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LINEAR MAPS PRESERVING THE IDEMPOTENCY

OF JORDAN PRODUCTS OF OPERATORS∗
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Abstract. Let B(X ) be the algebra of all bounded linear operators on a complex Banach

space X and let I∗(X ) be the set of non-zero idempotent operators in B(X ). A surjective map

ϕ : B(X ) → B(X ) preserves nonzero idempotency of the Jordan products of two operators if for

every pair A, B ∈ B(X ), the relation AB + BA ∈ I∗(X ) implies ϕ(A)ϕ(B) + ϕ(B)ϕ(A) ∈ I∗(X ). In

this paper, the structures of linear surjective maps on B(X ) preserving the nonzero idempotency of

Jordan products of two operators are given.
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1. Introduction. This paper is a continuation of our recent work on preserver

problems concerning certain properties of products or triple Jordan products of op-

erators [3, 4, 13], and the related works in [2] and [7].

Let X be a complex Banach space, and let B(X ) be the algebra of all bounded

linear operators on X . The dual of X is denoted by X ′ and the adjoint of T ∈ B(X ) by

T ′. Let I∗(X ), I1(X ) and N1(X ) be the set of nonzero idempotent operators, the set

of rank-one idempotent operators and the set of rank-one nilpotent operators in B(X ),

respectively. If X has dimension n with 2 ≤ n < ∞, then B(X ) is identified with

the algebra Mn of n×n complex matrices and In(X ) refers to the set of idempotent

matrices in Mn. For an operator T ∈ B(X ), the range, the kernel and the rank of T

are denoted by R(T ), N(T ) and rank T , respectively. Let F(X ) and F1(X ) denote

the set of finite rank operators and the set of rank-one operators in B(X ), respectively.

For a non-zero vector x ∈ X and a non-zero f ∈ X ′, we denote by x⊗ f the rank one

operator defined by (x ⊗ f)y = f(y)x, y ∈ X . Note that every bounded linear rank

one operator on X can be written in this form. The rank-one operator x ⊗ f is an

idempotent operator if and only if f(x) = 1, and x ⊗ f is a nilpotent operator if and

only if f(x) = 0. Given P,Q ∈ I(X ), P ≤ Q if PQ = QP = P and P < Q if P ≤ Q

with P 6= Q.
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In this paper, we are interested in determining the structure of linear surjective

maps ϕ : B(X ) → B(X ) for every pair A,B ∈ B(X ) having the property that

AB + BA ∈ I∗(X ) ⇒ ϕ(A)ϕ(B) + ϕ(B)ϕ(A) ∈ I∗(X ).

We will derive the following two theorems regarding the structure.

Theorem 1.1. Let ϕ be a linear map on Mn with n ≥ 3. Then ϕ preserves the

nonzero idempotency of Jordan products of two operators if and only if there exist an

invertible matrix A ∈ Mn and a constant λ ∈ {1,−1} such that one of the following

holds.

(1) ϕ(X) = λAXA−1 for all X ∈ Mn;

(2) ϕ(X) = λAXtA−1 for all X ∈ Mn, where Xt is the transpose of X.

Theorem 1.2. Let X be a complex infinite dimensional Banach space and let ϕ

be a linear surjective map on B(X ). Then ϕ preserves the nonzero idempotency of

Jordan products of two operators if and only if there exist a bounded invertible linear

or conjugate-linear operator A : X → X and a constant λ ∈ {1,−1} such that

ϕ(X) = λAXA−1 for all X ∈ B(X ),

or, only if X is reflexive, there exist a bounded invertible linear or conjugate-linear

operator A : X ′ → X and a constant λ ∈ {1,−1} such that

ϕ(X) = λAX ′A−1 for all X ∈ B(X ).

2. Preliminary results. Assume that X is a complex Banach space with di-

mension at least 3. In this section, we introduce some elementary results that will be

used in the proofs of main theorems.

Definition 2.1. [11] Let U and V be vector spaces over a filed F. Linear

operators T1, . . . , Tn : U → V are locally linearly dependent if T1u, . . . , Tnu are

linearly dependent for every u ∈ U .

Lemma 2.2. [11] Assume that the operators A,B, I are locally linearly dependent.

Then there exist scalars λ and µ such that (A−λ)(B−µ) = 0 and either (A−λ)2 = 0

or (B − µ)2 = 0.

Lemma 2.3. Let P,Q ∈ B(X ) be two idempotent operators. Then zP +(1−z)Q ∈

I∗(X ) for any z ∈ C\{0, 1} if and only if P + Q = PQ + QP .

Proof. We obtain the desired result by direct calculation.
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Lemma 2.4. Let A ∈ B(X ) and x ⊗ f ∈ B(X ) be with f(x) 6= 0. Then Ax ⊗ f +

x ⊗ fA ∈ I∗(X ) if and only if Ax = 1
2f(x)x or A′f = 1

2f(x)f .

Proof. Note that Ax⊗f +x⊗fA ∈ I∗(X ) implies that Ax⊗ [f(Ax)f +f(x)A′f−

f ]+x⊗[f(A2x)f +f(Ax)A′f−A′f ] = 0. If Ax and x as well as A′f and f are linearly

independent, then f(Ax) = 1, f(x) = 0 and f(A2x) = 0. But this contradicts the

hypothesis f(x) 6= 0. Hence, either Ax and x are linearly dependent or A′f and f are

linearly dependent. Then we can compute that Ax = 1
2f(x)x or A′f = 1

2f(x)f .

The idea of the following lemma comes from [10].

Lemma 2.5. Let A ∈ B(X ) be any non-scalar operator and let α be any fixed

complex number. Then there exists an idempotent operator P ∈ B(X ) of rank one

such that α is an eigenvalue of A + 2P .

Proof. As A is a non-scalar operator, we can find x ∈ X such that x and Ax are

linearly independent. Define P ∈ B(X ) by

Px = α
2 x − 1

2Ax, PAx = α(α
2 − 1)x − (1 − α

2 )Ax and Pz = 0

for every z ∈ X ⊖ [x,Ax]. Clearly, P is an idempotent operator of rank one and

(A + 2P )x = αx.

3. Main results. Assume that X is a complex Banach space with dimension

at least 3 and we consider a linear surjective map ϕ : B(X ) → B(X ) preserv-

ing the nonzero idempotency of Jordan products of operators, that is, ϕ(A)ϕ(B) +

ϕ(B)ϕ(A) ∈ I∗(X ) whenever AB + BA ∈ I∗(X ) for every pair A,B ∈ B(X ).

Lemma 3.1. Let ϕ be as above. Then ϕ is injective.

Proof. Assume that ϕ(A) = 0 for some non-zero operator A ∈ B(X ). Suppose

that there exists an x ∈ X such that x, Ax and A2x are linearly independent. Then

there is an f ∈ X ′ such that f(x) = f(A2x) = 0 and f(Ax) = 1. It follows that

Ax ⊗ f + x ⊗ fA ∈ I∗(X ). But, ϕ(A)ϕ(x ⊗ f) + ϕ(x ⊗ f)ϕ(A) = 0 /∈ I∗(X ). This

contradiction implies that x, Ax and A2x are linearly dependent for every x ∈ X .

By Lemma 2.2, there exist scalars λ and µ such that (A− λ)(A2 − µ) = 0 and either

(A − λ)2 = 0 or (A2 − µ)2 = 0.

If (A − λ)(A2 − µ) = 0 and (A − λ)2 = 0, then (µ − λ2)A = λ(µ − λ2). When

µ−λ2 6= 0, we get that A = λI. For any pair x1 ∈ X and f1 ∈ X ′ with f1(x1) = 1
2λ

, we

have Ax1⊗f1+x1⊗f1A ∈ I∗(X ) and then ϕ(A)ϕ(x1⊗f1)+ϕ(x1⊗f1)ϕ(A) ∈ I∗(X ).

However, this contradicts ϕ(A)ϕ(x1 ⊗ f1) + ϕ(x1 ⊗ f1)ϕ(A) = 0. When µ − λ2 = 0

and λ 6= 0, we know that A − λI is a nilpotent operator and there is a non-zero

vector x2 ∈ X such that Ax2 = λx2. Selecting f2 ∈ X ′ with f2(x2) = 1
2λ

, we get

Ax2⊗f2+x2⊗f2A ∈ I∗(X ), which implies ϕ(A)ϕ(x2⊗f2)+ϕ(x2⊗f2)ϕ(A) ∈ I∗(X ).
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But ϕ(A)ϕ(x2⊗f2)+ϕ(x2⊗f2)ϕ(A) = 0 and we get a contradiction. When µ−λ2 = 0

and λ = 0, we know that A2 = 0 and there exists a non-zero vector x3 ∈ X such that

x3 and Ax3 are linearly independent. Then there is an f3 ∈ X ′ with f3(x3) = 0 and

f3(Ax3) = 1. Hence, Ax3 ⊗ f3 + x3 ⊗ f3A ∈ I∗(X ) and so ϕ(A)ϕ(x3 ⊗ f3) + ϕ(x3 ⊗

f3)ϕ(A) ∈ I∗(X ). However, this contradicts ϕ(A)ϕ(x3 ⊗ f3) + ϕ(x3 ⊗ f3)ϕ(A) = 0.

If (A − λ)(A2 − µ) = 0 and (A2 − µ)2 = 0, then (µ − λ2)A2 = λ(µ − λ2). When

µ − λ2 6= 0, we know that A2 = µI. Suppose µ 6= 0. First, we assume that A is

a non-scalar operator. Then there is an x4 ∈ X such that x4 and Ax4 are linearly

independent. We can find f4 ∈ X ′ with f4(x4) = 1
2µ

and f4(Ax4) = 0. It follows

A(Ax4) ⊗ f4 + (Ax4) ⊗ f4A ∈ I∗(X ), which implies ϕ(A)ϕ(Ax4 ⊗ f4) + ϕ(Ax4 ⊗

f4)ϕ(A) = 0 ∈ I∗(X ). This gives a contradiction. Second, we assume A = βI for

some non-zero number β. For any pair x5 ∈ X and f5 ∈ X ′ with f5(x5) = 1
2β

, we have

Ax5⊗f5+x5⊗f5A ∈ I∗(X ) and so ϕ(A)ϕ(x5⊗f5)+ϕ(x5⊗f5)ϕ(A) = 0 ∈ I∗(X ). This

also gives a contradiction. Hence, µ = 0 and then A2 = 0. Thus, there exists a non-

zero vector x6 ∈ X such that x6 and Ax6 are linearly independent. So, there is f6 ∈ X ′

with f6(x6) = 0 and f6(Ax6) = 0. Obviously, Ax6 ⊗ f6 + x6 ⊗ f6A ∈ I∗(X ) and then

ϕ(A)ϕ(x6⊗f6)+ϕ(x6⊗f6)ϕ(A) ∈ I∗(X ). However, ϕ(A)ϕ(x6⊗f6)+ϕ(x6⊗f6)ϕ(A) =

0 and this is also a contradiction. When µ−λ2 = 0, we know that A3 −λA2 −λ2A+

λ3 = 0. Suppose λ 6= 0, we get −1
2λ3 ((A2−λA−λ2I)A+A(A2−λA−λ2I)) = I ∈ I∗(X )

implies −1
2λ3 (ϕ(A2 − λA − λ2I)ϕ(A) + ϕ(A)ϕ(A2 − λA − λ2I)) = 0 ∈ I∗(X ). This is

a contradiction. Suppose λ = 0, we know A3 = 0. If A2 6= 0, then there is an x7 ∈ X

such that Ax7 and A2x7 are linearly independent. So, there exists an f7 ∈ X ′ such

that f7(Ax7) = 0 and f7(A
2x7) = 1. Hence, AAx7 ⊗ f7 + Ax7 ⊗ f7A ∈ I∗(X ) and

then ϕ(A)ϕ(Ax7 ⊗ f7) + ϕ(x7 ⊗ f7)ϕ(A) = 0 ∈ I∗(X ). This is also a contradiction.

If A2 = 0, then we can derive another contradiction by using a routine argument

demonstrated above.

Thus, A = 0. Therefore, ϕ is injective.

Lemma 3.2. Let N ∈ B(X ) be of finite rank and N2 = 0. Then ϕ(N) is a

nilpotent operator.

Proof. Note that R(N) is finite dimensional. It is known that finite dimensional

subspaces of a Banach space are complemented, and so X = R(N) + M for some

closed subspace M of X where M is a complementary subspace of R(N). Then N

has the following operator matrix

N =

(

0 N1

0 0

)

.

Putting P =

(

I 0

0 0

)

, we have that (1
2 (P +zN))(P +zN)+(P +zN)( 1

2 (P +zN)) =

P + zN ∈ I∗(X ) for all z ∈ C. Thus, ( 1
2ϕ(P + zN))ϕ(P + zN) + ϕ(P + zN)( 1

2ϕ(P +
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zN)) = (ϕ(P ) + zϕ(N))2 ∈ I∗(X ) for all z ∈ C. Hence, (ϕ(P ) + zϕ(N))2 = (ϕ(P ) +

zϕ(N))4 for all z ∈ C. That is,

(ϕ(P ))2 + z(ϕ(P )ϕ(N) + ϕ(N)ϕ(P )) + z2(ϕ(N))2 = (ϕ(P ))4 + · · · + z4(ϕ(N))4

for all z ∈ C. So, (ϕ(N))4 = 0.

Lemma 3.3. If ϕ is surjective, then ϕ(I) = λI for some constant λ ∈ {1,−1}.

Proof. Since ϕ is a surjective map, there exists a non-zero operator A ∈ B(X )

such that ϕ(A) = I. Assume that A is a non-scalar operator. If there exists an

x ∈ X such that x, Ax and A2x are linearly independent, then there is an f ∈ X ′

such that f(x) = f(A2x) = 0 and f(Ax) = 1. So, Ax ⊗ f + x ⊗ fA ∈ I∗(X ), which

implies that ϕ(A)ϕ(x⊗ f) + ϕ(x⊗ f)ϕ(A) = 2ϕ(x⊗ f) ∈ I∗(X ). But 2ϕ(x⊗ f) is a

nilpotent operator by Lemma 3.2 and this contradiction implies that x, Ax and A2x

are linearly dependent for every x ∈ X . Then there exist scalars λ and µ such that

(A − λ)(A2 − µ) = 0 and either (A − λ)2 = 0 or (A2 − µ)2 = 0 by Lemma 2.2.

If (A − λ)(A2 − µ) = 0 and (A − λ)2 = 0, then (µ − λ2)A = λ(µ − λ2). Since

A is a non-scalar operator, we know that µ = λ2. When λ = 0, we get that A2 =

0 and there exist x1 ∈ X and f1 ∈ X ′ such that f1(x1) = 0 and f1(Ax1) = 1.

So, A(x1 ⊗ f1) + (x1 ⊗ f1)A ∈ I∗(X ) implies ϕ(A)ϕ(x1 ⊗ f1) + ϕ(x1 ⊗ f1)ϕ(A) =

2ϕ(x1 ⊗ f1) ∈ I∗(X ). However, 2ϕ(x1 ⊗ f1) is a nilpotent operator by Lemma 3.2.

This contradiction implies that λ 6= 0 and A − λ is a nilpotent operator. Then

there is a non-zero vector x2 ∈ X such that (A − λ)x2 = 0. For every f2 ∈ X ′

with f2(x2) = 1
2λ

, we know that Ax2 ⊗ f2 + x2 ⊗ f2A ∈ I∗(X ), which implies that

ϕ(A)ϕ(x2 ⊗ f2) + ϕ(x2 ⊗ f2)ϕ(A) = 2ϕ(x2 ⊗ f2) ∈ I∗(X ). Moreover, 2λϕ(x2 ⊗

f2) ∈ I∗(X ) follows from 2λx2 ⊗ f2 ∈ I∗(X ). Hence, λ2 = 1. When λ = 1, we

know that A2 − 2A + I = 0 and so (2I − A)A
2 + A

2 (2I − A) = I ∈ I∗(X ). Then,

ϕ(2I−A)ϕ(A
2 )+ϕ(A

2 )ϕ(2I−A) = 2ϕ(I)−I ∈ I∗(X ). Setting 2ϕ(I)−I = R ∈ I∗(X ),

we get that ϕ(I) = I+R
2 . However, I I

2 + I
2I = I ∈ I∗(X ) implies ϕ(I)2 ∈ I∗(X ).

Thus, ϕ(I)2 = I+3R
4 and so R = I. It follows that ϕ(I) = I = ϕ(A) and then

A = I by the injection of ϕ. This is a contradiction. Similarly we can also obtain a

contradiction when λ = −1.

If (A − λ)(A2 − µ) = 0 and (A2 − µ)2 = 0, then (µ − λ2)A2 = λ(µ − λ2). When

µ − λ2 6= 0, we get A2 = λI. When λ 6= 0, there is a vector x4 ∈ X such that x4 and

Ax4 are linearly independent. Selecting f4 ∈ X ′ with f4(x4) = 1
µ

and f4(Ax4) = 0,

we know that AAx4 ⊗ f4 + Ax4 ⊗ f4A ∈ I∗(X ) and so 2ϕ(Ax4 ⊗ f4) ∈ I∗(X ).

However, ϕ(Ax4 ⊗ f4) is a nilpotent operator. This contradiction shows that µ = 0

and then A2 = 0. Since x4 and Ax4 are linearly independent, there is an f5 ∈ X ′

with f5(x4) = 0 and f5(Ax4) = 1. So, Ax4 ⊗ f5 + x4 ⊗ f5A ∈ I∗(X ) and then

2ϕ(x4⊗f5) ∈ I∗(X ). But this contradicts with that ϕ(x4⊗f5) is a nilpotent operator.

When µ − λ2 = 0 and λ = 0, we know A3 = 0. For the case that A2 = 0, we also get
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a contradiction using a similar argument above. For the case that A2 6= 0, there is

an x6 ∈ X such that Ax6 and A2x6 are linearly independent. Selecting f6 ∈ X ′ such

that f6(Ax6) = 0 and f6(A
2x6) = 1, we know AAx6 ⊗ f6 + Ax6 ⊗ f6A ∈ I∗(X ) and

then 2ϕ(Ax6 ⊗ f6) ∈ I∗(X ). This contradicts the fact that ϕ(Ax6 ⊗ f6) is a nilpotent

operator. So, λ 6= 0 and A2−λ2 is a nilpotent operator. Hence, there is an x7 ∈ X such

that A2x7 = λ2x7. If x7 and Ax7 are linearly independent, then there is an f7 ∈ X ′

such that f7(x7) = 1
λ2 and f7(Ax7) = 0. It follows that AAx7⊗f7+Ax7⊗f7A ∈ I∗(X )

which gives that 2ϕ(Ax7 ⊗ f7) ∈ I∗(X ). While ϕ(Ax7 ⊗ f7) is a nilpotent operator,

we get a contradiction. If Ax7 = αx7 for some α ∈ C, then α2 = λ2. Selecting

f8 ∈ X ′ such that f8(x7) = 1
2λ2 , we get that f8(Ax7) = α

2λ2 . By direct calculation,

we know that (2λ2(Ax7 ⊗ f8))(Ax7 ⊗ f8) + (Ax7 ⊗ f8)(2λ
2(Ax7 ⊗ f8)) ∈ I∗(X )

and so 4λ2ϕ(Ax7 ⊗ f8)
2 ∈ I∗(X ). Moreover, AAx7 ⊗ f8 + Ax7 ⊗ f8A ∈ I∗(X )

implies that 2ϕ(Ax7 ⊗ f8) ∈ I∗(X ). It follows that λ2 = 1. Since I = 2A2 − A4 =

(2I − A2)(A2

2 ) + (A2

2 )(2I − A2) = (2A − A3)(A
2 ) + (A

2 )(2A − A3), we have that

ϕ(2I − A2)ϕ(A2

2 ) + ϕ(A2

2 )ϕ(2I − A2) ∈ I∗(X ) and 2I − ϕ(A3) ∈ I∗(X ). On the one

hand, ϕ(2I − A2)ϕ(A2

2 ) + ϕ(A2

2 )ϕ(2I − A2) = ϕ(I)ϕ(A2) + ϕ(A2)ϕ(I) − ϕ(A2)2 ∈

I∗(X ). On the other hand, A3 − A − λA2 + λ = 0 implies I = 1
λ
A + A2 − 1

λ
A3 =

( 1
λ
I + A− 1

λ
A2)(A

2 ) + (A
2 )( 1

λ
I + A− 1

λ
A2). Hence, 1

λ
[ϕ(A2)−ϕ(I)] = I −E for some

E ∈ I∗(X ). It gives ϕ(A2)2− [ϕ(I)ϕ(A2)+ϕ(A2)ϕ(I)]+ϕ(I)2 = I−E. Furthermore,

ϕ(A3)−I = λ[ϕ(I)−ϕ(A2)] implies (ϕ(A3)−I)2 = ϕ(I)2−[ϕ(I)ϕ(A2)+ϕ(A2)ϕ(I)]+

ϕ(A2)2. It follows ϕ(A3)2−2ϕ(A3)+I = I−E and ϕ(A3)2−2ϕ(A3) = −E. However,

(2I − ϕ(A3))2 = 4I − 4ϕ(A3) + ϕ(A3)2 = 2I − ϕ(A3) implies ϕ(A3) = 2I − E. So,
1
λ
[ϕ(A2)−ϕ(I)] = I−E = I+ϕ(A3) and then ϕ(λA3+λA−A2+I) = 0. Using the fact

that ϕ is a bijection, we get λA3+λA−A2+I = 0. Noting that A3−A−λA2+λ = 0,

we know A = 0 and this is a contradiction.

Therefore, A = µI for some non-zero complex number µ. We thus have that

ϕ(I) = λI for some constant λ ∈ C and λ2 = 1.

Next we assume that ϕ is surjective and ϕ(I) = I. We may replace ϕ by −ϕ if

ϕ(I) = −I.

Lemma 3.4. ϕ has the following properties:

(1) ϕ(I(X )) ⊆ I(X );

(2) ϕ preserves the orthogonality of idempotents;

(3) ϕ preserves the order of idempotents.

Proof. (1) It follows directly from ϕ(I) = I, ϕ(0) = 0 and the fact that (1
2P )I +

I( 1
2P ) = P for any P ∈ I∗(X ).

(2) If P,Q ∈ I∗(X ) and P ⊥ Q, then P + Q ∈ I∗(X ). So, ϕ(P + Q) = ϕ(P ) +

ϕ(Q) ∈ I∗(X ) by (1). Since ϕ(P ), ϕ(Q) ∈ I∗(X ), we know that ϕ(P ) ⊥ ϕ(Q).
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(3) Let P,Q ∈ I∗(X ) and P < Q. Then PQ = QP = P and Q = P + (Q − P ).

Clearly, P ∈ I∗(X ) and Q − P ∈ I∗(X ). Thus, ϕ(Q) − ϕ(P ) ∈ I∗(X ), and we

get 2ϕ(P ) = ϕ(Q)ϕ(P ) + ϕ(P )ϕ(Q). This implies that ϕ(Q)ϕ(P ) = ϕ(P )ϕ(Q)

= ϕ(P ).

Lemma 3.5. ϕ(I1(X )) ⊆ I1(X ).

Proof. Let P = x ⊗ f ∈ I1(X ) for some x ∈ X and f ∈ X ′ with f(x) = 1.

Then ϕ(P ) ∈ I∗(X ) by Lemma 3.4. Assume that rankϕ(P ) ≥ 2. Then there exists a

R ∈ I1(X ) such that R < ϕ(P ) and so ϕ(P )−R ∈ I∗(X ). Since ϕ is bijective, there

is a non-zero operator B ∈ B(X ) such that R = ϕ(B).

If x, Bx and B2x are linearly independent, there is a g ∈ X ′ such that g(Bx) = 1−

f(Bx), g(B2x) = 1−f(B2x) and g(x) = −1. Then Bx⊗(f+g)+x⊗(f+g)B ∈ I∗(X )

implies ϕ(B)ϕ(x⊗(f+g))+ϕ(x⊗(f+g))ϕ(B) = 2R+Rϕ(x⊗g)+ϕ(x⊗g)R ∈ I∗(X ).

On the one hand, −x⊗g ∈ I∗(X ) implies −ϕ(x⊗g) ∈ I∗(X ), and zx⊗f ·(−x)⊗g+(1−

z)(−x)⊗g ·x⊗f ∈ I∗(X ) implies zϕ(x⊗f)·ϕ((−x)⊗g)+(1−z)ϕ((−x)⊗g)ϕ(x⊗f) ∈

I∗(X ) for all z ∈ C. On the other hand, zx⊗ f · (−x)⊗ g + (1− z)(−x)⊗ g · x⊗ f =

z(−x) ⊗ g + (1 − z)x ⊗ f ∈ I∗(X ) implies zϕ((−x) ⊗ g) + (1 − z)ϕ(x ⊗ f) ∈ I∗(X )

for all z ∈ C. Hence, ϕ((−x) ⊗ g)ϕ(x ⊗ f), ϕ(x ⊗ f)ϕ((−x) ⊗ g) ∈ I∗(X ) and

ϕ(x ⊗ f)ϕ((−x) ⊗ g)ϕ(x ⊗ f) + ϕ((−x) ⊗ g)ϕ(x ⊗ f)ϕ((−x) ⊗ g)

= ϕ(x ⊗ f)ϕ((−x) ⊗ g) + ϕ((−x) ⊗ g)ϕ(x ⊗ f)

= ϕ(x ⊗ f) + ϕ((−x) ⊗ g).

Under the decomposition X = R(R) + (R(P ) ⊖ N(R)) + N(P ), R, P and −ϕ(x ⊗ g)

have the following operator matrices

R =





1 0 0

0 0 0

0 0 0



 , P =





1 0 0

0 1 0

0 0 0



 and ϕ(−x ⊗ g) =





Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33



 ,

respectively. By direct calculation, we know





Q11 Q12 Q13

Q21 Q22 Q23

0 0 0



 +





Q11 Q12 0

Q21 Q22 0

Q31 Q32 0



 =





1 + Q11 Q12 Q13

Q21 1 + Q22 Q23

Q31 Q32 Q33



 .

So, Q11 = 1, Q12 = 0, Q21 = 0, Q33 = 0 and Q22 = 1. It follows that

2R + Rϕ(x ⊗ g) + ϕ(x ⊗ g)R =





0 0 −Q13

0 0 0

−Q31 0 0



 .

Hence, we get a contradiction since 2R + Rϕ(x ⊗ g) + ϕ(x ⊗ g)R ∈ I∗(X ).
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If x, Bx and B2x are linearly dependent and x and Bx are linearly independent,

then B2x = λx + µBx for some λ, µ ∈ C. When µ = 0, there is h ∈ X ′ such that

h(Bx) = 1−f(Bx) and h(x) = −1. Then we know that Bx⊗(f +h)+x⊗(f +h)B ∈

I∗(X ) implies ϕ(B)ϕ(x⊗(f +h))+ϕ(x⊗(f +h))ϕ(B) = 2R+Rϕ(x⊗h)+ϕ(x⊗h)R ∈

I∗(X ). Note that −x ⊗ h ∈ I∗(X ) and zx ⊗ f · (−x) ⊗ h + (1 − z)(−x)⊗ h · x ⊗ f =

z(−x) ⊗ h + (1 − z)x ⊗ f ∈ I∗(X ). So, we can get another contradiction using a

similar argument demonstrated above. Now, we assume that µ 6= 0. If λ = 0, then

B2x = µBx. Thus, there is h1 ∈ X ′ such that h1(Bx) = µ
2 − f(Bx) and h1(x) = −1.

It follows that (I − 2
µ
B)x ⊗ (f + h1) + x ⊗ (f + h1)(I − 2

µ
B) ∈ I∗(X ) and then

ϕ(I − 2
µ
B)ϕ(x ⊗ (f + h1)) + ϕ(x ⊗ (f + h1))ϕ(I − 2

µ
B)

= 2P − 4
µ
R − 2ϕ(−x ⊗ h1) + 2

µ
[ϕ(−x ⊗ h1)R + Rϕ(−x ⊗ h1)] ∈ I∗(X ).

Note that −x⊗h1 ∈ I∗(X ) and zx⊗f · (−x)⊗h1 +(1−z)(−x)⊗h1 ·x⊗f = z(−x)⊗

h1 +(1−z)x⊗f ∈ I∗(X ). We get that −ϕ(x⊗h1) ∈ I∗(X ), zϕ(x⊗f) ·ϕ(−x)⊗h1)+

(1−z)ϕ((−x)⊗h1)ϕ(x⊗f) ∈ I∗(X ) for all z ∈ C and zϕ(−x)⊗h1)+(1−z)ϕ(x⊗f) ∈

I∗(X ) for all z ∈ C. Under the decomposition X = R(R) + (R(P ) ⊖ N(R)) + N(P ),

R, P and −ϕ(x ⊗ h1) have the following operator matrices

R =





1 0 0

0 0 0

0 0 0



 , P =





1 0 0

0 1 0

0 0 0



 and ϕ(−x⊗h1) =





Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33



 ,

respectively. By direct calculation, we know that





Q11 Q12 Q13

Q21 Q22 Q23

0 0 0



 +





Q11 Q12 0

Q21 Q22 0

Q31 Q32 0



 =





1 + Q11 Q12 Q13

Q21 1 + Q22 Q23

Q31 Q32 Q33



 .

So, Q11 = 1, Q12 = 0, Q21 = 0, Q33 = 0 and Q22 = 1. It follows that

ϕ(I − 2
µ
B)ϕ(x ⊗ (f + h1)) + ϕ(x ⊗ (f + h1))ϕ(I − 2

µ
B)

= 2P − 4
µ
R − 2ϕ(−x ⊗ h1) + 2

µ
[ϕ(−x ⊗ h1)R + Rϕ(−x ⊗ h1)] ∈ I∗(X )

=







0 0 (−2 + 2
µ
)Q13

0 0 −2Q23

(−2 + 2
µ
)Q31 −2Q32 0






∈ I∗(X ).

Clearly, this is a contradiction. If λ 6= 0, then there is h2 ∈ X ′ such that h2(Bx) =
−µ
2 −f(Bx) and h2(x) = −f(x). Hence, (I− 2

µ
B)x⊗(f +h2)+x⊗(f +h2)(I−

2
µ
B) ∈

I∗(X ), and thus,

ϕ(I − 2
µ
B)ϕ(x ⊗ (f + h2)) + ϕ(x ⊗ (f + h2))ϕ(I − 2

µ
B)

= 2P − 4
µ
R − 2ϕ(−x ⊗ h2) + 2

µ
[ϕ(−x ⊗ h2)R + Rϕ(−x ⊗ h2)] ∈ I∗(X ).
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By an argument similar to that above, we also get a contradiction.

If x, Bx and B2x are linearly dependent and x and Bx are linearly dependent,

then Bx = βx for some β ∈ C. When β = 0, we know that 1
2 ((I + zB)x ⊗ f + x ⊗

f(I + zB)) ∈ I∗(X ) for all z ∈ C\{0} implies that 1
2 ((I + zR)P + P (I + zR)) =

P + zR ∈ I∗(X ) for all z ∈ C\{0}. Obviously, this is a contradiction. When β 6= 0,

we know that 1
2(1+βz) ((I + zB)x⊗ f +x⊗ f(I + zB)) ∈ I∗(X ) for all z ∈ C\{0} with

1 + βz 6= 0 implies that 1
2(1+βz) ((I + zR)P + P (I + zR)) = 1

(1+βz) (P + zR) ∈ I∗(X )

for all z ∈ C\{0} with 1 + βz 6= 0. This is also a contradiction.

Therefore, ϕ(P ) ∈ I1(X ).

The proof of the following lemma is similar to that of [13, Lemma 2.7 ].

Lemma 3.6. ϕ(N1(X )) ⊆ N1(X ).

Proof. Let N = x ⊗ f ∈ N1(X ) for some non-zero x ∈ X and non-zero f ∈ X ′

such that f(x) = 0. Then ϕ(N) ∈ N (X ) by Lemma 3.2. Taking an f1 ∈ X ′ such that

f1(x) = 1 and setting Q = x⊗f1, we know that both Q and Q+N are in I1(X ). So are

both ϕ(Q) and ϕ(Q+N) by Lemma 3.5. Then there exist y1, y2 ∈ X and g1, g2 ∈ X ′

such that g1(y1) = g2(y2) = 1, ϕ(Q) = y1 ⊗ g1 and ϕ(Q + N) = y2 ⊗ g2. Putting

P = 1
2 ((Q + N) + Q) = 1

2N + Q, we get that P ∈ I1(X ) and then ϕ(P ) ∈ I1(X ).

However, ϕ(P ) = 1
2 (ϕ(Q + N) + ϕ(Q)) = 1

2 (y1 ⊗ g1 + y2 ⊗ g2). It follows that either

y1 and y2 or g1 and g2 are linearly dependent. If y1 and y2 are linearly dependent,

then we may assume that y1 = y2. Thus, ϕ(P ) = 1
2y1 ⊗ (g1 + g2) ∈ I1(X ) and

then g1(y1) + g2(y1) = 2. Since g1(y1) = 1, we have g2(y1) = 1. Thus, ϕ(N) =

ϕ(N + Q) − ϕ(Q) = y1 ⊗ (g1 − g2) and (g1 − g2)(y1) = 0. Hence, ϕ(N) ∈ N1(X ).

We can get that ϕ(N) ∈ N1(X ) by similar discussion if g1 and g2 are linearly

dependent.

Corollary 3.7. ϕ(F1(X )) ⊆ F1(X ) and ϕ(F(X )) ⊆ F(X ).

Proof. Since every non-nilpotent rank-one operator is a non-zero scalar multiple

of rank-one idempotent operator, we know that ϕ(F1(X )) ⊆ F1(X ) by Lemma 3.5

and Lemma 3.6 and the linearity of ϕ. Moreover, every finite-rank operator can be

written as a linear combination of finitely many rank-one operators. It follows from

the linearity of ϕ that ϕ(F(X )) ⊆ F(X ).

Note that a linear map ϕ on F(X ) is rank non-increasing if rankϕ(X) ≤ rankX

for any X ∈ F(X ). We start this section with [5, Corollary 2.1.5], which is restated

in the following.

Lemma 3.8. Let ϕ be a linear map on F(X ) which is rank non-increasing such

that rankϕ(T0) > 1 for some T0 ∈ F(X ). Then one of the following holds.
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(1) There exist linear injective maps A : X → X and C : X ′ → X ′ such that

ϕ(x ⊗ f) = Ax ⊗ Cf for all x ∈ X and f ∈ X ′.

(2) There exist linear injective maps A : X ′ → X and C : X → X ′ such that

ϕ(x ⊗ f) = Af ⊗ Cx for all x ∈ X and f ∈ X ′.

Proposition 3.9. Let ϕ be a surjective linear map on B(X ) preserving the

nonzero idempotency of Jordan products of two operators such that ϕ(I) = I. Then

one of the statements in Lemma 3.8 holds.

Proof. From Corollary 3.7, we know that the restriction ϕ|F(X ) of ϕ on F(X ) is

a linear map preserving rank non-increasing. Let Q be a rank-2 idempotent operator.

Then there exists a P ∈ I1(X ) such that P < Q. By Lemma 3.4, we know that

ϕ(P ) < ϕ(Q) and ϕ(P ) ∈ I1(X ). So, rankϕ(Q) ≥ 2. Then we get the desired results

from Lemma 3.8.

Proof of Theorem 1.1. The sufficiency is clear. Let ϕ be a linear map on Mn

preserving the nonzero idempotency of Jordan product of two operators. Then ϕ is

injective by Lemma 3.1 and thus bijective. We now have ϕ(I) = λI for some constant

λ ∈ {1,−1}. we may assume ϕ(I) = I. Then one of two statements in Proposition

3.1 holds.

If (1) holds, then we easily have that ϕ(X) = AXB for all X ∈ Mn. It is clear

that B = A−1. We have that ϕ(X) = AXA−1 for all X ∈ Mn.

If (2) holds, then we similarly have that ϕ(X) = AXtA−1 for all X ∈ Mn.

We next consider the infinite dimensional case.

Lemma 3.10. Let ϕ be a surjective linear map on B(X ) preserving the nonzero

idempotency of Jordan products of two operators such that ϕ(I) = I. Then ϕ(F1(X ))

= F1(X ).

Proof. By Corollary 3.7, it is sufficient to prove that F1(X ) ⊆ ϕ(F1(X )). Let T ∈

B(H) such that ϕ(T ) = z⊗h is of rank-one for some z ∈ X and h ∈ X ′. Clearly, T is a

non-scalar operator. So, there is x ∈ X such that x and Tx are linearly independent. If

rankT > 1, then there exists y ∈ X such that Tx and Ty are linearly independent. It

follows that x and y are linearly independent. Applying [9, Lemma 2.1], we know that

x+δy and T (x+δy) are linearly independent for all but finite number δ ∈ C. For any

fixed α ∈ C, there is a rank-one idempotent P (δ, α) such that (T +P (δ, α))(x+ δy) =

α(x + δy) by Lemma 2.4. Finding f(δ,α) ∈ X ′ to satisfy f(δ,α)(x + δy) = 1
2α

, we

get that 1
2α

((T + P (δ, α))(x + δy) ⊗ f(δ,α) + (x + δy) ⊗ f(δ,α)(T + P (δ, α))) ∈ I∗(X ),

which implies that 1
2α

(ϕ(T + P (δ, α))ϕ((x + δy)⊗ f(δ,α)) + ϕ((x + δy)⊗ f(δ,α))ϕ(T +

P (δ, α))) ∈ I∗(X ). Let ϕ(P (δ, α)) = e(δ,α) ⊗ g(δ,α). If Proposition 3.9 (1) holds,

then 1
2α

(ϕ(T + P (δ, α))ϕ((x + δy) ⊗ f(δ,α)) + ϕ((x + δy) ⊗ f(δ,α))ϕ(T + P (δ, α))) =
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1
2α

(ϕ(T+P (δ, α))A(x+δy)⊗Cf(δ,α)+A(x+δy)⊗Cf(δ,α)ϕ(T+P (δ, α))) ∈ I∗(X ). This

yields that ϕ(T +P (δ, α))A(x+δy) = αA(x+δy) or ϕ(T +P (δ, α))′Cf(δ,α) = αCf(δ,α).

When ϕ(T +P (δ, α))A(x+δy) = αA(x+δy), we have that h(A(x+δy))z+g(δ,α)(A(x+

δy))e(δ,α) = αA(x + δy) for fixed δ ∈ C\{0} and any α ∈ C\{0}. It follows that

g(δ,α1)(A(x + δy))e(δ,α1) − g(δ,α2)(A(x + δy))e(δ,α2) = (α1 − α2)A(x + δy)

for fixed δ ∈ C and any α1, α2 ∈ C\{0}. Obviously,

(1 + α2 − α1)g(δ,α1)(A(x + δy)) = g(δ,α2)(A(x + δy))g(δ,α1)(e(δ,α2))

for fixed δ ∈ C and any α1, α2 ∈ C\{0}. Hence, g(δ,α2)(A(x + δy))g(δ,α1)(e(δ,α2)) = 0

for fixed δ ∈ C and any α1, α2 ∈ C\{0} with 1+α2 = α1. So, g(δ,α2)(A(x+δy)) = 0 or

g(δ,α1)(e(δ,α2)) = 0 for fixed δ ∈ C and any α1, α2 ∈ C\{0} with 1+α2 = α1. According

to Lemma 3.8, we know that ϕ(P (δ, α)) : X → [A(x + δy), AT (x + δy)] and so

g(δ,α1)(e(δ,α2)) 6= 0. Hence, g(δ,α2)(A(x+δy)) = 0 for fixed δ ∈ C and any α2 ∈ C\{0}.

With this observation, we know that h(A(x + δy))z = α2A(x + δy) for fixed δ ∈ C

and any α2 ∈ C\{0}. This is a contradiction. When ϕ(T + P (δ, α))′f(δ,α) = αf(δ,α),

we get that α ∈ σp(z ⊗ h + e(δ,α) ⊗ g(δ,α)) for fixed δ ∈ C and any α ∈ C\{0}, where

σp(z ⊗ h + e(δ,α) ⊗ g(δ,α)) denotes that point spectrum of z ⊗ h + e(δ,α) ⊗ g(δ,α). Note

that R(z⊗h+ e(δ,α) ⊗ g(δ,α)) ⊆ [z]+ [A(x+ δy), AT (x+ δy)] for any α ∈ C. Here is a

contradiction. If Proposition 3.9 (2) holds, then we get a contradiction again. Thus,

T is of rank-one.

The idea of the following proof comes from [9] and [13].

Proof of Theorem 1.2. The sufficiency is clear. Now, we prove the necessity and

assume that ϕ(I) = I by Lemma 3.3.

By Lemma 3.10, ϕ maps the set of rank-one operators onto itself. This implies

that the injective linear maps A and C mentioned in Proposition 3.9 are bijective.

Suppose Proposition 3.9 (1) holds. By Lemma 3.4 and the linearity of ϕ, it can

be shown that Cf(Ax) = f(x) for all x ∈ X and f ∈ X ′, which implies that C is

the adjoint of A−1, and hence C is bounded. Thus, A−1 and A are bounded too.

Furthermore, for any y ∈ X ,

ϕ(x ⊗ f)y = (Ax ⊗ Cf)y = (Cf)(y)Ax = f(A−1y)Ax = A(x ⊗ f)A−1y.

Thus, ϕ(T ) = ATA−1 for any rank-one operator T . Moreover, every finite-rank

operator can be written as a linear combination of finitely many rank-one operators.

With the linearity of ϕ, we know that ϕ(T ) = ATA−1 for any finite-rank operator T .

Replacing ϕ by A−1ϕA, we may assume that ϕ(T ) = T for every finite-rank operator

T . We next prove that ϕ(T ) = T for every non-scalar and infinite-rank operator

T ∈ B(X ).
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Let T ∈ B(X ) be any non-scalar and infinite-rank operator. By the property of

ϕ, we know that

TR + RT ∈ I(X )\{0} ⇒ ϕ(T )ϕ(R) + ϕ(R)ϕ(T ) = ϕ(T )R + Rϕ(T ) ∈ I(X )\{0}

for every R ∈ F1(X ). Suppose there is x ∈ X such that (ϕ(A)+2P0)x and (A+2P0)x

are linearly independent for some rank-one idempotent P0 ∈ I∗(X ) If x and (A+2P0)x

are linearly independent, then there exists a rank-one idempotent Q ∈ I(X ) such that

(A+2P0 +2Q)x = x by Lemma 2.4. So, (ϕ(A)+ 2P0 +2Q)x 6= (A+2P0 +2Q)x and

there is f ∈ X ′ such that f((ϕ(A) + 2P0 + 2Q)x) = 0 and f((A + 2P0 + 2Q)x) = 1.

It follows that 1
2 ((A + 2P0 + 2Q)x ⊗ f + x ⊗ f(A + 2P0 + 2Q)) ∈ I∗(X ) and then

1
2 (ϕ(A + 2P0 + 2Q)x ⊗ f + x ⊗ fϕ(A + 2P0 + 2Q)) ∈ I∗(X ). Hence, f((ϕ(A) +

2P0 + 2Q)2x)x = 2(ϕ(A) + 2P0 + 2Q)x. Thus, f((ϕ(A) + 2P0 + 2Q)2x) = 0 and

so (ϕ(A) + 2P0 + 2Q)x = 0. This is a contradiction. If (A + 2P0)x = γx for some

non-zero γ ∈ C, then there is g ∈ X ′ such that g((ϕ(A) + 2P0)x) = 0 and g((A +

2P0)x) = γ. Hence, 1
2γ

((A+2P0)x⊗ g +x⊗ g(A+2P0)) ∈ I∗(X ), which implies that
1
2γ

(ϕ(A + 2P0)x ⊗ g + x ⊗ gϕ(A + 2P0)) ∈ I∗(X ). By direct calculation, we get that

g((ϕ(A) + 2P0)
2x)x = 2γ(ϕ(A) + 2P0)x and so f((ϕ(A) + 2P0 + 2Q)2x) = 0. Thus,

(ϕ(A)+2P0 +2Q)x = 0 and this is a contradiction. Thus, ϕ(A)+2P and A+2P are

locally linearly dependent for any rank-one idempotent P ∈ I∗(X ). By [10, Theorem

2.4], we know that there is η(P ) ∈ C such that ϕ(A) + 2P = η(P )(A + 2P ) for any

rank-one idempotent P ∈ I∗(X ). Since A + 2P is a non-scalar operator, we can find

x ∈ X such that x and (A + 2P )x are linearly independent. Then there exists an

idempotent operator Q1 ∈ B(X ) of rank one such that (A+2P +2Q1)x = x. There is

h ∈ X ′ such that h(x) = 1. So, 1
2 ((A+2P +2Q1)x⊗h+x⊗h(A+2P +2Q1)) ∈ I∗(X ).

It follows that 1
2 (ϕ(A+2P +2Q1)x⊗h+x⊗hϕ(A+2P +2Q1)) ∈ I∗(X ). By direct

calculation, we have that ϕ(A+2P +2Q1)x = x or ϕ(A+2P +2Q1)
′h = h. Therefore,

η(P + Q1) = 1 and then ϕ(A) = A.

Suppose Proposition 3.9 (2) holds. Then we have (Cx)(Af) = f(x) for all x ∈ X

and f ∈ X ′ by a similar argument. So, C ′ = A−1K−1, where K is the natural embed-

ding of X into X ′′. Thus, A−1 is bounded and so as (A−1)′ and C = (A−1)′K. As

C and (A−1)′ are bijective, as so K and hence X is reflective. Now by a similar ar-

gument, ϕ(T ) = AT ′A−1 for every finite-rank operator T and hence ϕ(T ) = AT ′A−1

for all every T ∈ B(X ).

Acknowledgment. The author would like to thank the anonymous referees for

their helpful comments and suggestions that greatly improved the original manuscript.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 22, pp. 767-779, August 2011



ELA

Linear Maps Preserving the Idempotency of Jordan Products of Operators 779

REFERENCES
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[2] M. Dobovǐsek, B. Kuzma, G. Lešnjak, C.-K. Li, and T. Petek. Mappings that preserve pairs of

operators with zero triple Jordan product. Linear Algebra Appl., 426:255–279, 2007.

[3] L. Fang and G.X. Ji. Linear maps preserving products of positive or Hermitian matrices. Linear

Algebra Appl., 419:601–611, 2006.

[4] L. Fang, G.X. Ji, and Y.F. Pang. Maps preserving the idempotency of products of operators.

Linear Algebra Appl., 426:40–52, 2007.

[5] J.C. Hou and J.L. Cui. Introduction to the Linear Maps on Operator Algebras. Science Press,

Beijing, 2002.

[6] J.C Hou and Q.H. Di. Maps preserving numerical ranges of operator products. Proc. Amer.

Math. Soc., 134:1435–1446, 2006.

[7] G.X. Ji and Y.L. Gao. Maps preserving operator pairs whose products are projections. Linear

Algebra Appl., 433:1348–1364, 2010.

[8] C.-K. Li, P. Šemrl, and N.S. Sze. Maps preserving the nilpotency of products of operators.

Linear Algebra Appl., 424:222–239, 2007.
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