# NEW REPRESENTATIONS FOR THE MOORE-PENROSE INVERSE* 

HONGXING WANG ${ }^{\dagger}$ AND MUSHENG WEI ${ }^{\ddagger}$


#### Abstract

In this paper, some new representations of the Moore-Penrose inverse of a complex $m \times n$ matrix of rank $r$ in terms of $(s \times t)$-constrained submatrices with $m \geq s \geq r, n \geq t \geq r$ are presented.


Key words. Constrained submatrix, Moore-Penrose inverse.

AMS subject classifications. 15A15, 15A09.

1. Introduction. We adopt the following notation in this paper. The set of $m \times$ $n$ matrices with complex (respectively, real) entries is denoted by $\mathbb{C}^{m \times n}$ (respectively, $\mathbb{R}^{m \times n}$ ). The subset of $\mathbb{C}^{m \times n}$ (respectively, $\mathbb{R}^{m \times n}$ ) consisting of the rank $r$ matrices is denoted by $\mathbb{C}_{r}^{m \times n}$ (respectively, $\mathbb{R}_{r}^{m \times n}$ ). We assume throughout that $r>0$. For positive integers $r \leq l \leq m$,

$$
\begin{aligned}
& \Delta_{l, m}=\left\{\left\{i_{1}, \ldots, i_{l}\right\} \mid 1 \leq i_{1}<\cdots<i_{l} \leq m\right\} \\
& \Delta_{r, \alpha}=\left\{\left\{i_{1}^{\prime}, \ldots, i_{r}^{\prime}\right\} \subseteq\left\{i_{1}, \ldots, i_{l}\right\}=\alpha \in \Delta_{l, m} \mid i_{1} \leq i_{1}^{\prime}<\cdots<i_{r}^{\prime} \leq i_{l}\right\} .
\end{aligned}
$$

For $\alpha \in \Delta_{s, m}$, and $\beta \in \Delta_{t, n}, A_{\alpha, \beta}$ is the $s \times t$ submatrix of $A$ consisting of the rows of $A$ indexed by $\alpha$ and the columns of $A$ indexed by $\beta$, and $A_{\alpha, *}$ (respectively, $A_{*, \beta}$ ) denotes $A_{\alpha,\{1,2, \ldots, n\}}$ (respectively, $A_{\{1,2, \ldots, m\}, \beta}$ ). For $\alpha=\left\{i_{1}, \ldots, i_{s}\right\} \in \Delta_{s, m}$, $P_{\alpha}$ is the $s \times m$ matrix with 1 in positions $\left(1, i_{1}\right), \ldots,\left(s, i_{s}\right)$ and 0 elsewhere; for $\beta=\left\{j_{1}, \ldots, j_{t}\right\} \in \Delta_{t, n}, Q_{\beta}$ is the $n \times t$ matrix with 1 at positions $\left(j_{1}, 1\right), \ldots,\left(j_{t}, t\right)$ and 0 elsewhere. It is obvious that $P_{\alpha} A=A_{\alpha, *}$ and $A Q_{\beta}=A_{*, \beta}$. The conjugate transpose of $A$ is denoted by $A^{H}$, and it is clear that $A_{\alpha, \beta}^{H}=\left(A^{H}\right)_{\alpha, \beta}$. The $r$-th compound matrix of $A$ is denoted by $C_{r}(A)$. Thus, by [6], if $\operatorname{rank}(A)=r$, then

$$
\operatorname{Tr} C_{r}\left(A A^{H}\right)=\operatorname{Tr} C_{r}\left(A^{H} A\right)=\sum_{\alpha \in \Delta_{r, m}, \beta \in \Delta_{r, n}} \operatorname{det}\left(A_{\alpha, \beta}\right) \operatorname{det}\left(A_{\beta, \alpha}^{H}\right) .
$$

[^0]The Moore-Penrose inverse of $A \in \mathbb{C}^{m \times n}$ is defined as the unique $X \in \mathbb{C}^{n \times m}$ satisfying
(1.1) (1) $A X A=A$,
(2) $X A X=X$,
(3) $(A X)^{H}=A X$,
(4) $(X A)^{H}=X A$,
and is usually denoted by $X=A^{\dagger}$ (see [6]). If $A \in \mathbb{C}^{m \times n}$ and $\operatorname{rank}(A)=r>0$, then $A$ has a full-rank factorization $A=F G$, and it is a standard fact that

$$
\begin{equation*}
A^{\dagger}=G^{\dagger} F^{\dagger} \tag{1.2}
\end{equation*}
$$

Also $A_{\alpha, \beta}^{\dagger}=\left(A_{\alpha, \beta}\right)^{\dagger}$.
For $A \in \mathbb{C}^{m \times m}$, the smallest nonnegative integer $k$ such that $\operatorname{rank}\left(A^{k+1}\right)=$ $\operatorname{rank}\left(A^{k}\right)$, is called the index of $A$, and is denoted by $\operatorname{Ind}(A)=k . \operatorname{If} \operatorname{Ind}(A)=1$, then there exists a unique matrix $X \in \mathbb{C}^{m \times m}$ satisfying
(1) $A X A=A$,
(2) $X A X=X$,
(5) $A X=X A$.

Here $X=A^{\sharp}$ is called the group inverse of $A$. Furthermore, for a full-rank factorization $A=F G$ of $A, A^{\sharp}=F(G F)^{-2} G($ see [6]).

For $A \in \mathbb{C}_{r}^{m \times n}$, in [7], Berg deduced the following representation of the MoorePenrose inverse of $A$ :

$$
\begin{equation*}
A^{\dagger}=\frac{1}{\operatorname{Tr} C_{r}\left(A^{H} A\right)} \sum_{\alpha \in \Delta_{r, m}, \beta \in \Delta_{r, n}} \operatorname{Tr} C_{r}\left(A_{\beta, \alpha}^{H} A_{\alpha, \beta}\right) Q_{\beta} A_{\alpha, \beta}^{\dagger} P_{\alpha} \tag{1.4}
\end{equation*}
$$

In [9], Bruening obtained the following representations of the Moore-Penrose inverse of $A$ :

$$
\begin{equation*}
A^{\dagger}=\frac{1}{\operatorname{Tr} C_{r}\left(A^{H} A\right)} \sum_{\alpha \in \Delta_{r, m}} \operatorname{Tr} C_{r}\left(A_{*, \alpha}^{H} A_{\alpha, *}\right) A_{\alpha, *}^{\dagger} P_{\alpha} \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
A^{\dagger}=\frac{1}{\operatorname{Tr} C_{r}\left(A^{H} A\right)} \sum_{\beta \in \Delta_{r, n}} \operatorname{Tr} C_{r}\left(A_{\beta, *}^{H} A_{*, \beta}\right) Q_{\beta} A_{*, \beta}^{\dagger} . \tag{1.6}
\end{equation*}
$$

In [10], for $A \in \mathbb{C}_{r}^{m \times m}$ with $\operatorname{Ind}(A)=1$, Cai and Chen deduced the following representation of the group inverse of $A$ :

$$
\begin{equation*}
A^{\sharp}=\frac{\sum_{\alpha \in \Delta_{r, m} \beta \in \Delta_{r, m}} \operatorname{Tr} C_{r}\left(A_{\beta, \alpha} A_{\alpha, \beta}\right) Q_{\beta} A_{\alpha, \beta}^{\dagger} P_{\alpha}}{\operatorname{Tr} C_{r}\left(A^{2}\right)} . \tag{1.7}
\end{equation*}
$$

A detailed discussion of generalized inverses and their representations in terms of submatrices can be found in $[2,6,10,12,14,17,18,19,20,22,23,25,26]$.

In this paper, we will deduce some new representations of the Moore-Penrose inverse of $A \in \mathbb{C}_{r}^{m \times n}$ in terms of $(s \times t)$-constrained submatrices, where $m \geq s \geq r$, $n \geq t \geq r$.
2. Preliminaries. In this section, we present some preliminary results.

Lemma 2.1. [20] Let $A \in \mathbb{C}_{r}^{m \times n}, \alpha \in \Delta_{r, m}, \beta \in \Delta_{r, n}$ with $\operatorname{rank}\left(A_{\alpha, \beta}\right)=r$, and let $P_{\alpha}$ and $Q_{\beta}$ be $r \times m$ and $n \times r$ matrices, respectively. Then

$$
\begin{equation*}
A Q_{\beta} A_{\alpha, \beta}^{-1} P_{\alpha} A=A \tag{2.1}
\end{equation*}
$$

Notice that $A=A Q_{\beta}\left(A_{\alpha, \beta}^{-1} P_{\alpha} A\right)$ is a full-rank decomposition of $A$ and

$$
A^{\dagger}=\left(P_{\alpha} A\right)^{\dagger} A_{\alpha, \beta}\left(A Q_{\beta}\right)^{\dagger}
$$

We now extend the above formula to more general forms.
Lemma 2.2. Let $A \in \mathbb{C}_{r}^{m \times n}, \alpha \in \Delta_{s, m}, \beta \in \Delta_{t, n}, m \geq s \geq r, n \geq t \geq r$ with $\operatorname{rank}\left(P_{\alpha} A Q_{\beta}\right)=r$. Then

$$
\begin{equation*}
A Q_{\beta}\left(P_{\alpha} A Q_{\beta}\right)^{\dagger} P_{\alpha} A=A \tag{2.2}
\end{equation*}
$$

Proof. Let $A=F G$ be a full-rank decomposition of $A$. Because

$$
r=\operatorname{rank}(F G)=\operatorname{rank}\left(P_{\alpha} F G Q_{\beta}\right) \leq \operatorname{rank}\left(G Q_{\beta}\right) \leq r
$$

we have that $\operatorname{rank}\left(G Q_{\beta}\right)=r$. Similarly, $\operatorname{rank}\left(P_{\alpha} F\right)=r$. Therefore $P_{\alpha} A Q_{\beta}=$ $\left(P_{\alpha} F\right)\left(G Q_{\beta}\right)$ is a full-rank decomposition of $P_{\alpha} A Q_{\beta}$. By applying (1.2), we obtain

$$
\begin{aligned}
A Q_{\beta}\left(P_{\alpha} A Q_{\beta}\right)^{\dagger} P_{\alpha} A & =F G Q_{\beta}\left(P_{\alpha} F G Q_{\beta}\right)^{\dagger} P_{\alpha} F G \\
& =F G Q_{\beta}\left(G Q_{\beta}\right)^{\dagger}\left(P_{\alpha} F\right)^{\dagger} P_{\alpha} F G \\
& =A
\end{aligned}
$$

Lemma 2.3. Let $A \in \mathbb{C}_{r}^{m \times n}, \alpha \in \Delta_{s, m}, \beta \in \Delta_{t, n}, m \geq s \geq r, n \geq t \geq r$ with $\operatorname{rank}\left(P_{\alpha} A Q_{\beta}\right)=r$. Then

$$
\begin{equation*}
A^{\dagger}=\left(P_{\alpha} A\right)^{\dagger} A_{\alpha, \beta}\left(A Q_{\beta}\right)^{\dagger} \tag{2.3}
\end{equation*}
$$

Proof. Let $A=F G$ be a full-rank decomposition of $A$. By applying Lemma 2.2 and (1.2), we obtain

$$
\begin{aligned}
\left(P_{\alpha} A\right)^{\dagger}\left(P_{\alpha} A Q_{\beta}\right)\left(A Q_{\beta}\right)^{\dagger} & =\left(P_{\alpha} F G\right)^{\dagger}\left(P_{\alpha} F G Q_{\beta}\right)\left(F G Q_{\beta}\right)^{\dagger} \\
& =G^{\dagger}\left(P_{\alpha} F\right)^{\dagger}\left(P_{\alpha} F\right)\left(G Q_{\beta}\right)\left(G Q_{\beta}\right)^{\dagger} F^{\dagger} \\
& =G^{\dagger} F^{\dagger} \\
& =A^{\dagger}
\end{aligned}
$$

## ELA

3. Representations of the Moore-Penrose inverse. In this section, we derive some new representations of the Moore-Penrose inverse of $A$.

Theorem 3.1. Let $A \in \mathbb{C}_{r}^{m \times n}, m \geq s \geq r$ and $n \geq t \geq r$. Then $A^{\dagger}$ equals

$$
\begin{equation*}
\binom{m-r}{s-r}^{-1}\binom{n-r}{t-r}^{-1} \frac{\sum_{\alpha \in \Delta_{s, m}, \beta \in \Delta_{t, n}} \operatorname{Tr} C_{r}\left(A_{\beta, \alpha}^{H} A_{\alpha, \beta}\right) Q_{\beta} A_{\alpha, \beta}^{\dagger} P_{\alpha}}{\operatorname{Tr} C_{r}\left(A^{H} A\right)} \tag{3.1}
\end{equation*}
$$

Proof. For given $\alpha \in \Delta_{s, m}$ and $\beta \in \Delta_{t, n}$, let $r^{\prime}$ be the rank of the submatrix $A_{\alpha, \beta}$. By applying (1.4), we have

$$
\begin{equation*}
A_{\alpha, \beta}^{\dagger}=\sum_{\alpha^{\prime} \in \Delta_{r^{\prime}, \alpha}} \frac{\operatorname{Tr} C_{r^{\prime}}\left(A_{\beta, \alpha^{\prime}}^{H} A_{\alpha^{\prime}, \beta}\right)}{\operatorname{Tr} C_{r^{\prime}}\left(A_{\beta, \alpha}^{H} A_{\alpha, \beta}\right)} A_{\alpha^{\prime}, \beta}^{\dagger} P_{\alpha^{\prime}} \tag{3.2}
\end{equation*}
$$

Notice that if $r^{\prime}<r, \alpha^{\prime} \in \Delta_{r^{\prime}, \alpha}, \alpha \in \Delta_{s, m}$ and $\beta \in \Delta_{r, n}$, then $P_{\alpha^{\prime}} P_{\alpha}=P_{\alpha^{\prime}}$ and

$$
\begin{equation*}
\operatorname{Tr} C_{r}\left(A_{\beta, \alpha}^{H} A_{\alpha, \beta}\right)=0 \tag{3.3}
\end{equation*}
$$

Therefore, applying (3.2) and simplifying by (3.3) gives

$$
\begin{aligned}
& \operatorname{Tr} C_{r}\left(A_{\beta, \alpha}^{H} A_{\alpha, \beta}\right) Q_{\beta} A_{\alpha, \beta}^{\dagger} P_{\alpha} \\
& =\operatorname{Tr} C_{r}\left(A_{\beta, \alpha}^{H} A_{\alpha, \beta}\right) Q_{\beta}\left(\sum_{\alpha^{\prime} \in \Delta_{r^{\prime}, \alpha}} \frac{\operatorname{Tr} C_{r^{\prime}}\left(A_{\beta, \alpha^{\prime}}^{H} A_{\alpha^{\prime}, \beta}\right)}{\operatorname{Tr} C_{r^{\prime}}\left(A_{\beta, \alpha}^{H} A_{\alpha, \beta}\right)} A_{\alpha^{\prime}, \beta}^{\dagger} P_{\alpha^{\prime}}\right) P_{\alpha} \\
& =\sum_{\alpha^{\prime} \in \Delta_{r^{\prime}, \alpha}} \frac{\operatorname{Tr} C_{r}\left(A_{\beta, \alpha}^{H} A_{\alpha, \beta}\right)}{\operatorname{Tr} C_{r^{\prime}}\left(A_{\beta, \alpha}^{H} A_{\alpha, \beta}\right)} \operatorname{Tr} C_{r^{\prime}}\left(A_{\beta, \alpha^{\prime}}^{H} A_{\alpha^{\prime}, \beta}\right) Q_{\beta} A_{\alpha^{\prime}, \beta}^{\dagger} P_{\alpha^{\prime}} \\
& =\sum_{\alpha^{\prime} \in \Delta_{r, \alpha}} \operatorname{Tr} C_{r}\left(A_{\beta, \alpha^{\prime}}^{H} A_{\alpha^{\prime}, \beta}\right) Q_{\beta} A_{\alpha^{\prime}, \beta}^{\dagger} P_{\alpha^{\prime}} .
\end{aligned}
$$

For each fixed $\alpha^{\prime} \in \Delta_{r, \alpha}$, there are $\binom{m-r}{s-r}$ choices of $s$ elements $i_{1}, \ldots, i_{s}$ of $\alpha$ from $\{1, \ldots, m\}$ such that $\alpha^{\prime} \subseteq \alpha$. Therefore,

$$
\begin{align*}
\sum_{\alpha \in \Delta_{s, m}} & \left(\sum_{\alpha^{\prime} \in \Delta_{r, \alpha}} \operatorname{Tr} C_{r}\left(A_{\beta, \alpha^{\prime}}^{H} A_{\alpha^{\prime}, \beta}\right) Q_{\beta} A_{\alpha^{\prime}, \beta}^{\dagger} P_{\alpha^{\prime}}\right)  \tag{3.5}\\
& =\binom{m-r}{s-r} \sum_{\alpha^{\prime} \in \Delta_{r, \alpha}} \operatorname{Tr} C_{r}\left(A_{\beta, \alpha^{\prime}}^{H} A_{\alpha^{\prime}, \beta}\right) Q_{\beta} A_{\alpha^{\prime}, \beta}^{\dagger} P_{\alpha^{\prime}} .
\end{align*}
$$

## ELA

Similarly, for each fixed $\alpha^{\prime} \in \Delta_{r, \alpha}$, by adopting the above formulas to $A_{\alpha^{\prime}, \beta}^{\dagger}$ and using the fact that $\operatorname{Tr} C_{r}\left(A_{\alpha^{\prime}, \beta^{\prime}} A_{\beta^{\prime}, \alpha^{\prime}}^{H}\right)=\operatorname{Tr} C_{r}\left(A_{\beta^{\prime}, \alpha^{\prime}}^{H} A_{\alpha^{\prime}, \beta^{\prime}}\right)$, we have
(3.6) $\operatorname{Tr} C_{r}\left(A_{\beta, \alpha^{\prime}}^{H} A_{\alpha^{\prime}, \beta}\right) Q_{\beta} A_{\alpha^{\prime}, \beta}^{\dagger} P_{\alpha^{\prime}}=\sum_{\beta^{\prime} \in \Delta_{r, \beta}} \operatorname{Tr} C_{r}\left(A_{\beta^{\prime}, \alpha^{\prime}}^{H} A_{\alpha^{\prime}, \beta^{\prime}}\right) Q_{\beta^{\prime}} A_{\alpha^{\prime}, \beta^{\prime}}^{\dagger} P_{\alpha^{\prime}}$, and

$$
\begin{align*}
\sum_{\beta \in \Delta_{t, n}} & \left(\sum_{\beta^{\prime} \in \Delta_{r, \beta}} \operatorname{Tr} C_{r}\left(A_{\beta^{\prime}, \alpha^{\prime}}^{H} A_{\alpha^{\prime}, \beta^{\prime}}\right) Q_{\beta^{\prime}} A_{\alpha^{\prime}, \beta^{\prime}}^{\dagger} P_{\alpha^{\prime}}\right)  \tag{3.7}\\
& =\binom{n-r}{t-r} \sum_{\beta^{\prime} \in \Delta_{r, \beta}} \operatorname{Tr} C_{r}\left(A_{\beta^{\prime}, \alpha^{\prime}}^{H} A_{\alpha^{\prime}, \beta^{\prime}}\right) Q_{\beta^{\prime}} A_{\alpha^{\prime}, \beta^{\prime}}^{\dagger} P_{\alpha^{\prime}}
\end{align*}
$$

Therefore, by combining the formulas in (3.4)-(3.7) and applying (1.4), we obtain

$$
\binom{m-r}{s-r}^{-1}\binom{n-r}{t-r}^{-1} \frac{\sum_{\alpha \in \Delta_{s, m}, \beta \in \Delta_{t, n}}\left(\operatorname{Tr} C_{r}\left(A_{\beta, \alpha}^{H} A_{\alpha, \beta}\right) Q_{\beta} A_{\alpha, \beta}^{\dagger} P_{\alpha}\right)}{\operatorname{Tr} C_{r}\left(A^{H} A\right)}
$$

$$
\begin{equation*}
=\binom{m-r}{s-r}^{-1}\binom{n-r}{t-r}^{-1} \frac{\sum_{\alpha \in \Delta_{s, m}, \beta \in \Delta_{t, n}}\left(\sum_{\alpha^{\prime} \in \Delta_{r, \alpha}} \operatorname{Tr} C_{r}\left(A_{\beta, \alpha^{\prime}}^{H} A_{\alpha^{\prime}, \beta}\right) Q_{\beta} A_{\alpha^{\prime}, \beta}^{\dagger} P_{\alpha^{\prime}}\right)}{\operatorname{Tr} C_{r}\left(A^{H} A\right)}, \tag{3.4}
\end{equation*}
$$

$=\binom{n-r}{t-r}^{-1} \frac{\sum_{\alpha^{\prime} \in \Delta_{r, \alpha}}\left(\sum_{\beta \in \Delta_{t, n}} \operatorname{Tr} C_{r}\left(A_{\beta, \alpha^{\prime}}^{H} A_{\alpha^{\prime}, \beta}\right) Q_{\beta} A_{\alpha^{\prime}, \beta}^{\dagger} P_{\alpha^{\prime}}\right)}{\operatorname{Tr} C_{r}\left(A^{H} A\right)}, \quad$ (by (3.5))
$=\binom{n-r}{t-r}^{-1} \frac{\sum_{\alpha^{\prime} \in \Delta_{r, \alpha}}\left(\sum_{\beta \in \Delta_{t, n}} \sum_{\beta^{\prime} \in \Delta_{r, \beta}} \operatorname{Tr} C_{r}\left(A_{\beta^{\prime}, \alpha^{\prime}}^{H} A_{\alpha^{\prime}, \beta^{\prime}}\right) Q_{\beta^{\prime}} A_{\alpha^{\prime}, \beta^{\prime}}^{\dagger} P_{\alpha^{\prime}}\right)}{\operatorname{Tr} C_{r}\left(A^{H} A\right)}, \quad$ (by (3.6))
$=\frac{1}{\operatorname{Tr} C_{r}\left(A^{H} A\right)}\left(\sum_{\alpha^{\prime} \in \Delta_{r, m}, \beta^{\prime} \in \Delta_{r, n}} \operatorname{Tr} C_{r}\left(A_{\beta^{\prime}, \alpha^{\prime}}^{H} A_{\alpha^{\prime}, \beta^{\prime}}\right) Q_{\beta^{\prime}} A_{\alpha^{\prime}, \beta^{\prime}}^{\dagger} P_{\alpha^{\prime}}\right), \quad$ by (3.7))
$=A^{\dagger}$,
that is,
$A^{\dagger}=\binom{m-r}{s-r}^{-1}\binom{n-r}{t-r}^{-1} \frac{\sum_{\alpha \in \Delta_{s, m}, \beta \in \Delta_{t, n}} \operatorname{Tr} C_{r}\left(A_{\beta, \alpha}^{H} A_{\alpha, \beta}\right) Q_{\beta} A_{\alpha, \beta}^{\dagger} P_{\alpha}}{\operatorname{Tr} C_{r}\left(A^{H} A\right)} . \quad \square$

## ELA

Example 3.2. Take

$$
A=\left[\begin{array}{ccccccc}
1 & 2 & 0 & 1 & 0 & 2 & 0 \\
0 & -2 & 0 & 1 & 0 & -1 & 0 \\
1 & 0 & 0 & 2 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 2 \\
2 & 0 & 1 & 2 & 0 & 1 & 2
\end{array}\right] \in \mathbb{R}_{3}^{5 \times 7}
$$

$s=4$ and $t=6$. Then $\operatorname{Tr} C_{r}\left(A^{H} A\right)=1632,\binom{m-r}{s-r}\binom{n-r}{t-r}=8$ and after some calculations, we have

$$
\begin{aligned}
& \sum_{\alpha \in \Delta_{s, m}, \beta \in \Delta_{t, n}} \operatorname{Tr} C_{r}\left(A_{\beta, \alpha}^{H} A_{\alpha, \beta}\right) Q_{\beta} A_{\alpha, \beta}^{\dagger} P_{\alpha} \\
&=8\left[\begin{array}{ccccc}
46 & 6 & 52 & 90 & 142 \\
236 & -324 & -88 & 36 & -52 \\
-50 & -42 & -92 & 186 & 94 \\
74 & 258 & 332 & -210 & 122 \\
0 & 0 & 0 & 0 & 0 \\
214 & -114 & 100 & -78 & 22 \\
-100 & -84 & -184 & 372 & 188
\end{array}\right],
\end{aligned}
$$

(see the appendix). Thus by (3.1),

$$
A^{\dagger}=\frac{1}{1632}\left[\begin{array}{ccccc}
46 & 6 & 52 & 90 & 142 \\
236 & -324 & -88 & 36 & -52 \\
-50 & -42 & -92 & 186 & 94 \\
74 & 258 & 332 & -210 & 122 \\
0 & 0 & 0 & 0 & 0 \\
214 & -114 & 100 & -78 & 22 \\
-100 & -84 & -184 & 372 & 188
\end{array}\right]
$$

In a similar manner, we can derive the following formulas which are generalizations of the formulas in (1.5) and (1.6).

Corollary 3.3. Let $A \in \mathbb{C}^{m \times n}$ with $\operatorname{rank}(A)=r, \alpha \in \Delta_{s, m}, \beta \in \Delta_{t, n}$, $m \geq s \geq r$ and $n \geq t \geq r$. Then

$$
\begin{aligned}
A^{\dagger} & =\binom{m-r}{s-r}^{-1} \frac{\sum_{\alpha \in \Delta_{s, m}} \operatorname{Tr} C_{r}\left(A_{*, \alpha}^{H} A_{\alpha, *}\right) A_{\alpha, *}^{\dagger} P_{\alpha}}{\operatorname{Tr} C_{r}\left(A^{H} A\right)} \\
& =\binom{n-r}{t-r}^{-1} \frac{\sum_{\beta \in \Delta_{t, n}} \operatorname{Tr} C_{r}\left(A_{\beta, *}^{H} A_{*, \beta}\right) Q_{\beta} A_{*, \beta}^{\dagger}}{\operatorname{Tr} C_{r}\left(A^{H} A\right)}
\end{aligned}
$$

Acknowledgments. The authors are grateful to Professors Ravindra B. Bapat, Bryan Shader and the referees for their valuable comments and suggestions which greatly improved this paper.

## REFERENCES

[1] R.B. Bapat, K.P.S. Bhaskara, and K. Manjunatha Prasad. Generalized inverses over integral domains. Linear Algebra and its Applications, 140:181-196, 1990.
[2] R.B. Bapat. Generalized inverses with proportional minors. Linear Algebra and its Applications, 211:27-35, 1994.
[3] R.B. Bapat. Outer inverses: Jacobi type identities and nullities of submatrices. Linear Algebra and its Applications, 361:107-120, 2003.
[4] A. Ben-Israel. A volume associated with $m \times n$ matrices. Linear Algebra and its Applications, 167:87-111, 1992.
[5] A. Ben-Israel. The Moore of the Moore-Penrose inverse. Electronic Journal of Linear Algebra, 9:150-157, 2002.
[6] A. Ben-Israel and T.N.E. Greville. Generalized Inverse: Theory and Applications, 2nd edition. Springer Verlag, New York, 2003.
[7] L. Berg. Three results in connection with inverse matrices. Linear Algebra and its Applications, 84:63-77, 1986.
[8] K.P.S. Bhaskara Rao. On generalized inverses of matrices over integral domains. Linear Algebra and its Applications, 49:179-189, 1983.
[9] J. T. Bruening. A new formula for the Moore-Penrose inverse. Current Trends in Matrix Theory, (Auburn, AL, 1986), North-Holland, New York, 65-74, 1987.
[10] J. Cai and G. Chen. On determinantal representation for the generalized inverse $A_{T, S}^{(2)}$ and its applications. Numerical Linear Algebra With Applications, 14:169-182, 2007.
[11] T.N.E. Greville. Note on the generalized inverse of a matrix product. SIAM Review, 8:518-521, 1966.
[12] X. Liu, Y. Yu, and H. Wang. Determinantal representation of weighted generalized inverses. Applied Mathematics and Computation, 208:556-563, 2009.
[13] Y. Liu, Y. Tian, and Y. Takane. Ranks of Hermitian and skew-Hermitian solutions to the matrix equation $A X A^{*}=B$. Linear Algebra and its Applications, 431:2359-2372, 2009.
[14] J. Miao. Reflexive generalized inverses and their minors. Linear and Multilinear Algebra, 35:153-163, 1993.
[15] K.M. Prasad, K.P.S.B. Rao, and R.B. Bapat. Generalized inverses over integral domains. II. Group inverses and Drazin inverses. Linear Algebra and its Applications, 146:31-47, 1991.
[16] K.M. Prasad and R.B. Bapat. The generalized Moore-Penrose inverse. Linear Algebra and its Applications, 165:59-69, 1992.
[17] D.W. Robinson. The Moore idempotents of a matrix. Linear Algebra and its Applications, 211:15-26, 1994.
[18] D.W. Robinson. The image of the adjoint mapping. Linear Algebra and its Applications, 277:143-148, 1998.
[19] D.W. Robinson. Outer inverses of matrices. Linear Algebra and its Applications, 348:247-258, 2002.
[20] D.W. Robinson. The classical adjoint. Linear Algebra and its Applications, 411:254-276, 2005.
[21] X. Sheng and G. Chen. Full-rank representation of generalized inverse $A_{T, S}^{(2)}$ and its applications.

Computers and Mathematics with Applications, 54:1422-1430, 2007.
[22] X. Sheng, G. Chen, and Y. Gong. The representation and computation of generalized inverse $A_{T, S}^{(2)}$. Journal of Computational and Applied Mathematics, 213:248-257, 2008.
[23] P.S. Stanimirović and D.S. Djordjević. Full-rank and determinantal representation of the Drazin inverse. Linear Algebra and its Applications, 311:131-151, 2000.
[24] P.S. Stanimirović, S. Bogdanović, and M. Ćirić. Adjoint Mappings and Inverses of matrices. Algebra Colloquium, 13:421-432, 2006.
[25] Y. Yu and Y. Wei. Determinantal representation of the generalized inverse $A_{T, S}^{(2)}$ over integral domains and its applications. Linear and Multilinear Algebra, 57:547-559, 2009.
[26] S. Zhang. A characterization and determinantal formula for the generalized inverse $A_{T, S}^{(2)}$ and applications. Applied Mathematics and Computation, 125:261-269, 2002.

## Appendix

In Example 3.1, we have



[^0]:    *Received by the editors on August 23, 2010. Accepted for publication on July 2, 2011. Handling Editor: Ravindra B. Bapat.
    ${ }^{\dagger}$ Department of Mathematics, Huainan Normal University, Huainan Anhui, 232001, P.R. China, and Department of Mathematics, East China Normal University, Shanghai, 200234, P.R. China (winghongxing0902@163.com). Supported by the Excellent Young Talents Foundation in Universities of Anhui Province (No. 2009SQRZ163ZD).
    $\ddagger$ Department of Mathematics, Shanghai Normal University, Shanghai 200234, P.R. China (mwei@shnu.edu.cn). Supported by National Natural Science Foundation of China (No. 10771073) and Shanghai Leading Academic Discipline Project (No. S30405).

