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Abstract. Let B be a weighted generalized Bethe tree of k levels (k > 1) in which nj is the

number of vertices at the level k− j +1 (1 ≤ j ≤ k). Let ∆ ⊆ {1, 2, . . . , k − 1} and F= {Gj : j ∈ ∆},
where Gj is a prescribed weighted graph on each set of children of B at the level k−j+1. In this paper,

the eigenvalues of a block symmetric tridiagonal matrix of order n1 +n2 + · · ·+nk are characterized

as the eigenvalues of symmetric tridiagonal matrices of order j, 1 ≤ j ≤ k, easily constructed from

the degrees of the vertices, the weights of the edges, and the eigenvalues of the matrices associated

to the family of graphs F. These results are applied to characterize the eigenvalues of the Laplacian

matrix, including their multiplicities, of the graph B (F) obtained from B and all the graphs in

F = {Gj : j ∈ ∆} ; and also of the signless Laplacian and adjacency matrices whenever the graphs of

the family F are regular.

Key words. Weighted graph, Laplacian matrix, Signless Laplacian matrix, Adjacency matrix,

Generalized Bethe tree.
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1. Introduction. Let G = (V,E) be a simple undirected graph with vertex set

V and edge set E. We assume that each edge e ∈ E has a positive weight w (e). Let

V = {1, 2, . . . , n}. The Laplacian matrix L (G) = (li,j), the signless Laplacian matrix

Q (G) = (qi,j) and the adjacency matrix A (G) = (ai,j) of the graph G, are the n × n

matrices defined by

li,j =











−w (e) if i 6= j and e is the edge joining i and j

0 if i 6= j and i is not adjacent to j

−∑

k 6=i li,k if i = j

,
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qi,j =











w (e) if i 6= j and e is the edge joining i and j

0 if i 6= j and i is not adjacent to j
∑

k 6=i qi,k if i = j

, and

ai,j =







w (e) if i 6= j and e is the edge joining i and j

0 if i 6= j and i is not adjacent to j

0 if i = j

.

Then L (G) , Q (G) and A (G) are real symmetric matrices. From Geršgorin’s Theorem,

it follows that the eigenvalues of L (G) and Q (G) are nonnegative real numbers. Since

the sum of the entries in each row of L (G) is 0, then (0, e) is an eigenpair for L (G)

where e is the all ones vector. Fiedler [8] proved that G is a connected graph if and

only if the second smallest eigenvalue of L (G) is positive. This eigenvalue, denoted

by a (G), is called the algebraic connectivity of G. The signless Laplacian matrix has

attracted the attention of several researchers. Recent papers on spectral results with

this matrix are [1, 3, 4, 5, 6].

If w (e) = 1 for all e ∈ E, then G is an unweighted graph. In [10], some of the

known results for the Laplacian matrix of an unweighted graph are given.

We recall that for a rooted graph, the level of a vertex is one more than its

distance from the root vertex.

A generalized Bethe tree is a rooted tree in which vertices at the same level have

the same degree. Throughout this paper, B = Bk(d) is a generalized Bethe tree with

k levels (k > 1), such that d is a k-tuple, where the jth entry dj is the degree of the

vertices at level k− j +1, in which the edges connecting vertices at consecutive levels

have the same weight. In B, for 1 ≤ j ≤ k, nj denotes the number of vertices at the

level k − j + 1. Therefore, dk is the degree of the root vertex, nk = 1, d1 = 1, and n1

is the number of pendant vertices. We assume that for the vertex at level 1, that is,

for the root vertex, we have dk > 1.

For 1 ≤ j ≤ k − 1, wj is the weight of the edges connecting the vertices of B at

the level k − j + 1 with the vertices at the level k − j. Furthermore, we define

δj =







w1 if j = 1

(dj − 1)wj−1 + wj if 2 ≤ j ≤ k − 1

dkwk−1 if j = k

.

Observe that δj is the sum of the weights of the edges of B incident with the vertices

of B at the level k − j + 1 and if w1 = w2 = · · · = wk−1 = 1, then δj = dj for

j = 1, . . . , k.

Setting mj =
nj

nj+1
for j = 1, . . . , k − 1, it follows

mj = dj+1 − 1 (1 ≤ j ≤ k − 2)
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dk = nk−1 = mk−1.

Consider an index subset ∆ ⊆ {1, 2, . . . , k − 1}, and a family of graphs F =

{Gj : j ∈ ∆}, where each graph Gj has order mj , j = 1, . . . , k. Then we define B (F)

as the graph obtained from B and the graphs in F identifying each set of children of

B at level k − j + 1, with the vertices of Gj , for j ∈ ∆. We assume that the edges of

Gj have a weight uj . Since B and B (F) have the same set of vertices, we may label

the vertices of B (F) from the pendant vertices to the root and, in each level, from

the left to the right.

Throughout this paper, we denote by Pm (u) , Sm (u) , Cm (u) , and Km (u) the

path, star, cycle, and complete graph on m vertices, respectively, in which all the

edges have weight equal to u.

Example 1.1. Let B = B4 (1, 5, 3, 2) , ∆ = {1, 3} and consider the family of

graphs F = {G1 = S4(u1),G3 = P2(u3)}. Then B (F ) is the graph depicted in Fig-

ure 1.1.

23

21 22

17 18 19 20

1
2

3 4 5
6

7 8 9
10

11 12 13
14

15 16

Fig. 1.1. Graph B (F), with F = {G1 = S4(u1),G3 = P2(u3)}.

Observe that since B (F ) has k = 4 levels and ∆ = {1, 3}, then for j = 1, at level

4− 1 + 1 = 4, there are four graphs G1 = S4 (u1), each one with vertex set defined by

the set of children of a vertex at level 3 and, for j = 3, at level 4 − 3 + 1 = 2, there

is one graph G3 = P2 (u3) with vertex set defined by the unique set of children of the

root vertex.

Throughout this text, the identity matrix of appropriate order is denoted by I

and Im denotes the identity matrix of order m.

We recall that the Kronecker product (cf. [13]) of two matrices A = (ai,j) and

B = (bi,j) of sizes m×m and n×n, respectively, is defined as the (mn)×(mn) matrix
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A ⊗ B = (ai,jB). Then, in particular, In ⊗ Im = Inm.

Some basic properties of the Kronecker product are the following:

(A ⊗ B)
T

= AT ⊗ BT

and

(A ⊗ B) (C ⊗ D) = (AC ⊗ BD)

for matrices of appropriate sizes. Moreover, if A and B are invertible matrices, then

(A ⊗ B)
−1

= A−1 ⊗ B−1.

Furthermore, we need the following additional notation: |A| denotes the deter-

minant of the matrix A, when A is square and, for any matrix B, BT denotes the

transpose of B.

In this paper, we characterize the eigenvalues of the matrix S =

































In2
⊗ S1 ∓In2

⊗ w1em1

∓In2
⊗ w1e

T
m1

.
.
.

.
.
.

.
.
. Ink−1

⊗ Sk−2 ∓Ink−1
⊗ wk−2emk−2

∓Ink−1
⊗ wk−2e

T
mk−2

Sk−1 ∓wk−1emk−1

∓wk−1e
T
mk−1

γk

































,

where

Sj = γjImj
+ cjMj (1 ≤ j ≤ k − 1) ,

γj and cj are scalars, and Mj is a matrix on the graph Gj , having emj
as one of its

eigenvector, if j ∈ ∆ and it is the zero matrix otherwise.

For instance, if

Lj =

{

δjImj
+ L (Gj) if j ∈ ∆

δjImj
otherwise

, j = 1, . . . , k − 1,

then, using the above mentioned labelling for the vertices, the Laplacian matrix of

B (F) is L (B (F)) =

































In2
⊗ L1 −In2

⊗ w1em1

−In2
⊗ w1e

T
m1

.
.
.

.
.
.

.
.
. Ink−1

⊗ Lk−2 −Ink−1
⊗ wk−2emk−2

−Ink−1
⊗ wk−2e

T
mk−2

Lk−1 −wk−1emk−1

−wk−1e
T
mk−1

δk

































.
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We prove that the eigenvalues of S are the eigenvalues of a set of symmetric

tridiagonal matrices of order j, 1 ≤ j ≤ k, easily constructed from the degrees of the

vertices, the weights of the edges and the eigenvalues of the matrices Mj , which in

some cases are very well known. Then, we apply these results to characterize the

eigenvalues of the Laplacian (and also the signless Laplacian and adjacency matrices,

when the graphs of the family F are regular), including their multiplicities, of the

graph B (F).

The results of this paper generalize the results of some previous works. Among

them we may refer [2, 7, 11]. In [2], the authors characterize the eigenvalues of the

Laplacian matrix for the unweighted case, whenever ∆ = {j} and the graphs Gj are

the paths Pmj
. In [7], the authors characterize the eigenvalues of these matrices

whenever, for j ∈ ∆ = {1 ≤ j ≤ k − 1 : mj even}, the graphs Gj are the disconnected

graphs
mj

2 P2, that is,
mj

2 copies of the path P2. In [11], the eigenvalues of the

Laplacian, signless Laplacian and adjacency matrices are characterized whenever, for

each j ∈ ∆, the graphs Gj are the complete graphs Kmj
.

Throughout the next sections, 0 denotes the all zero matrix of appropriate order

and em is the m−dimensional column vector of ones. Furthermore, the scalars cj are

such that cj = 1 if j ∈ ∆ and cj = 0 if j /∈ ∆.

2. The main result. From now on, if Mj is a matrix on the graph Gj , with

eigenvalues

µ1 (Mj) , . . . , µmj
(Mj) ,

then µmj
(Mj) is such that

Mjemj
= µmj

(Mj) emj
.

Before introducing the main result of this paper, we prove the following auxiliary

lemmas.

Lemma 2.1. Consider the matrix

B = βIm − cM

where β and c are scalars and the matrix M has the eigenvalues µ1 (M) , . . . , µm (M).

Then

|B| =
m
∏

i=1

(β − cµi (M)) .(2.1)
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Moreover, if β − cµi (M) 6= 0 for all i and Mem = µm (M) em, then

eT
mB−1em =

m

β − cµm (M)
.(2.2)

Proof. Clearly the eigenvalues of B are β − cµi (M) (1 ≤ i ≤ m) and thus (2.1)

follows. Since Mem = µm (M) em, then Bem = (β − cµm (M)) em. Therefore, as-

suming that these eigenvalues are nonzero, B is invertible, B−1em = 1
β−cµm(M)em

and (2.2) follows.

Lemma 2.2. Consider the block tridiagonal matrix T =










































In2
⊗ H1 ±In2

⊗ w1em1

±In2
⊗ w1e

T
m1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. Ink−1
⊗ Hk−2 ±Ink−1

⊗ wk−2emk−2

±Ink−1
⊗ wk−2e

T
mk−2

Hk−1 ±wk−1emk−1

±wk−1e
T
mk−1

αk











































,

where, for j = 1, . . . , k − 1, Hj = αjImj
− cjMj.

Assume

β1 = α1

and, for j = 2, . . . , k, assume also

βj = αj −
w2

j−1mj−1

βj−1 − cj−1µmj−1
(Mj−1)

.

If βj − cjµi (Mj) 6= 0 for j = 1, . . . , k − 1 and i = 1, . . . ,mj, then

|T | =
k

∏

j=1

mj
∏

i=1

(βj − cjµi (Mj))
nj+1 .(2.3)

Proof. In order to prove (2.3), we reduce T to a block upper triangular matrix. We

have H1 = α1Im1
− c1M1 = β1Im1

− c1M1 ≡ B1. From the hypothesis, it follows that

B1 is an invertible matrix. Multiplying the first row of blocks by ±In2
⊗ w1e

T
m1

B−1
1

and subtracting the products from the second row of blocks, we obtain T2 =











































In2
⊗ B1 ±In2

⊗ w1em1
In3

⊗ H2 − In2
⊗ w2

1e
T
m1

B
−1
1 em1

±In3
⊗ w2em2

±In3
⊗ w2e

T
m2

.
.
.

.
.
.

.
.
.

.
.
.

.
.
. Hk−1 ±wk−1emk−1

±wk−1e
T
mk−1

αk











































.
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From Lemma 2.1, eT
m1

B−1
1 em1

= m1

β1−c1µm1
(M1)

. Then

In3
⊗ H2 − In2

⊗ w2
1e

T
m1

B−1
1 em1

= In3
⊗ H2 − In2

⊗ w2
1m1

β1 − c1µm1
(M1)

= In3
⊗ H2 −

w2
1m1

β1 − c1µm1
(M1)

In3
⊗ Im2

= In3
⊗

(

H2 −
w2

1m1

β1 − c1µm1
(M1)

Im2

)

= In3
⊗

((

α2 −
w2

1m1

β1 − c1µm1
(M1)

)

Im2
− c2M2

)

= In3
⊗ (β2Im2

− c2M2) .

If B2 = β2Im2
− c2M2, then |T | = |T2| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

In2
⊗ B1 ±In2

⊗ w1em1
0 In3

⊗ B2 ±In3
⊗ w2em2

±In3
⊗ w2e

T
m2

.
.
.

.
.
.

.
.
. Ink−1

⊗ Hk−2 ±Ink−1
⊗ wk−2emk−2

±Ink−1
⊗ wk−2e

T
mk−2

Hk−1 ±wk−1emk−1

±wk−1e
T
mk−1

αk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

From the hypothesis, the matrix B2 is invertible and thus we may continue with this

procedure. Just before the last step, we obtain |T | = |Tk−1| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

In2
⊗ B1 ±In2

⊗ w1em1
0 In3

⊗ B2 ±In3
⊗ w2em2

0

.
.
.

.
.
.

.
.
. Ink−1

⊗ Bk−2 ±Ink−1
⊗ wk−2emk−2

0 Bk−1 ±wk−1emk−1

wk−1e
T
mk−1

αk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

where Bj = βjImj
− cjMj , j = 1, . . . , k − 1. Finally, the procedure gives |T | =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

In2
⊗ B1 ±In2

⊗ w1em1
0 In3

⊗ B2 ±In3
⊗ w2em2

0

.
.
.

.
.
.

.
.
. Ink−1

⊗ Bk−2 ±Ink−1
⊗ wk−2emk−2

0 Bk−1 ±wk−1emk−1
0 βk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

with βk = αk − w2
k−1mk−1

βk−1−ck−1µmk−1
(Mk−1)

. Hence,

|T | = βk

k−1
∏

j=1

|Bj |nj+1 .(2.4)
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From Lemma 2.1

|Bj | =

mj
∏

i=1

(βj − cjµi (Mj)) .

Replacing in (2.4), we obtain (2.3).

Definition 2.3. The polynomials Dj (λ), j = 1, . . . , k are defined as follows:

D0 (λ) = 1,

D1 (λ) = λ − γ1 − c1µm1
(M1) ,

Dj (λ) =
(

λ − γj − cjµmj
(Mj)

)

Dj−1 (λ) − w2
j−1mj−1Dj−2 (λ)

for j = 2, . . . , k − 1, and

Dk (λ) = (λ − γk)Dk−1 (λ) − w2
k−1mk−1Dk−2 (λ) .

For brevity, we write Dj instead of Dj (λ).

Lemma 2.4. If αj = λ − γj, for j = 1, . . . , k, then for all λ ∈ R such that

Dj (λ) 6= 0, for j = 1, . . . , k − 1, the quantities βj defined in Lemma 2.2 satisfy

βj − cjµmj
(Mj) =

Dj

Dj−1
(2.5)

for j = 1, . . . , k.

Proof. We prove (2.5) by induction on j, taking into account that for j = 1,

β1 − c1µm1
(M1) = α1 − c1µm1

(M1) = λ − γ1 − c1µm1
(M1)

= D1 =
D1

D0
.

Suppose that (2.5) is true for j − 1, with 2 ≤ j ≤ k. Then

βj − cjµmj
(Mj) = αj −

w2
j−1mj−1

βj−1 − cj−1µmj−1
(Mj−1)

− cjµmj
(Mj)

= λ − γj − cjµmj
(Mj) −

w2
j−1mj−1

Dj−1

Dj−2

=

(

λ − γj − cjµmj
(Mj)

)

Dj−1 − w2
j−1mj−1Dj−2

Dj−1
=

Dj

Dj−1
.
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For convenience, from now on, let us define the index set

Ω = {j : 1 ≤ j ≤ k − 1, nj > nj+1} .

Theorem 2.5. The characteristic polynomial of the matrix S is

|λI − S| = Dk

∏

j∈Ω−∆

(

(λ − γj)Dj−1 − w2
j−1mj−1Dj−2

)nj−nj+1

∏

j∈∆

mj−1
∏

i=1

(

(λ − γj − µi (Mj))Dj−1 (λ) − w2
j−1mj−1Dj−2 (λ)

)nj+1

where m0 = 0 and D−1(λ) is any constant (since it appears multiplied by m0).

Proof. Let λ ∈ R such that Dj (λ) 6= 0 for j = 1, 2, . . . , k − 1. Applying Lemma

2.2 to the matrix T = λI − S, we have

|λI − S| = βk

k−1
∏

j=1

mj
∏

i=1

(βj − cjµi (Mj))
nj+1 .

Replacing (2.5) into (2.3), it follows |λI − S| =

= βk

k−1
∏

j=1

(

βj − cjµmj
(Mj)

)nj+1

mj−1
∏

i=1

(βj − cjµi (Mj))
nj+1

=
Dk

Dk−1

k−1
∏

j=1

D
nj+1

j

D
nj+1

j−1

mj−1
∏

i=1

(

Dj

Dj−1
+ cjµmj

(Mj) − cjµi (Mj)

)nj+1

=
Dk

Dk−1

k−1
∏

j=1

D
nj+1

j

D
nj+1

j−1

mj−1
∏

i=1

(

Dj − cjµi (Mj)Dj−1 + cjµmj
(Mj)Dj−1

Dj−1

)nj+1

=
Dk

Dk−1

k−1
∏

j=1

D
nj+1

j

D
nj+1

j−1

1

D
(mj−1)nj+1

j−1

mj−1
∏

i=1

(

Dj − cjµi (Mj)Dj−1 + cjµmj
(Mj)Dj−1

)nj+1

=
Dk

Dk−1

k−1
∏

j=1

D
nj+1

j

D
nj

j−1

mj−1
∏

i=1

(

Dj − cjµi (Mj)Dj−1 + cjµmj
(Mj)Dj−1

)nj+1

=
Dk

Dk−1

k−1
∏

j=1

D
nj+1

j

D
nj

j−1

mj−1
∏

i=1

(

(λ − γj − cjµi (Mj))Dj−1 − w2
j−1mj−1Dj−2

)nj+1

= Dk

∏

j∈Ω−∆

(

(λ − γj)Dj−1 − w2
j−1mj−1Dj−2

)nj−nj+1

∏

j∈∆

mj−1
∏

i=1

(

(λ − γj − µi (Mj))Dj−1 − w2
j−1mj−1Dj−2

)nj+1
.
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Then, the result is proven for all λ ∈ R such that Dj (λ) 6= 0, with j = 1, . . . , k − 1.

Now, we consider λ0 ∈ R such that Ds (λ0) = 0 for some s ∈ {1, . . . , k − 1}. Since

the zeros of any nonzero polynomial are isolated, there exists a neighborhood N (λ0)

of λ0 such that Dj (λ) 6= 0 for all λ ∈ N (λ0) − {λ0} and for all j = 1, . . . , k − 1.

Hence, the obtained expression for the characteristic polynomial of S holds for all

λ ∈ N (λ0)−{λ0}. By continuity, taking the limit as λ tends to λ0, we may conclude

that this expression is valid for all λ ∈ R.

Definition 2.6. For j = 1, . . . , k, let Xj be the j×j leading principal submatrix
of the k × k symmetric tridiagonal matrix Xk =





























γ1 + c1µm1
(M1) w1

√
m1

w1
√

m1 γ2 + c2µm2
(M2)

.
.
.

.
.
.

.
.
. wk−2

√

mk−2

wk−2
√

mk−2 γk−1 + ck−1µmk−1

(

Mk−1

)

wk−1
√

mk−1

wk−1
√

mk−1 γk





























.

At this point, we recall the well known fact (cf. [12, page 229]) that the character-

istic polynomials Tj(λ) of the j×j leading principal submatrix of the k×k symmetric

tridiagonal matrix


















a1 b1

b1 a2 b2

. . .
. . .

. . .

. . . ak−1 bk−1

bk−1 ak



















,

satisfy the three-term recursion formula

Tj (λ) = (λ − aj)Tj−1 (λ) − b2
j−1Tj−2 (λ)(2.6)

with T0 (λ) = 1 and T1 (λ) = λ − a1.

The next lemma gives the relationship between the polynomials Dj and the ma-

trices Xj .

Lemma 2.7. For j = 1, . . . , k,

|λI − Xj | = Dj (λ) ,(2.7)

where the polynomial Dj(λ) is as in Definition 2.6.

Proof. Taking into account that

|λI − X1| = λ − γ1 − c1µm1
(M1) γ1 = D1 (λ) ,

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 22, pp. 653-671, July 2011



ELA

Spectra of Weighted Rooted Graphs Having Prescribed Subgraphs at Some Levels 663

let us prove the equality (2.7) by induction, assuming its validity when the index is
less than j, with 2 ≤ j ≤ k. In fact,

|λI − Xj |

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ − γ1 − c1µm1 (M1) −w1

√
m1

−w1

√
m1 λ − γ2 − c2µm2 (M2)

. . .

. . .
. . . −wj−1

√
mj−1

wj−1

√
mj−1 λ − γj − cjµmj (Mj)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
(

λ − γj − cjµmj (Mj)
)

|λI − Xj−1| − w
2

j−1mj−1 |λI − Xj−2| (according to (2.6))

=
(

λ − γj − cjµmj (Mj)
)

Dj−1 (λ) − w
2

j−1mj−1Dj−2 (λ) (by induction hypothesis)

= Dj (λ) .

From Lemma 2.7, we are able to determine the polynomials Dj , with j ∈ Ω−∆,

which appear in Theorem 2.5. Now, for j ∈ ∆ and 1 ≤ i ≤ mj − 1, we consider the

polynomials

Dj,i (λ) = (λ − γj − µi (Mj))Dj−1 − w2
j−1mj−1Dj−2,(2.8)

where m0 = 0 and D−1 is an arbitrary constant. These polynomials are also factors

of the characteristic polynomial of the matrix S, as it is stated by Theorem 2.5.

Definition 2.8. For j ∈ ∆ and i = 1, . . . ,mj − 1, let Xj,i =




















γ1 + c1µm1 (M1) w1

√
m1

w1

√
m1

. . .
. . .

. . .
. . . wj−2

√
mj−2

wj−2

√
mj−2 γj−1 + cj−1µmj−1 (Mj−1) wj−1

√
mj−1

wj−1

√
mj−1 γj + µi (Mj)





















.

The next lemma gives the relationship between the polynomials Dj,i and the

matrices Xj,i.

Lemma 2.9. For j = 1, . . . , k − 1 and i = 1, . . . ,mj − 1

|λI − Xj,i| = Dj,i (λ) ,

where the polynomials Dj,i(λ) are defined in (2.8).

Proof. Taking into account (2.6), the proof is similar to the proof of Lemma 2.7.

From Theorem 2.5 and Lemmas 2.7 and 2.9, we get the main result of this paper.

Theorem 2.10. Consider the j×j leading principal submatrices Xj of the matrix

Xk in (2.6) and the matrices Xj,i, according to Definition 2.8, for j = 1, . . . , k − 1
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and i = 1, . . . ,mj − 1. Then

σ (S) = σ (Xk) ∪
(

∪j∈Ω−∆σ (Xj)
nj−nj+1

)

∪
(

∪j∈∆ ∪mj−1
i=1 σ (Xj,i)

nj+1

)

,

where σ (Xj)
nj−nj+1 and σ (Xj,i)

nj+1 mean that each eigenvalue in σ (Xj) and in

σ (Xj,i) must be considered with multiplicity nj − nj+1 and nj+1, respectively. Fur-

thermore, the multiplicities of equal eigenvalues obtained in different matrices (if any),

must be added.

Notice that the symmetric tridiagonal matrices with nonzero co-diagonal entries,

which are the case of the matrices Xk, Xj and Xj,i, have simple eigenvalues [9].

3. The Laplacian eigenvalues of B (F). Throughout this section, for each j,

the Laplacian eigenvalues of Gj are denoted by

l1 (Gj) , l2 (Gj) , . . . , lmj−1 (Gj) , lmj
(Gj) = 0.

Corollary 3.1. If B is a generalized Bethe tree with k levels and F = {Gj : j ∈
∆} is a family of graphs Gj of order mj with indices in a subset of levels ∆, then the

spectrum of L (B (F)) is

σ (L (B (F))) = σ (Uk) ∪ (∪j∈Ω−∆σ (Uj))
nj−nj+1 ∪

(

∪j∈∆ ∪mj−1
i=1 σ (Uj,i)

nj+1

)

where, for j = 1, . . . , k − 1, Uj is the j × j leading principal submatrix of the matrix

Uk =



















δ1 w1

√
m1

w1

√
m1 δ2

. . .

. . .
. . . wk−2

√
mk−2

wk−2

√
mk−2 δk−1 wk−1

√
mk−1

wk−1

√
mk−1 δk



















(3.1)

and

Uj,i =



















δ1 w1

√
m1

w1

√
m1

. . .
. . .

. . .
. . . wj−2

√
mj−2

wj−2

√
mj−2 δj−1 wj−1

√
mj−1

wj−1

√
mj−1 δj + li (Gj)



















.(3.2)

The multiplicities of the eigenvalues of L (B (F)) must be considered as in Theo-

rem 2.10.

Proof. The Laplacian matrix of B (F) is the matrix S, with γj = δj (1 ≤ j ≤ k),

Sj =

{

δjImj
+ L (Gj) if j ∈ ∆

δjImj
otherwise

,
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and L (Gj) emj
= 0 = 0emj

. Then, the spectrum of L (B (F)) is given by Theorem

2.10, replacing the matrices Xk, Xj , and Xi,j by the matrices Uk, Uj , and Uj,i,

respectively.

We recall that Pm (u) , Sm (u) , Cm (u) , and Km (u) are the path, star, cycle, and

complete graph on m vertices, respectively, where the edges have weight equal to u.

The Laplacian eigenvalues of these graphs are:

Laplacian eigenvalues

Pm (u) : u
(

2 + 2 cos πi
m

)

, 1 ≤ i ≤ m

Sm (u) : um, u, . . . , u, 0

Cm (u) : u
(

2 − 2 cos 2πi
m

)

, 1 ≤ i ≤ m

Km (u) : um, . . . , um, 0

Example 3.2. For the graph B (F) depicted in Figure 1.1, we have k = 4,

d1 = 1, d2 = 5, d3 = 3, d4 = 2, n1 = 16, n2 = 4, n3 = 2, n4 = 1, and Ω = {1, 2, 3}.
Moreover, ∆ = {1, 3} , m1 = 4, m2 = 2, m3 = 2, G1 = S4 (u1) , and G3 = P2 (u3).

We have l1 (G1) = 4u1, l2 (G1) = l3 (G1) = u1, and l1 (G3) = 2u3. From Corollary 3.1,

σ (L (B (F))) = σ (U4) ∪ σ (U2)
4−2 ∪ σ (U1,1)

4 ∪ σ (U1,2)
4 ∪ σ (U1,3)

4 ∪ σ (U3,1)
1
,

where

U4 =









w1 2w1

2w1 4w1 + w2

√
2w2√

2w2 2w2 + w3

√
2w3√

2w3 2w3









,

U2 =

[

w1 2w1

2w1 4w1 + w2

]

,

U1,1 = [w1 + l1 (G1)] = [w1 + 4u1] ,

U1,2 = [w1 + l2 (G1)] = [w1 + u1] = U1,3 = [1 + l3 (G1)] ,

and

U3,1 =





w1 2w1

2w1 4w1 + w2

√
2w2√

2w2 2w2 + w3 + l1 (G3)





=





w1 2w1

2w1 4w1 + w2

√
2w2√

2w2 2w2 + w3 + 2u3



 .
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If w1 = 2, w2 = 2.5, w3 = 3, u1 = 1.5, and u3 = 2, then the eigenvalues of L (B (F )),

with four decimal places, are:

multiplicity

U2 : 0.4137 12.0863 n2 − n3 = 2

U4 : 0 2.5150 9.4153 14.5697 1

U1,1 : 8 n2 = 4

U1,2 : 3.5 n2 = 4

U1,3 : 3.5 n2 = 4

U3,1 : 0.2568 8.8567 15.3864 n4 = 1

4. The eigenvalues of the signless Laplacian and adjacency matrices of

B (F). If every vertex of G has degree r, then G is called a regular graph of degree

r. Throughout this section, we consider a generalized Bethe tree B with k levels and

a family of graphs F = {Gj : j ∈ ∆} and then we apply Theorem 2.10 to find the

eigenvalues of Q (B (F)) and A (B (F)), whenever Gj is a regular graph of order mj ,

with j ∈ ∆.

For j ∈ ∆, we assume that Gj is a regular graph of degree rj and order mj .

Example 4.1. The graph depicted in Figure 4.1 is the graph B (F), with F =

{G1 = 2P2 (u1) , G4 = C3 (u3)}.

40

37

38

39

31 32 33 34 35 36

25 26 27 28 29 30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Fig. 4.1. The graph B (F), with F = {G1 = 2P2 (u1) , G4 = C3 (u3)}.

Using the labelling for the vertices of B (F) as in the graph of Figure 1.1, that is,

from the pendant vertices to the root and, in each level, from the left to the right,
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the signless Laplacian and adjacency matrices of B (F) are

Q (B (F)) =



















In2
⊗ Q1 In2

⊗ em1

In2
⊗ eT

m1

. . .
. . .

. . . Ink−1
⊗ Qk−2 Ink−1

⊗ emk−2

Ink−1
⊗ eT

mk−2
Qk−1 emk−1

eT
mk−1

δk



















where Qj =

{

δjImj
+ Q (Gj) if j ∈ ∆

δjImj
otherwise

, and

A (B (F)) =



















In2
⊗ A1 In2

⊗ em1

In2
⊗ eT

m1

. . .
. . .

. . . Ink−1
⊗ Ak−2 Ink−1

⊗ emk−2

Ink−1
⊗ eT

mk−2
Ak−1 emk−1

eT
mk−1

0



















where Aj =

{

A (Gj) if j ∈ ∆

0 otherwise
.

Let us consider a regular graph G of degree r and order m, and let us denote its

signless Laplacian eigenvalues by

q1 (G) , q2 (G) , . . . , qm−1 (G) , qm (G)

and its adjacency eigenvalues by

λ1 (G) , λ2 (G) , . . . , λm−1 (G) , λm (G) .

Assuming that the edges of G have a weight equal to u, then

Q (G) em = 2ruem and A (G) em = ruem,

and we may write λm (G) = ru and qm (G) = 2ru.

Corollary 4.2. If, for each j ∈ ∆, the graph Gj is a regular graph of degree rj,

then the spectrum of Q (B (F)) is

σ (Q (B (F))) = σ (Vk) ∪
(

∪j∈Ω−∆σ (Vj)
nj−nj+1

)

∪
(

∪j∈∆ ∪mj−1
i=1 σ (Vj,i)

nj+1

)

where, for j = 1, . . . , k − 1, Vj is the j × j leading principal submatrix of

Vk =



















δ1 + 2c1u1r1 w1

√
m1

w1

√
m1

. . .
. . .

. . .
. . . wk−2

√
mk−2

wk−2

√
mk−2 δk−1 + 2ck−1uk−1rk−1 wk−1

√
mk−1

wk−1

√
mk−1 δk



















,
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Vj,i =



















δ1 + 2c1u1r1 w1

√
m1

w1

√
m1

. . .
. . .

. . .
. . . wj−2

√
mj−2

wj−2

√
mj−2 δj−1 + 2cj−1uj−1rj−1 wj−1

√
mj−1

wj−1

√
mj−1 δj + qi (Gj)



















and the multiplicities of the eigenvalues of Q (B (F)) are as in Theorem 2.10.

Proof. The signless Laplacian matrix of B (F) is the matrix S, with γi = δi, for

i = 1, . . . , k, and Mj = Q (Gj) if j ∈ ∆ and it is the zero matrix otherwise. Moreover,

Q (Gj) emj
= 2ujrjemj

. Then, the result follows directly from Theorem 2.10.

Example 4.3. For the graph B (F) depicted in Figure 4.1, B = B5 (1, 5, 2, 3, 3)

and we have k = 5, δ1 = w1, δ2 = 4w1 +w2, δ3 = w2 +w3, δ4 = 2w3 +w4, δ5 = 3w4,

n1 = 24, n2 = n3 = 6, n4 = 3, and n5 = 1. Moreover, Ω = {1, 3, 4} , ∆ = {1, 4} ,

m1 = 4, m2 = 1, m3 = 2, m4 = 3, G1 = 2P2 (u1) , r1 = 1, G4 = C3 (u4) and r4 = 2.

Since q1 (G1) = 2u1, q2 (G1) = q3 (G1) = 0, q1 (G4) = q2 (G4) = u4, from Corollary 4.2,

it follows

σ (Q (B (F))) = σ (V5)∪σ (V3)
6−3∪σ (V1,1)

6∪σ (V1,2)
6∪σ (V1,3)

6∪σ (V4,1)
1∪σ (V4,2)

1
,

where

V5 =















δ1 + 2u1 2w1

2w1 δ2 w2

w2 δ3 w3

√
2

w3

√
2 δ4 + 4u4 w4

√
3

w4

√
3 δ5















,

V3 =





δ1 + 2u1 2w1

2w1 δ2 w2

w2 δ3



 ,

V1,1 = [δ1 + 2u1] , V1,2 = V1,3 = [δ1] ,

and

V4,1 = V4,2 =









δ1 + 2u1 2w1

2w1 δ2 w2

w2 δ3 w3

√
2

w3

√
2 δ4 + u4









.
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Setting w1 = 2, w2 = 1.5, w3 = 2.5, w4 = 3, u1 = 1.8, and u4 = 2.2, the eigenvalues

of Q (B (F)), with four decimal places, are:

multiplicity

V3 : 2.5897 4.3113 12.1990 n3 − n4 = 3

V5 : 2.0698 3.5867 7.0275 12.1785 20.0374 1

V1,1 : 5.6 n2 = 6

V1,2 : 2 n2 = 6

V1,3 : 2 n2 = 6

V4,1 : 1.8425 3.5046 11.4279 12.5250 n5 = 1

V4,2 : 1.8425 3.5046 11.4279 12.5250 n5 = 1

Corollary 4.4. If, for each j ∈ ∆, the graph Gj is regular of degree rj, then

the spectrum of A (B (F)) is

σ (A (B (F))) = σ (Wk) ∪
(

∪j∈Ω−∆σ (Wj)
nj−nj+1

)

∪
(

∪j∈∆ ∪mj−1
i=1 σ (Wj,i)

nj+1

)

,

where, for j = 1, . . . , k − 1, Xj is the j × j leading principal submatrix of the k × k

symmetric tridiagonal matrix

Wk =



















c1u1r1 w1
√

m1

w1
√

m1 c2u2r2
. . .

. . .
. . . wk−2

√
mk−2

wk−2
√

mk−2 ck−1uk−1rk−1 wk−1
√

mk−1

wk−1
√

mk−1 0



















and

Wj,i =



















c1u1r1 w1
√

m1

w1
√

m1
. . .

. . .

. . .
. . . wj−2

√
mj−2

wj−2
√

mj−2 cj−1uj−1rj−1 wj−1
√

mj−1

wj−1
√

mj−1 λi (Gj)



















,

and the multiplicities of the eigenvalues of A (B (F)) are as in Theorem 2.10.

Proof. The adjacency matrix of B (F) is the matrix S, with γi = 0 (1 ≤ i ≤ k)

and Mj = A (Gj) if j ∈ ∆ and it is the zero matrix otherwise. Moreover, A (Gj) emj
=

ujrjemj
. Then the result follows directly from Theorem 2.10.

In the next example, we look for the eigenvalues of the adjacency matrix A (B (F))

of the graph depicted in Figure 4.1.
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Example 4.5. Consider the graph B (F) depicted in Figure 4.1. Then we have
λ1 (G1) = u1, λ2 (G1) = λ3 (G1) = −u1, λ1 (G4) = λ2 (G4) = −u4 and, applying Corol-
lary 4.4,

σ (A (B (F))) = σ (W5) ∪ σ (W3)6−3 ∪ σ (W1,1)6 ∪ σ (W1,2)6 ∪ σ (W1,3)6 ∪ σ (W4,1)1 ∪ σ (W4,2)1 ,

where

W5 =















u1 2w1

2w1 0 w2

w2 0 w3

√
2

w3

√
2 2u4 w4

√
3

w4

√
3 0















,

W3 =





u1 2w1

2w1 0 w2

w2 0



 ,

W1,1 = [u1] , W1,2 = W1,3 = [−u1] ,

and

W4,1 = W4,2 =









u1 2w1

2w1 0 w2

w2 0 w3

√
2

w3

√
2 −u4









.

Setting w1 = 2, w2 = 1.5, w3 = 2.5, w4 = 3, u1 = 1.8 and u4 = 2.2, the eigenvalues

of A (B (F)) with four decimal places, are:

multiplicity

W3 : −3.5930 0.2178 5.1752 n3 − n4 = 3

W5 : −4.7075 −3.2592 0.1567 5.1142 8.8959 1

W1,1 : 1.8 n2 = 6

W1,2 : −1.8 n2 = 6

W1,3 : −1.8 n2 = 6

W4,1 : −5.1067 −3.0782 2.5281 5.2569 n5 = 1

W4,2 : −5.1067 −3.0782 2.5281 5.2569 n5 = 1
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[5] D. Cvetković and S.K. Simić. Towards a spectral theory of graphs based on the signless

Laplacian II. Linear Algebra Appl., 432:2257–2272, 2010.
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