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FORMAL ADJOINTS OF LINEAR DAE OPERATORS

AND THEIR ROLE IN OPTIMAL CONTROL∗
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Abstract. For regular strangeness-free linear differential-algebraic equations (DAEs) the def-

inition of an adjoint DAE is straightforward. This definition can be formally extended to general

linear DAEs. In this paper, we analyze the properties of the formal adjoints and their implications

in solving linear-quadratic optimal control problems with DAE constraints.
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1. Introduction. Consider linear differential-algebraic equations (DAEs) of the

form

Eẋ = Ax + f,(1.1)

where (omitting obvious arguments in the functions) E∈C0(I, Rn,n), A∈C0(I, Rn,n),

and f ∈ C0(I, Rn). In order to introduce the concept of an adjoint (linear) DAE

associated with (1.1), we must formulate (1.1) as an operator equation in appropriate

Banach spaces as part of appropriate dual systems; see, e.g., [6]. To obtain a suitable

Banach space formulation, we replace (1.1) by a so-called strangeness-free formulation

Êẋ = Âx + f̂ ,(1.2)

where

Ê =

[

Ê1

0

]

, Â =

[

Â1

Â2

]

, f̂ =

[

f̂1

f̂2

]

,
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with the additional property that

[

Ê1

Â2

]

is (pointwise) nonsingular, see [8, Sec. 3.4]. Note that this is always possible under

suitable regularity assumptions.

In this way, we get an adjoint equation of the form

−ÊT λ̇ = (Â + d
dt

Ê)T λ + h,(1.3)

where h ∈ C0(I, Rn) denotes a corresponding inhomogeneity. Accordingly, (−ÊT, (Â+
d
dt

Ê)T ) is called the adjoint pair of (Ê, Â). Although this motivation is in general not

valid for the pair (E,A) of (1.1), see [12, 13], one can formally define (−ET , (A+Ė)T )

as the adjoint pair of (E,A). We therefore call (−ET , (A + Ė)T ) the formal adjoint

of (E,A).

Adjoint equations typically arise also in the context of linear-quadratic optimal

control problems. In the case of DAEs these consist of

J (x, u) =
1

2
x(t)T Mx(t) +

1

2

∫ t

t

(xT Wx + 2xT Su + uT Ru) dt = min!,(1.4)

where W ∈ C0(I, Rn,n), S ∈ C0(I, Rn,m), R ∈ C0(I, Rm,m), M ∈ R
n,n, I = [t, t], with

(pointwise) symmetric W , R, and M , subject to the constraint

Eẋ = Ax + Bu + f, x(t) = x,(1.5)

where B ∈ C0(I, Rn,m). As before, the DAE (1.5) should be replaced by a strangeness-

free formulation

Êẋ = Âx + B̂u + f̂ ,(1.6)

where

Ê =

[

Ê1

0

]

, Â =

[

Â1

Â2

]

, B̂ =

[

B̂1

B̂2

]

, f̂ =

[

f̂1

f̂2

]

,

with the additional property that

[

Ê1 0

Â2 B̂2

]

has (pointwise) full row rank. Again, this is possible under suitable regularity as-

sumptions, see [9].
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If we replace the DAE in (1.5) by (1.6) in the optimal control problem, then it

has been shown in [9] that the corresponding necessary optimality conditions for an

optimal solution (x, u) state that there exists a Lagrange multiplier λ such that x, u, λ

satisfy the boundary value problem

(a) Êẋ = Âx + B̂u + f̂ , Ê1(t)x(t) − Ê1(t)x = 0,

(b) −ÊT λ̇ = Wx + Su + (Â +
˙̂
E)T λ, Ê(t)T λ(t) − Mx(t) = 0,

(c) 0 = ST x + Ru + B̂T λ,

(1.7)

provided that the initial condition is consistent according to Ê1(t)
+Ê1(t)x = x and

that rangeM ⊆ cokernel E(t). Here Ê1(t)
+ denotes the Moore-Penrose inverse of

Ê1(t); see, e.g., [4]. We should mention here that for this formulation of the necessary

conditions we assume sufficient smoothness of the data in order to concentrate on

the structure of the equations. We also changed the sign of λ compared with [9], for

reasons that will become clear later.

Note that the DAE (1.2) and its adjoint DAE (1.3) with h = 0 appear in (1.7) if

we omit terms belonging to the cost functional (1.4). Moreover, combining (1.2) and

(1.3) yields the pair

([

0 Ê

−ÊT 0

]

,

[

0 Â

(Â + d
dt

Ê)T 0

])

of matrix functions, which is self-adjoint in the obvious sense that it equals its adjoint.

Finally, the pair













0 Ê 0

−ÊT 0 0

0 0 0






,







0 Â B̂

(Â + d
dt

Ê)T W S

B̂T ST R













of matrix functions presenting the coefficient functions in the boundary value problem

(1.7) is self-adjoint as well. This self-adjointness is reflected by the self-conjugacy of

an associated Banach space operator, see [10].

Analogous to the case of the formal adjoint, one may also consider the so-called

formal necessary conditions

(a) Eẋ = Ax + Bu + f, E(t)x(t) − E(t)x = 0,

(b) −ET λ̇ = Wx + Su + (A + Ė)T λ, E(t)T λ(t) − Mx(t) = 0,

(c) 0 = ST x + Ru + BT λ.

(1.8)

It has been shown, see [1, 11], that if (1.8) is uniquely solvable and the cost functional

is positive semidefinite, then surprisingly the part (x, u) of the solution actually is a

solution of the optimal control problem.
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The aim of this paper is to give more insight into the properties of the formal

adjoint and the formal necessary conditions. In particular, we show that if the DAE

associated with (E,A) has a well-defined differentiation index ν (see [2] for a defini-

tion), then the DAE associated with the formal adjoint pair also has a well-defined

differentiation index ν. This generalizes and extends a result in [5], where unique

solvability of a DAE is related to that of the formal adjoint system and where also

the relation of properties such as controllability and observability is discussed. More-

over, we analyze in detail how the solutions of the formal necessary conditions (1.8)

are related to the solutions of the necessary conditions (1.7), which for convenience

we address as true necessary conditions in the remainder of this paper.

Our results also explain the case that the formal necessary conditions fail to

have a solution while there is a solution of the true necessary conditions. They

also indicate in which way we can modify the formal necessary conditions to have

(up to some smoothness requirements) the same solution properties as for the true

necessary conditions. We also discuss how these results can be used to numerically

solve problems where the DAE in the true necessary conditions is not strangeness-free.

The paper is organized as follows. In Section 2, we introduce the notation and

present some preliminary results. Section 3 characterizes the properties of the formal

adjoint DAE. These results are then used in Section 4 to analyze the properties of

the formal necessary conditions. We finish with some conclusions in Section 5.

2. Preliminaries. To study optimal control problems with DAE constraints as

discussed in the introduction, we need to assume some regularity of the pairs of matrix

functions under considerations. Since we look at two different pairs, namely (E,A)

for the formal adjoint and ([ E 0 ], [ A B ]) for the constraint in the optimal control

problem, we introduce all assumptions and notation for the second case. We then

only need to drop the block which belongs to the variable u to specialize to the first

case.

Introducing the so-called behavior formulation, cf. [14], by setting

E = [ E 0 ], A = [ A B ], z =

[

x

u

]

,

we can write the given DAE (1.5) as

E ż = Az + f.(2.1)

Since solutions of DAEs may depend on derivatives of all the data, we follow an idea

of [3] and use the so-called derivative array systems

Mℓżℓ = Nℓzℓ + gℓ,(2.2)
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where

(Mℓ)i,j =
(

i
j

)

E(i−j) −
(

i
j+1

)

A(i−j−1), i, j = 0, . . . , ℓ,

(Nℓ)i,j =

{

A(i) for i = 0, . . . , ℓ, j = 0,

0 otherwise,

(zℓ)j = z(j), j = 0, . . . , ℓ,

(gℓ)i = f (i), i = 0, . . . , ℓ,

requiring here and in the following that all functions are sufficiently smooth. More-

over, we now turn to the more general situation of complex-valued matrix functions.

The main reason for this is that the canonical form we use in the proofs requires

complex-valued transformations, see Theorem 2.3 below. Note that all results will

contain the real result as special case.

The central regularity assumptions then read as follows.

Hypothesis 2.1. There exist integers µ, d, and a, such that the pair (Mµ, Nµ)

in (2.2) has the following properties:

1. For all t ∈ I we have rankMµ(t) = (µ + 1)n − a. This implies the existence

of a smooth matrix function Z2 of size ((µ + 1)n, a) and pointwise maximal

rank satisfying ZH
2 Mµ = 0 on I.

2. For all t ∈ I we have rankZ2(t)
HNµ(t)[In+m 0 · · · 0]H = a. This implies the

existence of a smooth matrix function T2 of size (n + m, d), d = n − a, and

pointwise maximal rank satisfying ZH
2 Nµ[In+m 0 · · · 0]HT2 = 0 on I.

3. For all t ∈ I we have rank E(t)T2(t) = d. This implies the existence of a

smooth matrix function Z1 of size (n, d) and pointwise maximal rank satisfy-

ing rankZH
1 E = d on I.

The strangeness-free formulation in (1.2) then has the coefficients

Ê1 = ZH
1 E, Â1 = ZT

1 A, B̂1 = ZH
1 B, f̂1 = ZH

1 f,

Â2 = ZH
2 NµV

[

In

0

]

, B̂2 = ZH
2 NµV

[

0
Im

]

, f̂2 = ZH
2 gµ,

where V = [ In+m 0 · · · 0 ]H .

For a linear DAE as in (1.5), scaling of the equation and a change of basis for the

unknowns defines an equivalence relation for the pairs of coefficient functions.

Definition 2.2. Two pairs (E ,A) and (Ẽ , Ã) of matrix function E ,A, Ẽ , Ã ∈

C(I, Cn,n+m) are called globally equivalent iff there exist pointwise nonsingular matrix

functions P ∈ C(I, Cn,n) and Q ∈ C1(I, Cn+m,n+m) such that

Ẽ = PEQ, Ã = PAQ − PEQ̇.(2.3)
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We then write

(E ,A) ∼ (Ẽ , Ã).

A suitable canonical form under global equivalence is then given by the following

theorem, see [7].

Theorem 2.3. Hypothesis 2.1 holds for the pair of matrix functions (E ,A) with

E ,A ∈ C(I, Cn,n+m) if and only if

(E ,A) ∼

([

Id H 0

0 G 0

]

,

[

0 0 L

0 Ia 0

])

,(2.4)

where the matrix functions G,H,L are of corresponding sizes and G has the property

that the DAE

Gż2 = z2 + f2

is uniquely solvable for every sufficiently smooth inhomogeneity f2.

The stated property of G can be shown to be equivalent to the statement that

(G, Ia) satisfies Hypothesis 2.1 with the same µ as the given pair (E ,A) and d = 0,

see again [8]. Note that m = 0 in this case.

Remark 2.4. In the case of m = 0, i.e., if the system (2.1) has square coefficients,

Hypothesis 2.1 is equivalent to the requirement that the corresponding pair of matrix

functions has a well-defined differentiation index ν. In particular, we have

ν =

{

0 for µ = 0, a = 0,

µ + 1 otherwise.

For details, see [8].

3. Properties of the formal adjoint. In this section, we study the properties

of the formal adjoint of a pair of matrix functions, which is defined as follows.

Definition 3.1. Let E ∈ C1(I, Cn,n) and A ∈ C(I, Cn,n). The pair (−EH , (A +

Ė)H) of matrix functions is called the formal adjoint of the pair of matrix functions

(E,A).

This definition can be motivated by the following observation. In the case of the

pair (Ê, Â) as in (1.2), we know that Ê has constant rank. We can therefore define

the Banach space operators

D : X → Y,

X = {x ∈ C(I, Cn) | Ê+Êx ∈ C1(I, Cn), (Ê+Êx)(t) = 0}, Y = C(I, Cn),
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and

D∗ : Y
∗ → X

∗,

Y
∗ = {λ ∈ C(I, Cn) | ÊÊ+λ ∈ C1(I, Cn), (ÊÊ+λ)(t) = 0}, X

∗ = C(I, Cn)

via

Dx = Ê d
dt

(Ê+Êx)−Âx−Ê d
dt

(Ê+Ê)x, D∗λ = −ÊH d
dt

(ÊÊ+λ)−AHλ−
˙̂
E(ÊÊ+)λ.

Both 〈X, X∗〉 and 〈Y, Y∗〉 form dual systems with respect to the standard scalar

product of the Hilbert space L2(I, C
n) considered as corresponding sesquilinear form;

see, e.g., [6].

Theorem 3.2. The operator D∗ is the (unique) conjugate of D.

Proof. We have that

〈Dx, λ〉 =
∫

I

(

Ê d
dt

(Ê+Êx) − Âx − Ê d
dt

(Ê+Ê)x
)

Hλ dt

=
∫

I

(

d
dt

(xHÊ+Ê)ÊHλ − xHÂHλ − xH d
dt

(Ê+Ê)ÊHλ
)

dt.

Since ÊH = ÊH(Ê+)HÊH = ÊHÊÊ+, it follows that

〈Dx, λ〉 = xHÊ+ÊÊHÊÊ+λ
∣

∣
t
t

+
∫

I

(

− xHÊ+Ê d
dt

(ÊHÊÊ+λ) − xHÂHλ − xH d
dt

(Ê+Ê)ÊHλ
)

dt

=
∫

I
xH
(

− Ê+Ê
˙̂
EHÊÊ+λ − Ê+ÊÊH d

dt
(Ê+Êλ) − ÂHλ − d

dt
(Ê+Ê)ÊHλ

)

dt.

Since ÊH = ÊH(Ê+)HÊH = Ê+ÊÊH and

Ê+Ê
˙̂
EHÊÊ++ d

dt
(Ê+Ê)ÊH

= (Ê+Ê
˙̂
EH + d

dt
(Ê+Ê)ÊH)ÊÊ+ = d

dt
(Ê+ÊÊH)ÊÊ+ =

˙̂
EHÊÊ+,

we finally get that

〈Dx, λ〉 =
∫

I
xH(−ÊH d

dt
(Ê+Êλ) − ÂHλ −

˙̂
EHÊÊ+λ) dt = 〈x,D∗λ〉.

The operators D and D∗ are defined in such a way that they explicitly exhibit

the smoothness requirements contained in the definition of their domains. Supposing

sufficient smoothness of Ê, x, and λ, the operators can be written as

Dx = Êẋ − Âx, D∗λ = −ÊH λ̇ − (Â + d
dt

Ê)Hλ,

which then directly suggests Definition 3.1 in the strangeness-free case. Note that a

similar argument in the general case is only possible when the matrix function E has

constant rank which is equivalent to E+ being continuous. But this is not required
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by Hypothesis 2.1, since it is not a necessary property of a regular DAE. This also

applies to DAEs with so-called properly stated leading term, see [12, 13].

Theorem 3.2 also shows that the adjoint pair should be defined with a differ-

ent sign compared to [9]. Note that this extra sign is due to the involved partial

integration.

We now present some fundamental properties of the formal adjoint.

Theorem 3.3. The formal adjoint of the formal adjoint of a pair of matrix

functions is the given pair of matrix functions.

Proof. Given (E,A) with E ∈ C1(I, Cn,n) and A ∈ C(I, Cn,n), we observe that

the formal adjoint (−EH , (A + Ė)H) satisfies the assumptions of Definition 3.1. Its

formal adjoint therefore has the form

(−(−EH)H , ((A + Ė)H + (−ĖH))H) = (E,A + Ė − Ė) = (E,A).

Theorem 3.4. The formal adjoints of two globally equivalent pairs of matrix

functions are globally equivalent provided that the involved transformations are suffi-

ciently smooth.

Proof. Given (E,A) with E ∈ C1(I, Cn,n) and A ∈ C(I, Cn,n), let

(Ẽ, Ã) = (PEQ,PAQ − PEQ̇)

according to (2.3), with the additional requirement that P is continuously differen-

tiable. The formal adjoint of (Ẽ, Ã) is then given by

(−(PEQ)H , (PAQ − PEQ̇ + d
dt

(PEQ))H)

= (−QHEHPH , QHAHPH − Q̇HEHPH + QHEH ṖH + QHĖHPH + Q̇HEHPH)

= (QH(−EH)PH , QH(A + Ė)HPH − QH(−EH)ṖH) ∼ (−EH , (A + Ė)H).

An important consequence of Theorem 3.4 is that in the investigation of a pair of

matrix functions (E,A) and its formal adjoint (Ẽ, Ã), we may assume w.l.o.g. that

the pair (E,A) is in the global canonical form

(E,A) =

([

Id H

0 G

]

,

[

0 0

0 Ia

])

,(3.1)

and thus, according to Theorem 2.3, the formal adjoint is given by

(Ẽ, Ã) =

([

−Id 0

−HH −GH

]

,

[

0 0

ḢH Ia + ĠH

])

,

provided that Hypothesis 2.1 holds and that the properties under consideration trans-

form covariantly with respect to global equivalence.
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The remainder of this section is dedicated to the question whether the formal

adjoint pair of a given pair of matrix functions satisfies Hypothesis 2.1 if the given

pair does. This generalizes a result of [5], where conditions have been presented so

that unique solvability carries over to the formal adjoint equation.

Theorem 3.5. Let (E,A) have a well-defined differentiation index ν ≥ 1 and

size d of the differential part. Then the formal adjoint pair (Ẽ, Ã) = (−EH , (A+Ė)H)

also has a well-defined differentiation index, which equals ν, with the same size d of

the differential part.

Proof. Since Hypothesis 2.1 itself transforms covariantly with respect to global

equivalence, see [8], we are allowed to assume that we are in the situation of (3.1).

Since (E,A) is assumed to have a well-defined differentiation index ν, it satisfies

Hypothesis 2.1 with µ = ν − 1.

The coefficients of the derivative array belonging to (E,A) have the form

Mµ =































I H

0 G

0 Ḣ I H

0 Ġ − I 0 G
...

...
. . .

. . .
...

...
. . .

. . .

0 H(µ) · · · · · · 0 µḢ I H

0 G(µ) · · · · · · 0 µĠ − I 0 G































,

Nµ =































0 0 0 0 · · · · · · 0 0

0 I 0 0 · · · · · · 0 0

0 0 0 0 · · · · · · 0 0

0 0 0 0 · · · · · · 0 0
...

...
...

...
...

...
...

...
...

...
...

...

0 0 0 0 · · · · · · 0 0

0 0 0 0 · · · · · · 0 0































,

so that the quantities of Hypothesis 2.1 are given by

ZH
2 = [ 0 ZH

2,0 | 0 ZH
2,1 | · · · | 0 ZH

2,µ ],

where we can choose ZH
2,0 = I, and by

ZH
2 NµV = [ 0 I ], T2 =

[

I

0

]

, ET2 =

[

I

0

]

,
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see [8]. The coefficients in the derivative array belonging to (Ẽ, Ã) have the form

M̃µ =































−I 0

−HH −GH

0 0 −I 0

−2ḢH −2ĠH − I −HH −GH

...
...

. . .
. . .

...
...

. . .
. . .

0 0 · · · · · · 0 0 −I 0

−µ(H(µ))H −µ(G(µ))H · · · · · · −νḢH −νĠH − I −HT −GH































,

Ñµ =































0 0 0 0 · · · · · · 0 0

ḢH I + ĠH 0 0 · · · · · · 0 0

0 0 0 0 · · · · · · 0 0

ḦH G̈H 0 0 · · · · · · 0 0
...

...
...

...
...

...
...

...
...

...
...

...

0 0 0 0 · · · · · · 0 0

(H(ν))H (G(ν))H 0 0 · · · · · · 0 0































.

Due to the identities in the diagonal of M̃µ, possible quantities for Hypothesis 2.1 are

Z̃H
2 = [ ∗ ZH

2,0 | ∗ ZH
2,1 | · · · | ∗ ZH

2,µ ],

together with

Z̃H
2 ÑµV = [ ∗ I ], T̃2 =

[

I

∗

]

, ẼT̃2 =

[

−I

∗

]

.

Due to the special structure of the canonical form, it is thus sufficient to restrict

ourselves to pairs (E,A) = (G, I) and (Ẽ, Ã) = (−GH , I + ĠH). In particular, we

have to show that (−GH , I + ĠH) satisfies Hypothesis 2.1 with d = 0.

By assumption, the pair (G, I) satisfies Hypothesis 2.1 with d = 0. With the

corresponding coefficients in the derivative array (leaving out now the indices for

simplicity noting that there is no conflict with the matrix M of (1.4) which does not

play any role in the present context)

M =











G

Ġ − I G
...

. . .
. . .

G(µ) · · · µĠ − I G











, N =











I 0 · · · 0

0 0 · · · 0
...

...
...

0 0 · · · 0











,
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the matrix function describing the corange of M is of the form

ZH =
[

ZH
0 ZH

1 · · · ZH
µ

]

,

and by a proper scaling we may assume that Z0 = I. To analyze whether Hypothe-

sis 2.1 holds for (−GH , I + ĠH), we consider the corresponding derivative array with

coefficients

M̃ =











−GH

−2ĠH − I −GH

...
. . .

. . .

−ν(G(µ))H · · · −νĠH − I −GH











, Ñ =











I + ĠH 0 · · · 0

G̈H 0 · · · 0
...

...
...

(G(ν))H 0 · · · 0











.

In particular, we need to determine the corange of M̃ , which is given in the form

Z̃H =
[

Z̃H
0 Z̃H

1 · · · Z̃H
µ

]

.

We now show that setting

Z̃H
i =

µ
∑

l=i

(−1)l
(

l

i

)

Z
(l−i)
l

actually yields

Z̃HM̃ = 0, Z̃HÑV pointwise nonsingular.(3.2)

To show this, we first need the following property of Z. By assumption, the DAE

Gẋ = x + f

possesses a unique solution for every sufficiently smooth f . By the construction of Z,

this solution is given by the solution of

ZHM







ẋ
...

x(µ+1)






= ZHN







x
...

x(µ)






+ ZHg, g =







f
...

f (µ)






.

Since ZHM = 0 and ZHNV = I, this implies that

x = −ZHg.

Inserting this into the given DAE gives that

G(−ŻHg − ZH ġ) = −ZHg + f
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for every sufficiently smooth f . Hence,

µ
∑

l=0

GŻH
l f (l) +

µ
∑

l=0

GZH
l f (l+1) −

µ
∑

l=0

ZH
l f (l) + f = 0,

and thus, using Z0 = I, we have that

(GŻH
1 + GZH

0 − ZH
1 )ḟ + (GŻH

2 + GZH
1 − ZH

2 )f̈ +

+ · · · + (GŻH
µ + GZH

µ−1 − ZH
µ )f (µ) + GZH

µ f (µ+1) = 0

for every sufficiently smooth f . Since this can only hold if all coefficients of the

derivatives of f vanish, it follows that

Zl = (Zl−1 − Żl)G
H , l = 1, . . . , µ, ZµGH = 0.(3.3)

To show the first part of (3.2), we observe that (with δi,j denoting the Kronecker

delta)

(M̃)i,j = −
(

i+1
j+1

)

(G(i−j))H − δi,j+1I, (Ñ)i,0 = δi,0I + (G(i+1))H , i, j = 0, . . . , µ,

for the j-th block of Z̃HM̃ we get

(Z̃HM̃)j =

µ
∑

i=j

( µ
∑

l=i

(−1)l+1
(

l

i

)

Z
(l−i)
l

)(

(

i+1
j+1

)

(G(i−j))H + δi,j+1I

)

.

For j = µ, we then obtain that

(Z̃HM̃)µ = (−1)µ+1ZµGH = 0,

and for j < µ, we have that

(M̃)i,j =

µ
∑

i=j

( µ
∑

l=i

(−1)l+1
(

l

i

)

Z
(l−i)
l

)

(

i+1
j+1

)

(G(i−j))H +

µ
∑

l=j+1

(−1)l+1
(

l

j+1

)

Z
(l−j−1)
l .

Changing the order of summation in the first term and using (3.3) in the second term

gives

(M̃)i,j =

µ
∑

l=j

µ
∑

i=j

(−1)l+1
(

l

i

)(

i+1
j+1

)

Z
(l−i)
l (G(i−j))H

+

µ
∑

l=j+1

(−1)l+1
(

l

j+1

)

l−j−1
∑

k=0

(

l−j−1
k

)(

Z
(l−j−k−1)
l−1 + Z

(l−j−k)
l

)

(G(k))H .
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Shifting the summation indices, we get

(M̃)i,j =

µ
∑

l=j

µ
∑

i=j

(−1)l+1
(

l

i

)(

i+1
j+1

)

Z
(l−i)
l (G(i−j))H

−

µ−1
∑

l=j

(−1)l+1
(

l+1
j+1

)

l
∑

i=j

(

l−j

i−j

)

Z
(l−i)
l (G(i−j))H

+

µ
∑

l=j+1

(−1)l+1
(

l

j+1

)

l
∑

i=j

(

l−j−1
i−j

)

Z
(l−i)
l (G(i−j))H .

(3.4)

Observing that

(

µ

i

)(

i + 1

j + 1

)

+

(

µ

j + 1

)(

µ − j − 1

i − j

)

=
µ!

i!(µ − i)!

(i + 1)!

(j + 1)!(i − j)!
+

µ!

(j + 1)!(µ − j − 1)!

(µ − j − 1)!

(i − j)!(µ − i − 1)!

=
µ!

(µ − i)!(j + 1)!(i − j)!

(

(i + 1) + (µ − i)
)

=
(µ + 1)!

(j + 1)!(µ − j)!

(µ − j)!

(µ − i)!(i − j)!
=

(

µ + 1

j + 1

)(

µ − j

i − j

)

,

for the terms in (3.4) with l = µ, we get (up to a sign) that

µ
∑

i=j

[(

µ

i

)(

i+1
j+1

)

+
(

µ

j+1

)(

µ−j−1
i−j

)]

Z(µ−i)
µ (G(i−j))H

=
(

µ+1
j+1

)

µ
∑

i=j

(

µ−j

i−j

)

Z(µ−i)
µ (G(i−j))H

=
(

µ+1
j+1

)

µ−j
∑

k=0

(

µ−j

k

)

Z(µ−j−k)
µ (G(k))H =

(

µ+1
j+1

)( d

dt

)µ−j

(ZµGH) = 0.

For l = j, it follows that i = j in (3.4) and the terms sum up to zero because of

(

l

i

)(

i + 1

j + 1

)

−

(

l + 1

j + 1

)(

l − j

i − j

)

=

(

j

j

)(

j + 1

j + 1

)

−

(

j + 1

j + 1

)(

0

0

)

= 0.

Since
(

l

i

)(

i + 1

j + 1

)

−

(

l + 1

j + 1

)(

l − j

i − j

)

+

(

l

j + 1

)(

l − j − 1

i − j

)

=
l!

i!(l − i)!

(i + 1)!

(j + 1)!(i − j)!
−

(l + 1)!

(j + 1)!(l − j)!

(l − j)!

(i − j)!(l − i)!

+
l!

(j + 1)!(l − j − 1)!

(l − j − 1)!

(i − j)!(l − i − 1)!

=
l!

(l − i)!(j + 1)!(i − j)!

(

(i + 1) − (l + 1) + (l − i)
)

= 0,
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also the remaining terms sum up to zero. Hence, we have shown that Z̃HM̃ = 0 and

thus the first part of (3.2).

For the second part of (3.2), we start from

Z̃HÑV =

µ
∑

i=0

( µ
∑

l=i

(−1)l
(

l

i

)

Z
(l−i)
l

)

(G(i+1))H +

µ
∑

l=0

(−1)lZ
(l)
l .

Changing the order of summation in the first term and using (3.3) in the second term

gives

Z̃HÑV =

µ
∑

l=0

l
∑

i=0

(−1)l
(

l

i

)

Z
(l−i)
l (G(i+1))H + Z0

+

µ
∑

l=1

(−1)l

l
∑

k=0

(

l

k

)

(Z
(l−k)
l−1 + Z

(l−k+1)
l )(G(k))H .

Shifting the summation indices, we get

Z̃HÑV =

µ
∑

l=0

l
∑

i=0

(−1)l
(

l

i

)

Z
(l−i)
l (G(i+1))H + Z0

−

µ−1
∑

l=0

(−1)l

l+1
∑

k=0

(

l+1
k

)

Z
(l−k+1)
l (G(k))H +

µ
∑

l=1

(−1)l

l
∑

k=0

(

l

k

)

Z
(l−k+1)
l (G(k))H .

For l 6= 0 and l 6= µ, the terms for k = 0 of the last two sums cancel out, so that we

remain with

Z̃HÑV =

µ
∑

l=0

l
∑

i=0

(−1)l
(

l

i

)

Z
(l−i)
l (G(i+1))H + Z0 − Ż0G

H + (−1)µZ(µ+1)
µ GH

−

µ−1
∑

l=0

(−1)l

l
∑

i=0

(

l+1
i+1

)

Z
(l−i)
l (G(i+1))H +

µ
∑

l=1

(−1)l

l−1
∑

i=0

(

l

i+1

)

Z
(l−i)
l (G(i+1))H .

(3.5)

Observing that
(

µ

i

)

+

(

µ

i + 1

)

=

(

µ + 1

i + 1

)

,

for the terms in (3.5) with l = µ, we get (up to a sign) that

µ−1
∑

i=0

[(

µ

i

)

+
(

µ

i+1

)]

Z(µ−i)
µ (G(i+1))H + Zµ(G(µ+1))H + Z(µ+1)

µ GH

=

µ−1
∑

i=0

(

µ+1
i+1

)

Z(µ−i)
µ (G(i+1))H + Zµ(G(µ+1))H + Z(µ+1)

µ GH

=

µ+1
∑

i=0

(

µ+1
i

)

Z(µ−i+1)
µ (G(i))H =

( d

dt

)µ+1

(ZµGH) = 0.
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For l = 0, it follows that i = 0 in (3.5), and the terms sum up to zero because of

(

0

0

)

−

(

1

1

)

= 0.

The same holds for 0 < l < µ and i = l because of

(

l

l

)

−

(

l + 1

l + 1

)

= 0,

and for the remaining terms in the sums because of

(

l

i

)

−

(

l + 1

i + 1

)

+

(

l

i + 1

)

= 0.

We therefore end up with

Z̃HÑV = Z0 − Ż0G
H = I,

since Z0 = I. Thus, we have also shown the second part of (3.2).

If we do not assume that the system (1.1) has a well-defined differentiation index,

then the situation becomes more complicated. It is even not clear then, whether

the use of an adjoint makes sense in this case, as is demonstrated by the following

example.

Example 3.6. Consider the pair of constant matrix functions

(E,A) =

([

1 0

0 0

]

,

[

0 0

1 0

])

.

The associated DAE with inhomogeneity f then is

ẋ1 = f1, 0 = x1 + f2.

Obviously, the component x2 is free, but we need to differentiate the second equation

to obtain the consistency condition f1 + ḟ2 = 0. Thus, the strangeness index µ of

(E,A) satisfies µ = 1.

The formal adjoint of (E,A) is given by

(−EH , (A + Ė)H) =

([

−1 0

0 0

]

,

[

0 1

0 0

])

.

The associated DAE with inhomogeneity h then is

−λ̇1 = λ2 + h1, 0 = h2.
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Again, with λ2 there is a free solution component, but there is no need for differen-

tiating the equations in order to decide on the solution properties of DAE. Thus, we

have µ = 0 in this case.

The reason for this observation can be seen in the fact that the bidiagonal blocks

in the Kronecker canonical form and their conjugate transposed counterparts do not

possess the same strangeness index, see [8].

4. Properties of the formal necessary optimality conditions. In this sec-

tion, we will investigate the relation between the true necessary conditions (1.7) and

the formal necessary conditions (1.8) for the solution (x, u) of the optimal control

problem (1.4) with (1.5). The main tool for this analysis will be to transform both to

the canonical form (2.4). To show that we are allowed to do so, we first rewrite the

formal necessary conditions in terms of a behavior setting. For this, we define

E = [ E 0 ], A = [ A B ], W =

[

W S

ST R

]

, z =

[

x

u

]

,

such that the formal necessary conditions become (ignoring the boundary conditions

for the moment)

(a) E ż = Az + f,

(b) −EH λ̇ = (A + Ė)H + Wz.
(4.1)

Setting

Ẽ = PEQ, Ã = PAQ − PEQ̇, W̃ = QHWQ

according to global equivalence (2.3), we have

([

0 E

−EH 0

]

,

[

0 A

AH + ĖH W

])

∼

([

P 0

0 QH

] [

0 E

−EH 0

] [

PH 0

0 Q

]

,

[

P 0

0 QH

] [

0 A

AH + ĖH W

] [

PH 0

0 Q

]

−

[

P 0

0 QH

] [

0 E

−EH 0

] [

ṖH 0

0 Q̇

])

=

([

0 PEQ

−QHEHPH 0

]

,

[

0 PAQ − PEQ̇

QH(AH + ĖH)PH + QHEH ṖH QHWQ

])

=

([

0 Ẽ

−ẼH 0

] [

0 Ã

ÃH + Q̇HEHPH + QH ĖHPH + QHEH ṖH W̃

])

=

([

0 Ẽ

−ẼH 0

] [

0 Ã

ÃH + ˙̃EH W̃

])

.

Hence, the problem (4.1) transforms covariantly with global equivalence transforma-

tions of the pair (E ,A).
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On the other hand, the true necessary conditions (1.7) involve the index-reduced

DAE (1.2). Defining

Ê = [ Ê 0 ], Â = [ Â B̂ ],

the corresponding behavior formulation is given by

(a) Ê ż = Âz + f̂ ,

(b) −ÊH λ̇ = (Â +
˙̂
E)H + Wz.

(4.2)

To show that (4.2) also transforms covariantly with global equivalence transformations

involving the same transformations, we must investigate the whole construction of the

reduced DAE (1.2).

We start with the original DAE (2.1) and the transformed DAE given by (2.3)

and z = Qz̃, f̃ = Pf according to

E ż = Az + f, Ẽ ˙̃z = Ãz + f̃ .

The coefficients of the corresponding derivative arrays are denoted by (M,N) and

(M̃, Ñ), respectively, omitting the index µ for simplicity. Then (2.3) implies that

M̃ = ΠMΘ, Ñ = ΠNΘ − ΠMΨ,

where

Πi,j =
(

i
j

)

P (i−j), Θi,j =
(

i+1
j+1

)

Q(i−j),

Ψi,j =

{

Q(i+1) for i = 0, . . . , µ, j = 0,

0 otherwise,

see [8, Th. 3.29]. For the index reduction, we follow Hypothesis 2.1 and choose Z2

such that

ZH
2 M = 0.

This corresponds to choosing Z̃2 for the transformed DAE according to

Z̃H
2 = ZH

2 Π−1.

Hypothesis 2.1 then implies that ZH
2 NV has (pointwise) full row rank, or equivalently

that

Z̃H
2 ÑV = ZH

2 Π−1(ΠNΘ − ΠMΨ)V = ZH
2 NΘV = ZH

2 NV Q

has (pointwise) full row rank, where we have used the special structure of N , Θ, and V .

The choice of T2 in the next step according to ZH
2 NV T2 = 0, then corresponds to

T̃2 = Q−1T2.
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Hence, rank ET2 = d is equivalent to

rank Ẽ T̃2 = rankPEQQ−1T2 = d

and the choice of Z1 so that ZH
1 ET2 is pointwise nonsingular corresponds to

Z̃H
1 = ZH

1 P−1.

Index reduction of E ż = Az + f then gives

(a) ZH
1 E ż = ZH

1 Az + ZH
1 f,

(b) 0 = ZH
2 NV z + ZT

2 g,
(4.3)

whereas index reduction of Ẽ ˙̃z = Ãz + f̃ with

z̃ = Q−1z, f̃ = Pf, g̃ = Πg

yields

(a) Z̃H
1 Ẽ ˙̃z = Z̃H

1 Ãz̃ + Z̃H
1 f̃ ,

(b) 0 = Z̃H
2 ÑV z̃ + Z̃T

2 g̃.
(4.4)

Inserting the transformation into (4.4a) gives

ZH
1 P−1PEQ(Q−1ż − Q−1Q̇Q−1z) = ZH

1 P−1(PAQ − PEQ̇)Q−1z + ZH
1 P−1Pf,

which is (4.3a). Inserting the transformation into (4.4b) gives

0 = ZH
2 Π−1(ΠNΘ − ΠMΨ)V Q−1z + ZH

2 Π−1Πg

= ZH
2 NΘV Q−1z + ZH

2 g = ZH
2 NV z + ZH

2 g,

which is (4.3b).

Thus, we are allowed to assume that (E ,A) is in the global canonical form (2.4)

when dealing with both (4.1) and (4.2). In particular, the formal necessary conditions

(4.1) then have the form

(a) ż1 + Hż2 = Lz3 + f1,

(b) Gż2 = z2 + f2,

(c) −λ̇1 = W11z1 + W12z2 + W13z3,

(d) −HH λ̇1 − GH λ̇2 = λ2 + ḢHλ1 + ĠHλ2 + W21z1 + W22z2 + W23z3,

(e) 0 = LHλ1 + W31z1 + W32z2 + W33z3,

(4.5)

whereas the true necessary conditions (1.7) then have the form

(a) ż1 + Hż2 = Lz3 + f1,

(b) 0 = z2 + g2,

(c) −λ̇1 = W11z1 + W12z2 + W13z3,

(d) −HH λ̇1 = λ2 + ḢHλ1 + W21z1 + W22z2 + W23z3,

(e) 0 = LHλ1 + W31z1 + W32z2 + W33z3.

(4.6)
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Due to the special properties of G given in Theorem 2.3 and the results of index

reduction, the parts (4.5b) and (4.6b) fix the same solution z2. Compare also with

the previous section. Thus, (4.5) and (4.6) only differ in the parts (4.5d) and (4.6d).

Since these equations determine λ2 in terms of the other unknowns, both systems yield

the same solutions for the other unknowns as long as the correct boundary conditions

are incorporated. Observe that (4.5), however, may require more smoothness of the

data due to a possible higher index of (4.5d). In particular, we may need derivatives

of W.

Of course, the true necessary optimality conditions (1.7) state the correct bound-

ary conditions, which may also be written as

Ê(t)x(t) = Ê(t)x, Ê(t)Hλ(t) = Mx(t)(4.7)

with the requirement that rangeM ⊆ range Ê(t)H . Note that each boundary condi-

tion actually contains only d linear independent conditions due to the rank d of Ê.

Since the formal necessary conditions (1.8) are not based on index reduction, one is

tempted to use the boundary conditions

E(t)x(t) = E(t)x, E(t)Hλ(t) = Mx(t),(4.8)

which differ from (4.7) in the case of a higher-index DAE in the constraint. Moreover,

the restriction on M is not visible here. Thus, the boundary conditions (4.8) may yield

contradictions in the formal necessary conditions. But since they contain the correct

boundary conditions, we have the following result, compare also with the sufficient

conditions given in [11].

Theorem 4.1. Let all data of the given optimal control problem (1.4) and (1.5)

be sufficiently smooth and let the formal necessary optimality conditions (1.8) have a

solution (x, u, λ). Then, there exist a function η replacing λ such that (x, u, η) solves

the true necessary optimality conditions (1.7).

In summary, the formal optimality conditions may need extra smoothness as-

sumptions and may lead to extra consistency conditions for the boundary values. If,

however, these two extra requirements are satisfied, then the resulting solutions x, u

are the same for both systems while the Lagrange multiplier λ may be different. This

is illustrated by the following example, see [1, 9].

Example 4.2. Consider the problem

J (x, u) =
1

2

∫ 1

0

(x1(t)
2 + u(t)2)dt = min!

subject to the differential-algebraic system
[

0 1

0 0

] [

ẋ1

ẋ2

]

=

[

1 0

0 1

] [

x1

x2

]

+

[

1

0

]

u +

[

f1

f2

]

.
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The reduced system (1.2) in this case is the purely algebraic equation

0 =

[

1 0

0 1

] [

x1

x2

]

+

[

1

0

]

u +

[

f1 + ḟ2

f2

]

.

The associated adjoint equation is then

0 =

[

1 0

0 0

] [

x1

x2

]

+

[

1 0

0 1

] [

λ1

λ2

]

,

and no initial conditions are needed. The true necessary optimality conditions (1.7)

are completed by the optimality condition

0 = u + λ1.

A simple calculation yields the solution

x1 = u = −λ1 = − 1
2 (f1 + ḟ2), x2 = −f2, λ2 = 0.

If, however, we consider the formal adjoint equation given by

−

[

0 0

1 0

] [

λ̇1

λ̇2

]

=

[

1 0

0 0

] [

x1

x2

]

+

[

1 0

0 1

] [

λ1

λ2

]

, λ1(1) = 0

together with the optimality condition, then we obtain that

x1 = u = −λ1 = − 1
2 (f1 + ḟ2), x2 = −f2, λ2 = 1

2 (ḟ1 + f̈2)

without using the initial condition λ1(1) = 0. Depending on the data, this initial

condition may be consistent or not. In view of the correct solution it is obvious

that this initial condition should not be present. But this cannot be seen from (1.8).

Moreover, the determination of λ2 requires more smoothness of the inhomogeneity

than in (1.7).

Remark 4.3. We have seen that the formal optimality conditions may lead to in-

consistencies and extra smoothness conditions. They may, however, have the following

computational advantage. In the numerical solution of the optimal control problem

via the solution of the true necessary optimality conditions, the needed coefficients of

the reduced DAE are obtained pointwise by the pointwise numerical computation of

suitable values of the matrix functions Z1 and Z2, see [9].

If, however, the DAE boundary value problem of the true necessary optimality

conditions itself possesses a nonvanishing strangeness index, then we cannot perform

an index reduction for this DAE via derivative arrays, since the coefficients of the

DAE are computed quantities. On the other hand, it is no problem to perform a
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numerical index reduction for the formal necessary conditions, since these are formu-

lated in terms of original data. This procedure will then yield all algebraic constraints

contained in the DAE of the boundary value problem and exhibits the smoothness re-

quirements for the inhomogeneity. Moreover, with the help of the algebraic constraints

we can check the consistency of the boundary conditions. In this way, we can adjust

(if necessary) the boundary conditions and the smoothness of the inhomogeneity to

guarantee the existence of a solution.

If these adjustments only influence the formal Lagrange multiplier, then the re-

sulting x and u from the formal necessary conditions even solve the true optimality

system and are thus the desired optimal state and input of the optimal control prob-

lem.

5. Conclusion. In this paper we have analyzed the properties of the formal

adjoint equation associated with a linear differential-algebraic equation. We have

shown how their strangeness indices and solution properties are related and used

these results to compare the solutions of the true and formal necessary optimality

conditions for optimal control problems with DAE constraints. This analysis resolves

some of the open questions in the analysis of these optimal control problems and

also indicates how to use the formal necessary optimality conditions in the numerical

solution of optimal control problems.
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