right) A x \quad \text { and } \quad P z=0
$$

for every $z \in \mathcal{X} \ominus[x, A x]$. Clearly, P is an idempotent operator of rank one and $(A+2 P) x=\alpha x$.
3. Main results. Assume that \mathcal{X} is a complex Banach space with dimension at least 3 and we consider a linear surjective map $\varphi: \mathcal{B}(\mathcal{X}) \rightarrow \mathcal{B}(\mathcal{X})$ preserving the nonzero idempotency of Jordan products of operators, that is, $\varphi(A) \varphi(B)+$ $\varphi(B) \varphi(A) \in \mathcal{I}^{*}(\mathcal{X})$ whenever $A B+B A \in \mathcal{I}^{*}(\mathcal{X})$ for every pair $A, B \in \mathcal{B}(\mathcal{X})$.

Lemma 3.1. Let φ be as above. Then φ is injective.
Proof. Assume that $\varphi(A)=0$ for some non-zero operator $A \in \mathcal{B}(\mathcal{X})$. Suppose that there exists an $x \in \mathcal{X}$ such that $x, A x$ and $A^{2} x$ are linearly independent. Then there is an $f \in \mathcal{X}^{\prime}$ such that $f(x)=f\left(A^{2} x\right)=0$ and $f(A x)=1$. It follows that $A x \otimes f+x \otimes f A \in \mathcal{I}^{*}(\mathcal{X})$. But, $\varphi(A) \varphi(x \otimes f)+\varphi(x \otimes f) \varphi(A)=0 \notin \mathcal{I}^{*}(\mathcal{X})$. This contradiction implies that $x, A x$ and $A^{2} x$ are linearly dependent for every $x \in \mathcal{X}$. By Lemma 2.2, there exist scalars λ and μ such that $(A-\lambda)\left(A^{2}-\mu\right)=0$ and either $(A-\lambda)^{2}=0$ or $\left(A^{2}-\mu\right)^{2}=0$.

If $(A-\lambda)\left(A^{2}-\mu\right)=0$ and $(A-\lambda)^{2}=0$, then $\left(\mu-\lambda^{2}\right) A=\lambda\left(\mu-\lambda^{2}\right)$. When $\mu-\lambda^{2} \neq 0$, we get that $A=\lambda I$. For any pair $x_{1} \in \mathcal{X}$ and $f_{1} \in \mathcal{X}^{\prime}$ with $f_{1}\left(x_{1}\right)=\frac{1}{2 \lambda}$, we have $A x_{1} \otimes f_{1}+x_{1} \otimes f_{1} A \in \mathcal{I}^{*}(\mathcal{X})$ and then $\varphi(A) \varphi\left(x_{1} \otimes f_{1}\right)+\varphi\left(x_{1} \otimes f_{1}\right) \varphi(A) \in \mathcal{I}^{*}(\mathcal{X})$. However, this contradicts $\varphi(A) \varphi\left(x_{1} \otimes f_{1}\right)+\varphi\left(x_{1} \otimes f_{1}\right) \varphi(A)=0$. When $\mu-\lambda^{2}=0$ and $\lambda \neq 0$, we know that $A-\lambda I$ is a nilpotent operator and there is a non-zero vector $x_{2} \in \mathcal{X}$ such that $A x_{2}=\lambda x_{2}$. Selecting $f_{2} \in \mathcal{X}^{\prime}$ with $f_{2}\left(x_{2}\right)=\frac{1}{2 \lambda}$, we get $A x_{2} \otimes f_{2}+x_{2} \otimes f_{2} A \in \mathcal{I}^{*}(\mathcal{X})$, which implies $\varphi(A) \varphi\left(x_{2} \otimes f_{2}\right)+\varphi\left(x_{2} \otimes f_{2}\right) \varphi(A) \in \mathcal{I}^{*}(\mathcal{X})$.

But $\varphi(A) \varphi\left(x_{2} \otimes f_{2}\right)+\varphi\left(x_{2} \otimes f_{2}\right) \varphi(A)=0$ and we get a contradiction. When $\mu-\lambda^{2}=0$ and $\lambda=0$, we know that $A^{2}=0$ and there exists a non-zero vector $x_{3} \in \mathcal{X}$ such that x_{3} and $A x_{3}$ are linearly independent. Then there is an $f_{3} \in \mathcal{X}^{\prime}$ with $f_{3}\left(x_{3}\right)=0$ and $f_{3}\left(A x_{3}\right)=1$. Hence, $A x_{3} \otimes f_{3}+x_{3} \otimes f_{3} A \in \mathcal{I}^{*}(\mathcal{X})$ and so $\varphi(A) \varphi\left(x_{3} \otimes f_{3}\right)+\varphi\left(x_{3} \otimes\right.$ $\left.f_{3}\right) \varphi(A) \in \mathcal{I}^{*}(\mathcal{X})$. However, this contradicts $\varphi(A) \varphi\left(x_{3} \otimes f_{3}\right)+\varphi\left(x_{3} \otimes f_{3}\right) \varphi(A)=0$.

If $(A-\lambda)\left(A^{2}-\mu\right)=0$ and $\left(A^{2}-\mu\right)^{2}=0$, then $\left(\mu-\lambda^{2}\right) A^{2}=\lambda\left(\mu-\lambda^{2}\right)$. When $\mu-\lambda^{2} \neq 0$, we know that $A^{2}=\mu I$. Suppose $\mu \neq 0$. First, we assume that A is a non-scalar operator. Then there is an $x_{4} \in \mathcal{X}$ such that x_{4} and $A x_{4}$ are linearly independent. We can find $f_{4} \in \mathcal{X}^{\prime}$ with $f_{4}\left(x_{4}\right)=\frac{1}{2 \mu}$ and $f_{4}\left(A x_{4}\right)=0$. It follows $A\left(A x_{4}\right) \otimes f_{4}+\left(A x_{4}\right) \otimes f_{4} A \in \mathcal{I}^{*}(\mathcal{X})$, which implies $\varphi(A) \varphi\left(A x_{4} \otimes f_{4}\right)+\varphi\left(A x_{4} \otimes\right.$ $\left.f_{4}\right) \varphi(A)=0 \in \mathcal{I}^{*}(\mathcal{X})$. This gives a contradiction. Second, we assume $A=\beta I$ for some non-zero number β. For any pair $x_{5} \in \mathcal{X}$ and $f_{5} \in \mathcal{X}^{\prime}$ with $f_{5}\left(x_{5}\right)=\frac{1}{2 \beta}$, we have $A x_{5} \otimes f_{5}+x_{5} \otimes f_{5} A \in \mathcal{I}^{*}(\mathcal{X})$ and so $\varphi(A) \varphi\left(x_{5} \otimes f_{5}\right)+\varphi\left(x_{5} \otimes f_{5}\right) \varphi(A)=0 \in \mathcal{I}^{*}(\mathcal{X})$. This also gives a contradiction. Hence, $\mu=0$ and then $A^{2}=0$. Thus, there exists a nonzero vector $x_{6} \in \mathcal{X}$ such that x_{6} and $A x_{6}$ are linearly independent. So, there is $f_{6} \in \mathcal{X}^{\prime}$ with $f_{6}\left(x_{6}\right)=0$ and $f_{6}\left(A x_{6}\right)=0$. Obviously, $A x_{6} \otimes f_{6}+x_{6} \otimes f_{6} A \in \mathcal{I}^{*}(\mathcal{X})$ and then $\varphi(A) \varphi\left(x_{6} \otimes f_{6}\right)+\varphi\left(x_{6} \otimes f_{6}\right) \varphi(A) \in \mathcal{I}^{*}(\mathcal{X})$. However, $\varphi(A) \varphi\left(x_{6} \otimes f_{6}\right)+\varphi\left(x_{6} \otimes f_{6}\right) \varphi(A)=$ 0 and this is also a contradiction. When $\mu-\lambda^{2}=0$, we know that $A^{3}-\lambda A^{2}-\lambda^{2} A+$ $\lambda^{3}=0$. Suppose $\lambda \neq 0$, we get $\frac{-1}{2 \lambda^{3}}\left(\left(A^{2}-\lambda A-\lambda^{2} I\right) A+A\left(A^{2}-\lambda A-\lambda^{2} I\right)\right)=I \in \mathcal{I}^{*}(\mathcal{X})$ implies $\frac{-1}{2 \lambda^{3}}\left(\varphi\left(A^{2}-\lambda A-\lambda^{2} I\right) \varphi(A)+\varphi(A) \varphi\left(A^{2}-\lambda A-\lambda^{2} I\right)\right)=0 \in \mathcal{I}^{*}(\mathcal{X})$. This is a contradiction. Suppose $\lambda=0$, we know $A^{3}=0$. If $A^{2} \neq 0$, then there is an $x_{7} \in \mathcal{X}$ such that $A x_{7}$ and $A^{2} x_{7}$ are linearly independent. So, there exists an $f_{7} \in \mathcal{X}^{\prime}$ such that $f_{7}\left(A x_{7}\right)=0$ and $f_{7}\left(A^{2} x_{7}\right)=1$. Hence, $A A x_{7} \otimes f_{7}+A x_{7} \otimes f_{7} A \in \mathcal{I}^{*}(\mathcal{X})$ and then $\varphi(A) \varphi\left(A x_{7} \otimes f_{7}\right)+\varphi\left(x_{7} \otimes f_{7}\right) \varphi(A)=0 \in \mathcal{I}^{*}(\mathcal{X})$. This is also a contradiction. If $A^{2}=0$, then we can derive another contradiction by using a routine argument demonstrated above.

Thus, $A=0$. Therefore, φ is injective.
Lemma 3.2. Let $N \in \mathcal{B}(\mathcal{X})$ be of finite rank and $N^{2}=0$. Then $\varphi(N)$ is a nilpotent operator.

Proof. Note that $R(N)$ is finite dimensional. It is known that finite dimensional subspaces of a Banach space are complemented, and so $\mathcal{X}=R(N)+\mathcal{M}$ for some closed subspace \mathcal{M} of \mathcal{X} where \mathcal{M} is a complementary subspace of $R(N)$. Then N has the following operator matrix

$$
N=\left(\begin{array}{cc}
0 & N_{1} \\
0 & 0
\end{array}\right)
$$

Putting $P=\left(\begin{array}{ll}I & 0 \\ 0 & 0\end{array}\right)$, we have that $\left(\frac{1}{2}(P+z N)\right)(P+z N)+(P+z N)\left(\frac{1}{2}(P+z N)\right)=$ $P+z N \in \mathcal{I}^{*}(\mathcal{X})$ for all $z \in \mathbb{C}$. Thus, $\left(\frac{1}{2} \varphi(P+z N)\right) \varphi(P+z N)+\varphi(P+z N)\left(\frac{1}{2} \varphi(P+\right.$
$z N))=(\varphi(P)+z \varphi(N))^{2} \in \mathcal{I}^{*}(\mathcal{X})$ for all $z \in \mathbb{C}$. Hence, $(\varphi(P)+z \varphi(N))^{2}=(\varphi(P)+$ $z \varphi(N))^{4}$ for all $z \in \mathbb{C}$. That is,

$$
(\varphi(P))^{2}+z(\varphi(P) \varphi(N)+\varphi(N) \varphi(P))+z^{2}(\varphi(N))^{2}=(\varphi(P))^{4}+\cdots+z^{4}(\varphi(N))^{4}
$$

for all $z \in \mathbb{C}$. So, $(\varphi(N))^{4}=0$. \square
Lemma 3.3. If φ is surjective, then $\varphi(I)=\lambda I$ for some constant $\lambda \in\{1,-1\}$.
Proof. Since φ is a surjective map, there exists a non-zero operator $A \in \mathcal{B}(\mathcal{X})$ such that $\varphi(A)=I$. Assume that A is a non-scalar operator. If there exists an $x \in \mathcal{X}$ such that $x, A x$ and $A^{2} x$ are linearly independent, then there is an $f \in \mathcal{X}^{\prime}$ such that $f(x)=f\left(A^{2} x\right)=0$ and $f(A x)=1$. So, $A x \otimes f+x \otimes f A \in \mathcal{I}^{*}(\mathcal{X})$, which implies that $\varphi(A) \varphi(x \otimes f)+\varphi(x \otimes f) \varphi(A)=2 \varphi(x \otimes f) \in \mathcal{I}^{*}(\mathcal{X})$. But $2 \varphi(x \otimes f)$ is a nilpotent operator by Lemma 3.2 and this contradiction implies that $x, A x$ and $A^{2} x$ are linearly dependent for every $x \in \mathcal{X}$. Then there exist scalars λ and μ such that $(A-\lambda)\left(A^{2}-\mu\right)=0$ and either $(A-\lambda)^{2}=0$ or $\left(A^{2}-\mu\right)^{2}=0$ by Lemma 2.2.

If $(A-\lambda)\left(A^{2}-\mu\right)=0$ and $(A-\lambda)^{2}=0$, then $\left(\mu-\lambda^{2}\right) A=\lambda\left(\mu-\lambda^{2}\right)$. Since A is a non-scalar operator, we know that $\mu=\lambda^{2}$. When $\lambda=0$, we get that $A^{2}=$ 0 and there exist $x_{1} \in \mathcal{X}$ and $f_{1} \in \mathcal{X}^{\prime}$ such that $f_{1}\left(x_{1}\right)=0$ and $f_{1}\left(A x_{1}\right)=1$. So, $A\left(x_{1} \otimes f_{1}\right)+\left(x_{1} \otimes f_{1}\right) A \in \mathcal{I}^{*}(\mathcal{X})$ implies $\varphi(A) \varphi\left(x_{1} \otimes f_{1}\right)+\varphi\left(x_{1} \otimes f_{1}\right) \varphi(A)=$ $2 \varphi\left(x_{1} \otimes f_{1}\right) \in \mathcal{I}^{*}(\mathcal{X})$. However, $2 \varphi\left(x_{1} \otimes f_{1}\right)$ is a nilpotent operator by Lemma 3.2. This contradiction implies that $\lambda \neq 0$ and $A-\lambda$ is a nilpotent operator. Then there is a non-zero vector $x_{2} \in \mathcal{X}$ such that $(A-\lambda) x_{2}=0$. For every $f_{2} \in \mathcal{X}^{\prime}$ with $f_{2}\left(x_{2}\right)=\frac{1}{2 \lambda}$, we know that $A x_{2} \otimes f_{2}+x_{2} \otimes f_{2} A \in \mathcal{I}^{*}(\mathcal{X})$, which implies that $\varphi(A) \varphi\left(x_{2} \otimes f_{2}\right)+\varphi\left(x_{2} \otimes f_{2}\right) \varphi(A)=2 \varphi\left(x_{2} \otimes f_{2}\right) \in \mathcal{I}^{*}(\mathcal{X})$. Moreover, $2 \lambda \varphi\left(x_{2} \otimes\right.$ $\left.f_{2}\right) \in \mathcal{I}^{*}(\mathcal{X})$ follows from $2 \lambda x_{2} \otimes f_{2} \in \mathcal{I}^{*}(\mathcal{X})$. Hence, $\lambda^{2}=1$. When $\lambda=1$, we know that $A^{2}-2 A+I=0$ and so $(2 I-A) \frac{A}{2}+\frac{A}{2}(2 I-A)=I \in \mathcal{I}^{*}(\mathcal{X})$. Then, $\varphi(2 I-A) \varphi\left(\frac{A}{2}\right)+\varphi\left(\frac{A}{2}\right) \varphi(2 I-A)=2 \varphi(I)-I \in \mathcal{I}^{*}(\mathcal{X})$. Setting $2 \varphi(I)-I=R \in \mathcal{I}^{*}(\mathcal{X})$, we get that $\varphi(I)=\frac{I+R}{2}$. However, $I \frac{I}{2}+\frac{I}{2} I=I \in \mathcal{I}^{*}(\mathcal{X})$ implies $\varphi(I)^{2} \in \mathcal{I}^{*}(\mathcal{X})$. Thus, $\varphi(I)^{2}=\frac{I+3 R}{4}$ and so $R=I$. It follows that $\varphi(I)=I=\varphi(A)$ and then $A=I$ by the injection of φ. This is a contradiction. Similarly we can also obtain a contradiction when $\lambda=-1$.

If $(A-\lambda)\left(A^{2}-\mu\right)=0$ and $\left(A^{2}-\mu\right)^{2}=0$, then $\left(\mu-\lambda^{2}\right) A^{2}=\lambda\left(\mu-\lambda^{2}\right)$. When $\mu-\lambda^{2} \neq 0$, we get $A^{2}=\lambda I$. When $\lambda \neq 0$, there is a vector $x_{4} \in \mathcal{X}$ such that x_{4} and $A x_{4}$ are linearly independent. Selecting $f_{4} \in \mathcal{X}^{\prime}$ with $f_{4}\left(x_{4}\right)=\frac{1}{\mu}$ and $f_{4}\left(A x_{4}\right)=0$, we know that $A A x_{4} \otimes f_{4}+A x_{4} \otimes f_{4} A \in \mathcal{I}^{*}(\mathcal{X})$ and so $2 \varphi\left(A x_{4} \otimes f_{4}\right) \in \mathcal{I}^{*}(\mathcal{X})$. However, $\varphi\left(A x_{4} \otimes f_{4}\right)$ is a nilpotent operator. This contradiction shows that $\mu=0$ and then $A^{2}=0$. Since x_{4} and $A x_{4}$ are linearly independent, there is an $f_{5} \in \mathcal{X}^{\prime}$ with $f_{5}\left(x_{4}\right)=0$ and $f_{5}\left(A x_{4}\right)=1$. So, $A x_{4} \otimes f_{5}+x_{4} \otimes f_{5} A \in \mathcal{I}^{*}(\mathcal{X})$ and then $2 \varphi\left(x_{4} \otimes f_{5}\right) \in \mathcal{I}^{*}(\mathcal{X})$. But this contradicts with that $\varphi\left(x_{4} \otimes f_{5}\right)$ is a nilpotent operator. When $\mu-\lambda^{2}=0$ and $\lambda=0$, we know $A^{3}=0$. For the case that $A^{2}=0$, we also get
a contradiction using a similar argument above. For the case that $A^{2} \neq 0$, there is an $x_{6} \in \mathcal{X}$ such that $A x_{6}$ and $A^{2} x_{6}$ are linearly independent. Selecting $f_{6} \in \mathcal{X}^{\prime}$ such that $f_{6}\left(A x_{6}\right)=0$ and $f_{6}\left(A^{2} x_{6}\right)=1$, we know $A A x_{6} \otimes f_{6}+A x_{6} \otimes f_{6} A \in \mathcal{I}^{*}(\mathcal{X})$ and then $2 \varphi\left(A x_{6} \otimes f_{6}\right) \in \mathcal{I}^{*}(\mathcal{X})$. This contradicts the fact that $\varphi\left(A x_{6} \otimes f_{6}\right)$ is a nilpotent operator. So, $\lambda \neq 0$ and $A^{2}-\lambda^{2}$ is a nilpotent operator. Hence, there is an $x_{7} \in \mathcal{X}$ such that $A^{2} x_{7}=\lambda^{2} x_{7}$. If x_{7} and $A x_{7}$ are linearly independent, then there is an $f_{7} \in \mathcal{X}^{\prime}$ such that $f_{7}\left(x_{7}\right)=\frac{1}{\lambda^{2}}$ and $f_{7}\left(A x_{7}\right)=0$. It follows that $A A x_{7} \otimes f_{7}+A x_{7} \otimes f_{7} A \in \mathcal{I}^{*}(\mathcal{X})$ which gives that $2 \varphi\left(A x_{7} \otimes f_{7}\right) \in \mathcal{I}^{*}(\mathcal{X})$. While $\varphi\left(A x_{7} \otimes f_{7}\right)$ is a nilpotent operator, we get a contradiction. If $A x_{7}=\alpha x_{7}$ for some $\alpha \in \mathbb{C}$, then $\alpha^{2}=\lambda^{2}$. Selecting $f_{8} \in \mathcal{X}^{\prime}$ such that $f_{8}\left(x_{7}\right)=\frac{1}{2 \lambda^{2}}$, we get that $f_{8}\left(A x_{7}\right)=\frac{\alpha}{2 \lambda^{2}}$. By direct calculation, we know that $\left(2 \lambda^{2}\left(A x_{7} \otimes f_{8}\right)\right)\left(A x_{7} \otimes f_{8}\right)+\left(A x_{7} \otimes f_{8}\right)\left(2 \lambda^{2}\left(A x_{7} \otimes f_{8}\right)\right) \in \mathcal{I}^{*}(\mathcal{X})$ and so $4 \lambda^{2} \varphi\left(A x_{7} \otimes f_{8}\right)^{2} \in \mathcal{I}^{*}(\mathcal{X})$. Moreover, $A A x_{7} \otimes f_{8}+A x_{7} \otimes f_{8} A \in \mathcal{I}^{*}(\mathcal{X})$ implies that $2 \varphi\left(A x_{7} \otimes f_{8}\right) \in \mathcal{I}^{*}(\mathcal{X})$. It follows that $\lambda^{2}=1$. Since $I=2 A^{2}-A^{4}=$ $\left(2 I-A^{2}\right)\left(\frac{A^{2}}{2}\right)+\left(\frac{A^{2}}{2}\right)\left(2 I-A^{2}\right)=\left(2 A-A^{3}\right)\left(\frac{A}{2}\right)+\left(\frac{A}{2}\right)\left(2 A-A^{3}\right)$, we have that $\varphi\left(2 I-A^{2}\right) \varphi\left(\frac{A^{2}}{2}\right)+\varphi\left(\frac{A^{2}}{2}\right) \varphi\left(2 I-A^{2}\right) \in \mathcal{I}^{*}(\mathcal{X})$ and $2 I-\varphi\left(A^{3}\right) \in \mathcal{I}^{*}(\mathcal{X})$. On the one hand, $\varphi\left(2 I-A^{2}\right) \varphi\left(\frac{A^{2}}{2}\right)+\varphi\left(\frac{A^{2}}{2}\right) \varphi\left(2 I-A^{2}\right)=\varphi(I) \varphi\left(A^{2}\right)+\varphi\left(A^{2}\right) \varphi(I)-\varphi\left(A^{2}\right)^{2} \in$ $\mathcal{I}^{*}(\mathcal{X})$. On the other hand, $A^{3}-A-\lambda A^{2}+\lambda=0$ implies $I=\frac{1}{\lambda} A+A^{2}-\frac{1}{\lambda} A^{3}=$ $\left(\frac{1}{\lambda} I+A-\frac{1}{\lambda} A^{2}\right)\left(\frac{A}{2}\right)+\left(\frac{A}{2}\right)\left(\frac{1}{\lambda} I+A-\frac{1}{\lambda} A^{2}\right)$. Hence, $\frac{1}{\lambda}\left[\varphi\left(A^{2}\right)-\varphi(I)\right]=I-E$ for some $E \in \mathcal{I}^{*}(\mathcal{X})$. It gives $\varphi\left(A^{2}\right)^{2}-\left[\varphi(I) \varphi\left(A^{2}\right)+\varphi\left(A^{2}\right) \varphi(I)\right]+\varphi(I)^{2}=I-E$. Furthermore, $\varphi\left(A^{3}\right)-I=\lambda\left[\varphi(I)-\varphi\left(A^{2}\right)\right]$ implies $\left(\varphi\left(A^{3}\right)-I\right)^{2}=\varphi(I)^{2}-\left[\varphi(I) \varphi\left(A^{2}\right)+\varphi\left(A^{2}\right) \varphi(I)\right]+$ $\varphi\left(A^{2}\right)^{2}$. It follows $\varphi\left(A^{3}\right)^{2}-2 \varphi\left(A^{3}\right)+I=I-E$ and $\varphi\left(A^{3}\right)^{2}-2 \varphi\left(A^{3}\right)=-E$. However, $\left(2 I-\varphi\left(A^{3}\right)\right)^{2}=4 I-4 \varphi\left(A^{3}\right)+\varphi\left(A^{3}\right)^{2}=2 I-\varphi\left(A^{3}\right)$ implies $\varphi\left(A^{3}\right)=2 I-E$. So, $\frac{1}{\lambda}\left[\varphi\left(A^{2}\right)-\varphi(I)\right]=I-E=I+\varphi\left(A^{3}\right)$ and then $\varphi\left(\lambda A^{3}+\lambda A-A^{2}+I\right)=0$. Using the fact that φ is a bijection, we get $\lambda A^{3}+\lambda A-A^{2}+I=0$. Noting that $A^{3}-A-\lambda A^{2}+\lambda=0$, we know $A=0$ and this is a contradiction.

Therefore, $A=\mu I$ for some non-zero complex number μ. We thus have that $\varphi(I)=\lambda I$ for some constant $\lambda \in \mathbb{C}$ and $\lambda^{2}=1$. \square

Next we assume that φ is surjective and $\varphi(I)=I$. We may replace φ by $-\varphi$ if $\varphi(I)=-I$.

Lemma 3.4. φ has the following properties:
(1) $\varphi(\mathcal{I}(\mathcal{X})) \subseteq \mathcal{I}(\mathcal{X})$;
(2) φ preserves the orthogonality of idempotents;
(3) φ preserves the order of idempotents.

Proof. (1) It follows directly from $\varphi(I)=I, \varphi(0)=0$ and the fact that $\left(\frac{1}{2} P\right) I+$ $I\left(\frac{1}{2} P\right)=P$ for any $P \in \mathcal{I}^{*}(\mathcal{X})$.
(2) If $P, Q \in \mathcal{I}^{*}(\mathcal{X})$ and $P \perp Q$, then $P+Q \in \mathcal{I}^{*}(\mathcal{X})$. So, $\varphi(P+Q)=\varphi(P)+$ $\varphi(Q) \in \mathcal{I}^{*}(\mathcal{X})$ by (1). Since $\varphi(P), \varphi(Q) \in \mathcal{I}^{*}(\mathcal{X})$, we know that $\varphi(P) \perp \varphi(Q)$.
(3) Let $P, Q \in \mathcal{I}^{*}(\mathcal{X})$ and $P<Q$. Then $P Q=Q P=P$ and $Q=P+(Q-P)$. Clearly, $P \in \mathcal{I}^{*}(\mathcal{X})$ and $Q-P \in \mathcal{I}^{*}(\mathcal{X})$. Thus, $\varphi(Q)-\varphi(P) \in \mathcal{I}^{*}(\mathcal{X})$, and we get $2 \varphi(P)=\varphi(Q) \varphi(P)+\varphi(P) \varphi(Q)$. This implies that $\varphi(Q) \varphi(P)=\varphi(P) \varphi(Q)$ $=\varphi(P)$.

Lemma 3.5. $\varphi\left(\mathcal{I}_{1}(\mathcal{X})\right) \subseteq \mathcal{I}_{1}(\mathcal{X})$.
Proof. Let $P=x \otimes f \in \mathcal{I}_{1}(\mathcal{X})$ for some $x \in \mathcal{X}$ and $f \in \mathcal{X}^{\prime}$ with $f(x)=1$. Then $\varphi(P) \in \mathcal{I}^{*}(\mathcal{X})$ by Lemma 3.4. Assume that $\operatorname{rank} \varphi(P) \geq 2$. Then there exists a $R \in \mathcal{I}_{1}(\mathcal{X})$ such that $R<\varphi(P)$ and so $\varphi(P)-R \in \mathcal{I}^{*}(\mathcal{X})$. Since φ is bijective, there is a non-zero operator $B \in \mathcal{B}(\mathcal{X})$ such that $R=\varphi(B)$.

If $x, B x$ and $B^{2} x$ are linearly independent, there is a $g \in \mathcal{X}^{\prime}$ such that $g(B x)=1-$ $f(B x), g\left(B^{2} x\right)=1-f\left(B^{2} x\right)$ and $g(x)=-1$. Then $B x \otimes(f+g)+x \otimes(f+g) B \in \mathcal{I}^{*}(\mathcal{X})$ implies $\varphi(B) \varphi(x \otimes(f+g))+\varphi(x \otimes(f+g)) \varphi(B)=2 R+R \varphi(x \otimes g)+\varphi(x \otimes g) R \in \mathcal{I}^{*}(\mathcal{X})$. On the one hand, $-x \otimes g \in \mathcal{I}^{*}(\mathcal{X})$ implies $-\varphi(x \otimes g) \in \mathcal{I}^{*}(\mathcal{X})$, and $z x \otimes f \cdot(-x) \otimes g+(1-$ $z)(-x) \otimes g \cdot x \otimes f \in \mathcal{I}^{*}(\mathcal{X})$ implies $z \varphi(x \otimes f) \cdot \varphi((-x) \otimes g)+(1-z) \varphi((-x) \otimes g) \varphi(x \otimes f) \in$ $\mathcal{I}^{*}(\mathcal{X})$ for all $z \in \mathbb{C}$. On the other hand, $z x \otimes f \cdot(-x) \otimes g+(1-z)(-x) \otimes g \cdot x \otimes f=$ $z(-x) \otimes g+(1-z) x \otimes f \in \mathcal{I}^{*}(\mathcal{X})$ implies $z \varphi((-x) \otimes g)+(1-z) \varphi(x \otimes f) \in \mathcal{I}^{*}(\mathcal{X})$ for all $z \in \mathbb{C}$. Hence, $\varphi((-x) \otimes g) \varphi(x \otimes f), \varphi(x \otimes f) \varphi((-x) \otimes g) \in \mathcal{I}^{*}(\mathcal{X})$ and

$$
\begin{aligned}
& \varphi(x \otimes f) \varphi((-x) \otimes g) \varphi(x \otimes f)+\varphi((-x) \otimes g) \varphi(x \otimes f) \varphi((-x) \otimes g) \\
& =\varphi(x \otimes f) \varphi((-x) \otimes g)+\varphi((-x) \otimes g) \varphi(x \otimes f) \\
& =\varphi(x \otimes f)+\varphi((-x) \otimes g)
\end{aligned}
$$

Under the decomposition $\mathcal{X}=R(R)+(R(P) \ominus N(R))+N(P), R, P$ and $-\varphi(x \otimes g)$ have the following operator matrices

$$
R=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), P=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \text { and } \varphi(-x \otimes g)=\left(\begin{array}{lll}
Q_{11} & Q_{12} & Q_{13} \\
Q_{21} & Q_{22} & Q_{23} \\
Q_{31} & Q_{32} & Q_{33}
\end{array}\right)
$$

respectively. By direct calculation, we know

$$
\left(\begin{array}{ccc}
Q_{11} & Q_{12} & Q_{13} \\
Q_{21} & Q_{22} & Q_{23} \\
0 & 0 & 0
\end{array}\right)+\left(\begin{array}{ccc}
Q_{11} & Q_{12} & 0 \\
Q_{21} & Q_{22} & 0 \\
Q_{31} & Q_{32} & 0
\end{array}\right)=\left(\begin{array}{ccc}
1+Q_{11} & Q_{12} & Q_{13} \\
Q_{21} & 1+Q_{22} & Q_{23} \\
Q_{31} & Q_{32} & Q_{33}
\end{array}\right)
$$

So, $Q_{11}=1, Q_{12}=0, Q_{21}=0, Q_{33}=0$ and $Q_{22}=1$. It follows that

$$
2 R+R \varphi(x \otimes g)+\varphi(x \otimes g) R=\left(\begin{array}{ccc}
0 & 0 & -Q_{13} \\
0 & 0 & 0 \\
-Q_{31} & 0 & 0
\end{array}\right)
$$

Hence, we get a contradiction since $2 R+R \varphi(x \otimes g)+\varphi(x \otimes g) R \in \mathcal{I}^{*}(\mathcal{X})$.

If $x, B x$ and $B^{2} x$ are linearly dependent and x and $B x$ are linearly independent, then $B^{2} x=\lambda x+\mu B x$ for some $\lambda, \mu \in \mathbb{C}$. When $\mu=0$, there is $h \in \mathcal{X}^{\prime}$ such that $h(B x)=1-f(B x)$ and $h(x)=-1$. Then we know that $B x \otimes(f+h)+x \otimes(f+h) B \in$ $\mathcal{I}^{*}(\mathcal{X})$ implies $\varphi(B) \varphi(x \otimes(f+h))+\varphi(x \otimes(f+h)) \varphi(B)=2 R+R \varphi(x \otimes h)+\varphi(x \otimes h) R \in$ $\mathcal{I}^{*}(\mathcal{X})$. Note that $-x \otimes h \in \mathcal{I}^{*}(\mathcal{X})$ and $z x \otimes f \cdot(-x) \otimes h+(1-z)(-x) \otimes h \cdot x \otimes f=$ $z(-x) \otimes h+(1-z) x \otimes f \in \mathcal{I}^{*}(\mathcal{X})$. So, we can get another contradiction using a similar argument demonstrated above. Now, we assume that $\mu \neq 0$. If $\lambda=0$, then $B^{2} x=\mu B x$. Thus, there is $h_{1} \in \mathcal{X}^{\prime}$ such that $h_{1}(B x)=\frac{\mu}{2}-f(B x)$ and $h_{1}(x)=-1$. It follows that $\left(I-\frac{2}{\mu} B\right) x \otimes\left(f+h_{1}\right)+x \otimes\left(f+h_{1}\right)\left(I-\frac{2}{\mu} B\right) \in \mathcal{I}^{*}(\mathcal{X})$ and then

$$
\begin{aligned}
& \varphi\left(I-\frac{2}{\mu} B\right) \varphi\left(x \otimes\left(f+h_{1}\right)\right)+\varphi\left(x \otimes\left(f+h_{1}\right)\right) \varphi\left(I-\frac{2}{\mu} B\right) \\
& =2 P-\frac{4}{\mu} R-2 \varphi\left(-x \otimes h_{1}\right)+\frac{2}{\mu}\left[\varphi\left(-x \otimes h_{1}\right) R+R \varphi\left(-x \otimes h_{1}\right)\right] \in \mathcal{I}^{*}(\mathcal{X}) .
\end{aligned}
$$

Note that $-x \otimes h_{1} \in \mathcal{I}^{*}(\mathcal{X})$ and $z x \otimes f \cdot(-x) \otimes h_{1}+(1-z)(-x) \otimes h_{1} \cdot x \otimes f=z(-x) \otimes$ $h_{1}+(1-z) x \otimes f \in \mathcal{I}^{*}(\mathcal{X})$. We get that $\left.-\varphi\left(x \otimes h_{1}\right) \in \mathcal{I}^{*}(\mathcal{X}), z \varphi(x \otimes f) \cdot \varphi(-x) \otimes h_{1}\right)+$ $(1-z) \varphi\left((-x) \otimes h_{1}\right) \varphi(x \otimes f) \in \mathcal{I}^{*}(\mathcal{X})$ for all $z \in \mathbb{C}$ and $\left.z \varphi(-x) \otimes h_{1}\right)+(1-z) \varphi(x \otimes f) \in$ $\mathcal{I}^{*}(\mathcal{X})$ for all $z \in \mathbb{C}$. Under the decomposition $\mathcal{X}=R(R)+(R(P) \ominus N(R))+N(P)$, R, P and $-\varphi\left(x \otimes h_{1}\right)$ have the following operator matrices
$R=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right), P=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right) \quad$ and $\quad \varphi\left(-x \otimes h_{1}\right)=\left(\begin{array}{lll}Q_{11} & Q_{12} & Q_{13} \\ Q_{21} & Q_{22} & Q_{23} \\ Q_{31} & Q_{32} & Q_{33}\end{array}\right)$,
respectively. By direct calculation, we know that

$$
\left(\begin{array}{ccc}
Q_{11} & Q_{12} & Q_{13} \\
Q_{21} & Q_{22} & Q_{23} \\
0 & 0 & 0
\end{array}\right)+\left(\begin{array}{ccc}
Q_{11} & Q_{12} & 0 \\
Q_{21} & Q_{22} & 0 \\
Q_{31} & Q_{32} & 0
\end{array}\right)=\left(\begin{array}{ccc}
1+Q_{11} & Q_{12} & Q_{13} \\
Q_{21} & 1+Q_{22} & Q_{23} \\
Q_{31} & Q_{32} & Q_{33}
\end{array}\right)
$$

So, $Q_{11}=1, Q_{12}=0, Q_{21}=0, Q_{33}=0$ and $Q_{22}=1$. It follows that

$$
\begin{aligned}
& \varphi\left(I-\frac{2}{\mu} B\right) \varphi\left(x \otimes\left(f+h_{1}\right)\right)+\varphi\left(x \otimes\left(f+h_{1}\right)\right) \varphi\left(I-\frac{2}{\mu} B\right) \\
& =2 P-\frac{4}{\mu} R-2 \varphi\left(-x \otimes h_{1}\right)+\frac{2}{\mu}\left[\varphi\left(-x \otimes h_{1}\right) R+R \varphi\left(-x \otimes h_{1}\right)\right] \in \mathcal{I}^{*}(\mathcal{X}) \\
& =\left(\begin{array}{ccc}
0 & 0 & \left(-2+\frac{2}{\mu}\right) Q_{13} \\
0 & 0 & -2 Q_{23} \\
\left(-2+\frac{2}{\mu}\right) Q_{31} & -2 Q_{32} & 0
\end{array}\right) \in \mathcal{I}^{*}(\mathcal{X}) .
\end{aligned}
$$

Clearly, this is a contradiction. If $\lambda \neq 0$, then there is $h_{2} \in \mathcal{X}^{\prime}$ such that $h_{2}(B x)=$ $\frac{-\mu}{2}-f(B x)$ and $h_{2}(x)=-f(x)$. Hence, $\left(I-\frac{2}{\mu} B\right) x \otimes\left(f+h_{2}\right)+x \otimes\left(f+h_{2}\right)\left(I-\frac{2}{\mu} B\right) \in$ $\mathcal{I}^{*}(\mathcal{X})$, and thus,

$$
\begin{aligned}
& \varphi\left(I-\frac{2}{\mu} B\right) \varphi\left(x \otimes\left(f+h_{2}\right)\right)+\varphi\left(x \otimes\left(f+h_{2}\right)\right) \varphi\left(I-\frac{2}{\mu} B\right) \\
& =2 P-\frac{4}{\mu} R-2 \varphi\left(-x \otimes h_{2}\right)+\frac{2}{\mu}\left[\varphi\left(-x \otimes h_{2}\right) R+R \varphi\left(\left(-x \otimes h_{2}\right)\right] \in \mathcal{I}^{*}(\mathcal{X}) .\right.
\end{aligned}
$$

By an argument similar to that above, we also get a contradiction.
If $x, B x$ and $B^{2} x$ are linearly dependent and x and $B x$ are linearly dependent, then $B x=\beta x$ for some $\beta \in \mathbb{C}$. When $\beta=0$, we know that $\frac{1}{2}((I+z B) x \otimes f+x \otimes$ $f(I+z B)) \in \mathcal{I}^{*}(\mathcal{X})$ for all $z \in \mathbb{C} \backslash\{0\}$ implies that $\frac{1}{2}((I+z R) P+P(I+z R))=$ $P+z R \in \mathcal{I}^{*}(\mathcal{X})$ for all $z \in \mathbb{C} \backslash\{0\}$. Obviously, this is a contradiction. When $\beta \neq 0$, we know that $\frac{1}{2(1+\beta z)}((I+z B) x \otimes f+x \otimes f(I+z B)) \in \mathcal{I}^{*}(\mathcal{X})$ for all $z \in \mathbb{C} \backslash\{0\}$ with $1+\beta z \neq 0$ implies that $\frac{1}{2(1+\beta z)}((I+z R) P+P(I+z R))=\frac{1}{(1+\beta z)}(P+z R) \in \mathcal{I}^{*}(\mathcal{X})$ for all $z \in \mathbb{C} \backslash\{0\}$ with $1+\beta z \neq 0$. This is also a contradiction.

Therefore, $\varphi(P) \in \mathcal{I}_{1}(\mathcal{X})$.
The proof of the following lemma is similar to that of [13, Lemma 2.7].
Lemma 3.6. $\varphi\left(\mathcal{N}_{1}(\mathcal{X})\right) \subseteq \mathcal{N}_{1}(\mathcal{X})$.
Proof. Let $N=x \otimes f \in \mathcal{N}_{1}(\mathcal{X})$ for some non-zero $x \in \mathcal{X}$ and non-zero $f \in \mathcal{X}^{\prime}$ such that $f(x)=0$. Then $\varphi(N) \in \mathcal{N}(\mathcal{X})$ by Lemma 3.2. Taking an $f_{1} \in \mathcal{X}^{\prime}$ such that $f_{1}(x)=1$ and setting $Q=x \otimes f_{1}$, we know that both Q and $Q+N$ are in $\mathcal{I}_{1}(\mathcal{X})$. So are both $\varphi(Q)$ and $\varphi(Q+N)$ by Lemma 3.5. Then there exist $y_{1}, y_{2} \in \mathcal{X}$ and $g_{1}, g_{2} \in \mathcal{X}^{\prime}$ such that $g_{1}\left(y_{1}\right)=g_{2}\left(y_{2}\right)=1, \varphi(Q)=y_{1} \otimes g_{1}$ and $\varphi(Q+N)=y_{2} \otimes g_{2}$. Putting $P=\frac{1}{2}((Q+N)+Q)=\frac{1}{2} N+Q$, we get that $P \in \mathcal{I}_{1}(\mathcal{X})$ and then $\varphi(P) \in \mathcal{I}_{1}(\mathcal{X})$. However, $\varphi(P)=\frac{1}{2}(\varphi(Q+N)+\varphi(Q))=\frac{1}{2}\left(y_{1} \otimes g_{1}+y_{2} \otimes g_{2}\right)$. It follows that either y_{1} and y_{2} or g_{1} and g_{2} are linearly dependent. If y_{1} and y_{2} are linearly dependent, then we may assume that $y_{1}=y_{2}$. Thus, $\varphi(P)=\frac{1}{2} y_{1} \otimes\left(g_{1}+g_{2}\right) \in \mathcal{I}_{1}(\mathcal{X})$ and then $g_{1}\left(y_{1}\right)+g_{2}\left(y_{1}\right)=2$. Since $g_{1}\left(y_{1}\right)=1$, we have $g_{2}\left(y_{1}\right)=1$. Thus, $\varphi(N)=$ $\varphi(N+Q)-\varphi(Q)=y_{1} \otimes\left(g_{1}-g_{2}\right)$ and $\left(g_{1}-g_{2}\right)\left(y_{1}\right)=0$. Hence, $\varphi(N) \in \mathcal{N}_{1}(\mathcal{X})$. We can get that $\varphi(N) \in \mathcal{N}_{1}(\mathcal{X})$ by similar discussion if g_{1} and g_{2} are linearly dependent.

Corollary 3.7. $\varphi\left(\mathcal{F}_{1}(\mathcal{X})\right) \subseteq \mathcal{F}_{1}(\mathcal{X})$ and $\varphi(\mathcal{F}(\mathcal{X})) \subseteq \mathcal{F}(\mathcal{X})$.
Proof. Since every non-nilpotent rank-one operator is a non-zero scalar multiple of rank-one idempotent operator, we know that $\varphi\left(\mathcal{F}_{1}(\mathcal{X})\right) \subseteq \mathcal{F}_{1}(\mathcal{X})$ by Lemma 3.5 and Lemma 3.6 and the linearity of φ. Moreover, every finite-rank operator can be written as a linear combination of finitely many rank-one operators. It follows from the linearity of φ that $\varphi(\mathcal{F}(\mathcal{X})) \subseteq \mathcal{F}(\mathcal{X})$.

Note that a linear map φ on $\mathcal{F}(\mathcal{X})$ is rank non-increasing if $\operatorname{rank} \varphi(X) \leq \operatorname{rank} X$ for any $X \in \mathcal{F}(\mathcal{X})$. We start this section with [5, Corollary 2.1.5], which is restated in the following.

Lemma 3.8. Let φ be a linear map on $\mathcal{F}(\mathcal{X})$ which is rank non-increasing such that $\operatorname{rank} \varphi\left(T_{0}\right)>1$ for some $T_{0} \in \mathcal{F}(\mathcal{X})$. Then one of the following holds.
(1) There exist linear injective maps $A: \mathcal{X} \rightarrow \mathcal{X}$ and $C: \mathcal{X}^{\prime} \rightarrow \mathcal{X}^{\prime}$ such that $\varphi(x \otimes f)=A x \otimes C f$ for all $x \in \mathcal{X}$ and $f \in \mathcal{X}^{\prime}$.
(2) There exist linear injective maps $A: \mathcal{X}^{\prime} \rightarrow \mathcal{X}$ and $C: \mathcal{X} \rightarrow \mathcal{X}^{\prime}$ such that $\varphi(x \otimes f)=A f \otimes C x$ for all $x \in \mathcal{X}$ and $f \in \mathcal{X}^{\prime}$.

Proposition 3.9. Let φ be a surjective linear map on $\mathcal{B}(\mathcal{X})$ preserving the nonzero idempotency of Jordan products of two operators such that $\varphi(I)=I$. Then one of the statements in Lemma 3.8 holds.

Proof. From Corollary 3.7, we know that the restriction $\left.\varphi\right|_{\mathcal{F}(\mathcal{X})}$ of φ on $\mathcal{F}(\mathcal{X})$ is a linear map preserving rank non-increasing. Let Q be a rank-2 idempotent operator. Then there exists a $P \in \mathcal{I}_{1}(\mathcal{X})$ such that $P<Q$. By Lemma 3.4, we know that $\varphi(P)<\varphi(Q)$ and $\varphi(P) \in \mathcal{I}_{1}(\mathcal{X})$. So, $\operatorname{rank} \varphi(Q) \geq 2$. Then we get the desired results from Lemma 3.8. \square

Proof of Theorem 1.1. The sufficiency is clear. Let φ be a linear map on \mathcal{M}_{n} preserving the nonzero idempotency of Jordan product of two operators. Then φ is injective by Lemma 3.1 and thus bijective. We now have $\varphi(I)=\lambda I$ for some constant $\lambda \in\{1,-1\}$. we may assume $\varphi(I)=I$. Then one of two statements in Proposition 3.1 holds.

If (1) holds, then we easily have that $\varphi(X)=A X B$ for all $X \in \mathcal{M}_{n}$. It is clear that $B=A^{-1}$. We have that $\varphi(X)=A X A^{-1}$ for all $X \in \mathcal{M}_{n}$.

If (2) holds, then we similarly have that $\varphi(X)=A X^{t} A^{-1}$ for all $X \in \mathcal{M}_{n} . \square$
We next consider the infinite dimensional case.
Lemma 3.10. Let φ be a surjective linear map on $\mathcal{B}(\mathcal{X})$ preserving the nonzero idempotency of Jordan products of two operators such that $\varphi(I)=I$. Then $\varphi\left(\mathcal{F}_{1}(\mathcal{X})\right)$ $=\mathcal{F}_{1}(\mathcal{X})$.

Proof. By Corollary 3.7, it is sufficient to prove that $\mathcal{F}_{1}(\mathcal{X}) \subseteq \varphi\left(\mathcal{F}_{1}(\mathcal{X})\right)$. Let $T \in$ $\mathcal{B}(\mathcal{H})$ such that $\varphi(T)=z \otimes h$ is of rank-one for some $z \in \mathcal{X}$ and $h \in \mathcal{X}^{\prime}$. Clearly, T is a non-scalar operator. So, there is $x \in \mathcal{X}$ such that x and $T x$ are linearly independent. If $\operatorname{rank} T>1$, then there exists $y \in \mathcal{X}$ such that $T x$ and $T y$ are linearly independent. It follows that x and y are linearly independent. Applying [9, Lemma 2.1], we know that $x+\delta y$ and $T(x+\delta y)$ are linearly independent for all but finite number $\delta \in \mathbb{C}$. For any fixed $\alpha \in \mathbb{C}$, there is a rank-one idempotent $P(\delta, \alpha)$ such that $(T+P(\delta, \alpha))(x+\delta y)=$ $\alpha(x+\delta y)$ by Lemma 2.4. Finding $f_{(\delta, \alpha)} \in \mathcal{X}^{\prime}$ to satisfy $f_{(\delta, \alpha)}(x+\delta y)=\frac{1}{2 \alpha}$, we get that $\frac{1}{2 \alpha}\left((T+P(\delta, \alpha))(x+\delta y) \otimes f_{(\delta, \alpha)}+(x+\delta y) \otimes f_{(\delta, \alpha)}(T+P(\delta, \alpha))\right) \in \mathcal{I}^{*}(\mathcal{X})$, which implies that $\frac{1}{2 \alpha}\left(\varphi(T+P(\delta, \alpha)) \varphi\left((x+\delta y) \otimes f_{(\delta, \alpha)}\right)+\varphi\left((x+\delta y) \otimes f_{(\delta, \alpha)}\right) \varphi(T+\right.$ $P(\delta, \alpha))) \in \mathcal{I}^{*}(\mathcal{X})$. Let $\varphi(P(\delta, \alpha))=e_{(\delta, \alpha)} \otimes g_{(\delta, \alpha)}$. If Proposition 3.9 (1) holds, then $\frac{1}{2 \alpha}\left(\varphi(T+P(\delta, \alpha)) \varphi\left((x+\delta y) \otimes f_{(\delta, \alpha)}\right)+\varphi\left((x+\delta y) \otimes f_{(\delta, \alpha)}\right) \varphi(T+P(\delta, \alpha))\right)=$
$\frac{1}{2 \alpha}\left(\varphi(T+P(\delta, \alpha)) A(x+\delta y) \otimes C f_{(\delta, \alpha)}+A(x+\delta y) \otimes C f_{(\delta, \alpha)} \varphi(T+P(\delta, \alpha))\right) \in \mathcal{I}^{*}(\mathcal{X})$. This yields that $\varphi(T+P(\delta, \alpha)) A(x+\delta y)=\alpha A(x+\delta y)$ or $\varphi(T+P(\delta, \alpha))^{\prime} C f_{(\delta, \alpha)}=\alpha C f_{(\delta, \alpha)}$. When $\varphi(T+P(\delta, \alpha)) A(x+\delta y)=\alpha A(x+\delta y)$, we have that $h(A(x+\delta y)) z+g_{(\delta, \alpha)}(A(x+$ $\delta y)) e_{(\delta, \alpha)}=\alpha A(x+\delta y)$ for fixed $\delta \in \mathbb{C} \backslash\{0\}$ and any $\alpha \in \mathbb{C} \backslash\{0\}$. It follows that

$$
g_{\left(\delta, \alpha_{1}\right)}(A(x+\delta y)) e_{\left(\delta, \alpha_{1}\right)}-g_{\left(\delta, \alpha_{2}\right)}(A(x+\delta y)) e_{\left(\delta, \alpha_{2}\right)}=\left(\alpha_{1}-\alpha_{2}\right) A(x+\delta y)
$$

for fixed $\delta \in \mathbb{C}$ and any $\alpha_{1}, \alpha_{2} \in \mathbb{C} \backslash\{0\}$. Obviously,

$$
\left(1+\alpha_{2}-\alpha_{1}\right) g_{\left(\delta, \alpha_{1}\right)}(A(x+\delta y))=g_{\left(\delta, \alpha_{2}\right)}(A(x+\delta y)) g_{\left(\delta, \alpha_{1}\right)}\left(e_{\left(\delta, \alpha_{2}\right)}\right)
$$

for fixed $\delta \in \mathbb{C}$ and any $\alpha_{1}, \alpha_{2} \in \mathbb{C} \backslash\{0\}$. Hence, $g_{\left(\delta, \alpha_{2}\right)}(A(x+\delta y)) g_{\left(\delta, \alpha_{1}\right)}\left(e_{\left(\delta, \alpha_{2}\right)}\right)=0$ for fixed $\delta \in \mathbb{C}$ and any $\alpha_{1}, \alpha_{2} \in \mathbb{C} \backslash\{0\}$ with $1+\alpha_{2}=\alpha_{1}$. So, $g_{\left(\delta, \alpha_{2}\right)}(A(x+\delta y))=0$ or $g_{\left(\delta, \alpha_{1}\right)}\left(e_{\left(\delta, \alpha_{2}\right)}\right)=0$ for fixed $\delta \in \mathbb{C}$ and any $\alpha_{1}, \alpha_{2} \in \mathbb{C} \backslash\{0\}$ with $1+\alpha_{2}=\alpha_{1}$. According to Lemma 3.8, we know that $\varphi(P(\delta, \alpha)): \mathcal{X} \rightarrow[A(x+\delta y), A T(x+\delta y)]$ and so $g_{\left(\delta, \alpha_{1}\right)}\left(e_{\left(\delta, \alpha_{2}\right)}\right) \neq 0$. Hence, $g_{\left(\delta, \alpha_{2}\right)}(A(x+\delta y))=0$ for fixed $\delta \in \mathbb{C}$ and any $\alpha_{2} \in \mathbb{C} \backslash\{0\}$. With this observation, we know that $h(A(x+\delta y)) z=\alpha_{2} A(x+\delta y)$ for fixed $\delta \in \mathbb{C}$ and any $\alpha_{2} \in \mathbb{C} \backslash\{0\}$. This is a contradiction. When $\varphi(T+P(\delta, \alpha))^{\prime} f_{(\delta, \alpha)}=\alpha f_{(\delta, \alpha)}$, we get that $\alpha \in \sigma_{p}\left(z \otimes h+e_{(\delta, \alpha)} \otimes g_{(\delta, \alpha)}\right)$ for fixed $\delta \in \mathbb{C}$ and any $\alpha \in \mathbb{C} \backslash\{0\}$, where $\sigma_{p}\left(z \otimes h+e_{(\delta, \alpha)} \otimes g_{(\delta, \alpha)}\right)$ denotes that point spectrum of $z \otimes h+e_{(\delta, \alpha)} \otimes g_{(\delta, \alpha)}$. Note that $\mathcal{R}\left(z \otimes h+e_{(\delta, \alpha)} \otimes g_{(\delta, \alpha)}\right) \subseteq[z]+[A(x+\delta y), A T(x+\delta y)]$ for any $\alpha \in \mathbb{C}$. Here is a contradiction. If Proposition 3.9 (2) holds, then we get a contradiction again. Thus, T is of rank-one.

The idea of the following proof comes from [9] and [13].
Proof of Theorem 1.2. The sufficiency is clear. Now, we prove the necessity and assume that $\varphi(I)=I$ by Lemma 3.3.

By Lemma 3.10, φ maps the set of rank-one operators onto itself. This implies that the injective linear maps A and C mentioned in Proposition 3.9 are bijective. Suppose Proposition 3.9 (1) holds. By Lemma 3.4 and the linearity of φ, it can be shown that $C f(A x)=f(x)$ for all $x \in \mathcal{X}$ and $f \in \mathcal{X}^{\prime}$, which implies that C is the adjoint of A^{-1}, and hence C is bounded. Thus, A^{-1} and A are bounded too. Furthermore, for any $y \in \mathcal{X}$,

$$
\varphi(x \otimes f) y=(A x \otimes C f) y=(C f)(y) A x=f\left(A^{-1} y\right) A x=A(x \otimes f) A^{-1} y
$$

Thus, $\varphi(T)=A T A^{-1}$ for any rank-one operator T. Moreover, every finite-rank operator can be written as a linear combination of finitely many rank-one operators. With the linearity of φ, we know that $\varphi(T)=A T A^{-1}$ for any finite-rank operator T. Replacing φ by $A^{-1} \varphi A$, we may assume that $\varphi(T)=T$ for every finite-rank operator T. We next prove that $\varphi(T)=T$ for every non-scalar and infinite-rank operator $T \in \mathcal{B}(\mathcal{X})$.

Let $T \in \mathcal{B}(\mathcal{X})$ be any non-scalar and infinite-rank operator. By the property of φ, we know that

$$
T R+R T \in \mathcal{I}(\mathcal{X}) \backslash\{0\} \Rightarrow \varphi(T) \varphi(R)+\varphi(R) \varphi(T)=\varphi(T) R+R \varphi(T) \in \mathcal{I}(\mathcal{X}) \backslash\{0\}
$$

for every $R \in \mathcal{F}_{1}(\mathcal{X})$. Suppose there is $x \in \mathcal{X}$ such that $\left(\varphi(A)+2 P_{0}\right) x$ and $\left(A+2 P_{0}\right) x$ are linearly independent for some rank-one idempotent $P_{0} \in \mathcal{I}^{*}(\mathcal{X})$ If x and $\left(A+2 P_{0}\right) x$ are linearly independent, then there exists a rank-one idempotent $Q \in \mathcal{I}(\mathcal{X})$ such that $\left(A+2 P_{0}+2 Q\right) x=x$ by Lemma 2.4. So, $\left(\varphi(A)+2 P_{0}+2 Q\right) x \neq\left(A+2 P_{0}+2 Q\right) x$ and there is $f \in \mathcal{X}^{\prime}$ such that $f\left(\left(\varphi(A)+2 P_{0}+2 Q\right) x\right)=0$ and $f\left(\left(A+2 P_{0}+2 Q\right) x\right)=1$. It follows that $\frac{1}{2}\left(\left(A+2 P_{0}+2 Q\right) x \otimes f+x \otimes f\left(A+2 P_{0}+2 Q\right)\right) \in \mathcal{I}^{*}(\mathcal{X})$ and then $\frac{1}{2}\left(\varphi\left(A+2 P_{0}+2 Q\right) x \otimes f+x \otimes f \varphi\left(A+2 P_{0}+2 Q\right)\right) \in \mathcal{I}^{*}(\mathcal{X})$. Hence, $f((\varphi(A)+$ $\left.\left.2 P_{0}+2 Q\right)^{2} x\right) x=2\left(\varphi(A)+2 P_{0}+2 Q\right) x$. Thus, $f\left(\left(\varphi(A)+2 P_{0}+2 Q\right)^{2} x\right)=0$ and so $\left(\varphi(A)+2 P_{0}+2 Q\right) x=0$. This is a contradiction. If $\left(A+2 P_{0}\right) x=\gamma x$ for some non-zero $\gamma \in \mathbb{C}$, then there is $g \in \mathcal{X}^{\prime}$ such that $g\left(\left(\varphi(A)+2 P_{0}\right) x\right)=0$ and $g((A+$ $\left.\left.2 P_{0}\right) x\right)=\gamma$. Hence, $\frac{1}{2 \gamma}\left(\left(A+2 P_{0}\right) x \otimes g+x \otimes g\left(A+2 P_{0}\right)\right) \in \mathcal{I}^{*}(\mathcal{X})$, which implies that $\frac{1}{2 \gamma}\left(\varphi\left(A+2 P_{0}\right) x \otimes g+x \otimes g \varphi\left(A+2 P_{0}\right)\right) \in \mathcal{I}^{*}(\mathcal{X})$. By direct calculation, we get that $g\left(\left(\varphi(A)+2 P_{0}\right)^{2} x\right) x=2 \gamma\left(\varphi(A)+2 P_{0}\right) x$ and so $f\left(\left(\varphi(A)+2 P_{0}+2 Q\right)^{2} x\right)=0$. Thus, $\left(\varphi(A)+2 P_{0}+2 Q\right) x=0$ and this is a contradiction. Thus, $\varphi(A)+2 P$ and $A+2 P$ are locally linearly dependent for any rank-one idempotent $P \in \mathcal{I}^{*}(\mathcal{X})$. By [10, Theorem 2.4], we know that there is $\eta(P) \in \mathbb{C}$ such that $\varphi(A)+2 P=\eta(P)(A+2 P)$ for any rank-one idempotent $P \in \mathcal{I}^{*}(\mathcal{X})$. Since $A+2 P$ is a non-scalar operator, we can find $x \in \mathcal{X}$ such that x and $(A+2 P) x$ are linearly independent. Then there exists an idempotent operator $Q_{1} \in \mathcal{B}(\mathcal{X})$ of rank one such that $\left(A+2 P+2 Q_{1}\right) x=x$. There is $h \in \mathcal{X}^{\prime}$ such that $h(x)=1$. So, $\frac{1}{2}\left(\left(A+2 P+2 Q_{1}\right) x \otimes h+x \otimes h\left(A+2 P+2 Q_{1}\right)\right) \in \mathcal{I}^{*}(\mathcal{X})$. It follows that $\frac{1}{2}\left(\varphi\left(A+2 P+2 Q_{1}\right) x \otimes h+x \otimes h \varphi\left(A+2 P+2 Q_{1}\right)\right) \in \mathcal{I}^{*}(\mathcal{X})$. By direct calculation, we have that $\varphi\left(A+2 P+2 Q_{1}\right) x=x$ or $\varphi\left(A+2 P+2 Q_{1}\right)^{\prime} h=h$. Therefore, $\eta\left(P+Q_{1}\right)=1$ and then $\varphi(A)=A$.

Suppose Proposition 3.9 (2) holds. Then we have $(C x)(A f)=f(x)$ for all $x \in \mathcal{X}$ and $f \in \mathcal{X}^{\prime}$ by a similar argument. So, $C^{\prime}=A^{-1} K^{-1}$, where K is the natural embedding of X into $X^{\prime \prime}$. Thus, A^{-1} is bounded and so as $\left(A^{-1}\right)^{\prime}$ and $C=\left(A^{-1}\right)^{\prime} K$. As C and $\left(A^{-1}\right)^{\prime}$ are bijective, as so K and hence X is reflective. Now by a similar argument, $\varphi(T)=A T^{\prime} A^{-1}$ for every finite-rank operator T and hence $\varphi(T)=A T^{\prime} A^{-1}$ for all every $T \in \mathcal{B}(\mathcal{X})$.

Acknowledgment. The author would like to thank the anonymous referees for their helpful comments and suggestions that greatly improved the original manuscript.

REFERENCES

[1] M. Brešar and P. Šemrl. On locally linearly dependent operators and derivations. Trans. Amer. Math. Soc., 351:1257-1275, 1999.
[2] M. Dobovišek, B. Kuzma, G. Lešnjak, C.-K. Li, and T. Petek. Mappings that preserve pairs of operators with zero triple Jordan product. Linear Algebra Appl., 426:255-279, 2007.
[3] L. Fang and G.X. Ji. Linear maps preserving products of positive or Hermitian matrices. Linear Algebra Appl., 419:601-611, 2006.
[4] L. Fang, G.X. Ji, and Y.F. Pang. Maps preserving the idempotency of products of operators. Linear Algebra Appl., 426:40-52, 2007.
[5] J.C. Hou and J.L. Cui. Introduction to the Linear Maps on Operator Algebras. Science Press, Beijing, 2002.
[6] J.C Hou and Q.H. Di. Maps preserving numerical ranges of operator products. Proc. Amer. Math. Soc., 134:1435-1446, 2006.
[7] G.X. Ji and Y.L. Gao. Maps preserving operator pairs whose products are projections. Linear Algebra Appl., 433:1348-1364, 2010.
[8] C.-K. Li, P. Šemrl, and N.S. Sze. Maps preserving the nilpotency of products of operators. Linear Algebra Appl., 424:222-239, 2007.
[9] P. Šemrl. Similarity preserving linear maps. J. Operator Theory, 60(1):71-83, 2008.
[10] P. Šmrl. Non-linear commutativity preserving maps. Acta Sci. Math. (Szeged), 71:781-819, 2005.
[11] R. Meshulam and P. Šemrl. Locally linearly dependent operators. Pacific J. Math, 203:141-459, 2002.
[12] P. Šemrl. Linear maps that preserve the nilpotent operators. Acta Sci. Math. (Szeged), 61:523534, 1995.
[13] M.L. Wang, L. Fang, and G.X. Ji. Linear maps preserving idempotency of products or triple Jordan products of operatros. Linear Algebra Appl., 429:181-189, 2008.

[^0]: *Received by the editors on November 7, 2010. Accepted for publication on July 2, 2011. Handling Editor: Bit-Shun Tam.
 ${ }^{\dagger}$ Department of Mathematics, Northwest University, Xi’an 710127, China (fangli@nwu.edu.cn). Supported by the National Natural Science Foundation of China (No. 11026134) and the Special Research Project of Educational Department of Shaanxi Province (No. 09JK741).

