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PATH PRODUCT AND INVERSE M-MATRICES∗

YAN ZHU† , CHENG-YI ZHANG‡ , AND JUN LIU§

Abstract. It is known that inverse M-matrices are strict path product (SPP) matrices, and

that the converse is not true for matrices of order greater than 3. In this paper, given a normalized

SPP-matrix A, some new values s′ for which A+s′I is an inverse M-matrix are obtained. Our values

s′ extend the values s given by Johnson and Smith [C.R. Johnson and R.L. Smith. Positive, path

product, and inverse M-matrices. Linear Algebra Appl., 421:328–337, 2007.]. The question whether

or not a 4× 4 SPP-matrix is a P-matrix is settled.
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1. Introduction. An n × n matrix A = (aij) is an M -matrix if aij ≤ 0 (i 6= j)

and A−1 ≥ 0. A nonnegative matrix which is the inverse of an M-matrix is an inverse

M-matrix (IM-matrix ). Inverse M-matrices arise in mathematical modeling, random

energy models in statistical physics [1], numerical integration and the Ising model

of ferromagnetism [12]. There has been a great deal of work on special types of

IM-matrices (see, for example, [3, 4, 9–11]).

Here we will be interested in the property

aijajk

ajj

≤ aik , 1 ≤ i, j, k ≤ n(1.1)

of an IM-matrix A = (aij)n×n, n ≥ 3, which was first noted in [12] and more fully

developed in [7].

Following [7], we call (1.1) the path product conditions or PP conditions, for short.

An n × n nonnegative matrix A = (aij), with aii > 0, satisfying these conditions is
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a PP-matrix. Moreover, if at least one strict inequality in (1.1) holds for i = k and

i 6= j, then A is a strict path product (SPP ) matrix. In [7] (see also [12]), it is proved

that an IM-matrix is an SPP-matrix. Furthermore, an SPP-matrix is an IM-matrix

when n ≤ 3, and this is not necessarily the case for larger n. Consequently, it was

noted in [6] that an SPP-matrix may be made an IM-matrix by adding an appropriate

nonnegative diagonal matrix.

We say that an n × n nonnegative matrix A = (aij) is normalized if aii = 1

and aij < 1, for i 6= j. It was noted in [7] that if A is an n × n SPP-matrix, then

there exist positive diagonal matrices D and E such that B = DAE, where B is a

normalized SPP-matrix.

Given an n × n matrix A and index sets α, β ⊆ N , N = {1, . . . , n}, we denote

by A[α, β] the submatrix lying in rows α and columns β. Similarly, A(α, β) denotes

the submatrix deleting rows α and columns β. If α = β, then we denote the principal

submatrix A[α, α] (resp., A(α, α)) by A[α] (resp., A(α)).

An almost principal submatrix (resp., minor) is a submatrix A[α, β] (resp.,

det A[α, β]) for which α and β have the same number of elements and differ just in

one of their elements. Almost principal minors are exactly the numerators of off-

diagonal entries of inverses of principal submatrices. Following [8], we abbreviate

“almost principal minor” to APM.

In this paper, for an n × n normalized SPP-matrix A = (aij), we will give new

values s′ such that A + s′I is an IM-matrix. Our values s′ extend the values given

by Johnson and Smith [6]. Examples are also given, and we will show that a 4 × 4

normalized SPP-matrix is necessarily a P-matrix; this answers a question raised in

[7].

2. Main results. The results about SPP-matrices established by Johnson and

Smith [7] that we shall use are the following.

Lemma 2.1. Let A = (aij) be a normalized SPP-matrix of order n. Then A[α]

is a normalized SPP-matrix.

Lemma 2.2. Let A = (aij) be a normalized SPP-matrix of order n. Then all

3 × 3 principal submatrices of A are IM-matrices.

The following appear in [6].

Theorem 2.3. Let A = (aij) be a normalized SPP matrix of order n, n ≥ 2,

whose proper principal minors are positive and whose APMs are signed as those of

an IM-matrix. Then,

1. For each nonempty proper subset α of N = {1, 2, . . . , n} and for all indices
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i ∈ α and j /∈ α, we have

det A[α] > max{|det A[α − i + j, α]|, |det A[α, α − i + j]|};

2. detA > 0;

3. A is an IM-matrix.

Theorem 2.4. Let A = (aij) be a 4 × 4 normalized SPP-matrix. Then A + I is

an IM-matrix. Furthermore, A + sI need not be an IM-matrix when s < 1.

Now we are ready to state the following result about 4 × 4 normalized SPP

matrices.

Theorem 2.5. Let A = (aij) be a 4 × 4 normalized SPP-matrix. Then A + s′I

is an IM-matrix for all s′ ≥ m, where

m = max
i6=j

aikakj

aij

≤ 1, k = 1, . . . , n, k 6= i, j, and aij 6= 0.

Proof. Following the idea of Theorem 2.4, to show A + mI is an IM-matrix,

we will show that the (4, 1) APM (i.e., the determinant of A[{1, 2, 3}, {2, 3, 4}]) is

nonnegative. Note that

det(A + mI)(4, 1) = det





a12 a13 a14

1 + m a23 a24

a32 1 + m a34





= (1 + m)2a14 − (1 + m)a12a24 − (1 + m)a13a34 + a12a23a34

+a13a32a24 − a14a23a32

= (1 + m)(a14 − a12a24 + ma14 − a13a34) + a12a23a34

+a13a32a24 − a14a23a32

≥ (1 + m)(a14 − a12a24 + ma14 − a13a34)

+a12a23a32a24 + a13a32a23a24 − a14a23a32,

where ma14 − a13a34 = a14

(

m − a13a34

a14

)

≥ 0. If the sum of the last three terms is

nonnegative, then the determinant is nonnegative by the path product inequalities.

Otherwise, we have

det(A + mI)(4, 1) ≥ (1 + m)(a14 − a12a24 + ma14 − a13a34)

+a12a23a32a24 + a13a32a23a24 − a14a23a32

= (1 + m)(a14 − a12a24 + ma14 − a13a34)

+(a12a24 + a13a24 − a14)a23a32

≥ (1 + m)(a14 − a12a24 + ma14 − a13a34) + (a12a24 + a13a24 − a14)

= ma14 − a13a34 + m(a14 − a12a24 + ma14 − a13a34) + a13a24

≥ 0.
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As a consequence, A + mI is an IM-matrix. Since s′ ≥ m, A + s′I is necessarily an

IM-matrix.

Example 2.6. Consider the following normalized SPP-matrix

A =









1 0.4 0.6 0.7

0.6 1 0.5 0.7

0.6 0.5 1 0.7

0.4 0.5 0.3 1









.

Then A is not an IM-matrix, since detA(2, 1) = −0.019 ≤ 0. By actual calculation,

m = a14a42

a12

= 0.875, so A + 0.875I is an IM-matrix. In fact, A + mI is an IM-matrix

if and only if m ≥ 0.11.

For convenience, let n ≥ 3, and, for i 6= j, define

uij(A) =







1

aij

n
∑

k=1,k 6=i,j

aikakj , aij 6= 0,

0, aij = 0,

U(A) = maxi6=juij(A), i.e., the largest value among uij(A), where i 6= j,

u(A) the second largest value among uij(A), where i 6= j,

ε = U(A) − u(A),

ε′ = U(A[α]) − u(A[α]).

In [6, Theorem 3], a lower bound is given for the numbers s such that A + sI is

an IM-matrix. If U(A) > 1, then this bound is zero and it cannot be improved. But

for U(A) ≤ 1 Theorem 2.7 improves the lower bound U(A) − 1 given in [6, Theorem

3].

Theorem 2.7. Let A = (aij) be a normalized SPP matrix of order n, n ≥ 3, and

let l = max{U(A), 1}. Then A + s′I is an IM-matrix for all s′ ≥ |l − ε − 1|.

Proof. We use a proof technique analogous to that in [6, Theorem 3], and in-

duction on n. If n = 3, A is an IM-matrix and thus A + s′I is an IM-matrix for

all

s′ ≥ |l − ε − 1|.

When n > 3, proceeding inductively, let

C = A + s′I = (cij)n×n.

It follows that the (n − 1) × (n − 1) principal minors of C are positive since for any

principal submatrix A[α] of A, A[α] + s′′I is an IM-matrix so that A[α] + s′I is an

IM-matrix, as s′ ≥ s′′, where

s′′ =

{

0, U(A[α]) ≤ 1,

|U(A[α]) − ε′ − 1|, U(A[α]) > 1.
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Using Theorem 2.3 and permutation similarity, it is enough to prove that the com-

plement of the (1,2)-entry is nonnegative, that is,

c21 det C({1, 2}) −
[

c23 · · · c2n

]

adj C({1, 2})







c31

...

cn1






≥ 0,

or

c21 det C({1, 2}) ≥
[

c23 · · · c2n

]

adj C({1, 2})







c31

...

cn1






.

Dividing by detC({1, 2}), we obtain

c21 ≥
[

c23 · · · c2n

]

C({1, 2})−1







c31

...

cn1






.(2.1)

Let bij , i, j = 3, . . . , n, be the entries of C({1, 2})−1. By induction, we verify that

C−1 = B = (bij) is an M-matrix. Obviously, the right hand side of (2.1) is

n
∑

i,j=3

c2ibijcj1 =
∑

i6=j

c2ibijcj1 +

n
∑

i=3

c2ibiici1.

Since bij ≤ 0, by path product

∑

i6=j

c2ibijcj1 ≤
∑

i6=j

c2ibijcjici1;

applying Fischer’s inequality [5] to the IM-matrix C({1, 2}), we have

det C({1, 2}) ≤ cii det C({1, 2, i}) = (1 + s′) detC({1, 2, i}).

So

1

1 + s′
≤

det C({1, 2, i})

det C({1, 2})
= bii.

From the above inequalities, we obtain

n
∑

i=3

n
∑

j=3

c2ibijcj1 =
n

∑

i=3

n
∑

j=3,j 6=i

c2ibijcj1 +
n

∑

i=3

(c2ibiici1 + c2ibiiciici1 − c2ibiiciici1).
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Since cj1 = aj1 ≥ ajiai1 = cjici1 ≥ 0 and bij ≤ 0, i 6= j, we obtain

n
∑

i=3

n
∑

j=3

c2ibijcj1 ≤
n
∑

i=3

n
∑

j=3

c2ibijcjici1 +
n
∑

i=3

(1 − cii)c2ibiici1

=
n
∑

i=3

c2ici1

n
∑

j=3

bijcji +
n
∑

i=3

(−s′)c2ibiici1.

Observing that
∑n

j=3
bijcji = 1, the (i, i) entry of BB−1, we get

n
∑

i=3

n
∑

j=3

c2ibijcj1 ≤
n
∑

i=3

c2ici1(1 + (−s′)bii)

≤
n
∑

i=3

c2ici1

(

1 + (−s′) 1

1+s′

)

= 1

1+s′

∑n

i=3
c2ici1

= 1

1+s′

n
∑

i=3

a2iai1

≤ 1

1+s′
(U(A) − ε)a21

= a21 = c21.

Example 2.8. [6] Consider the 4 × 4 normalized SPP-matrix

A =









1 0.1 0.4 0.3

0.4 1 0.4 0.65

0.1 0.2 1 0.6

0.15 0.3 0.6 1









.

As seen in [12], A is not an IM-matrix (the (2, 3)-entry of A−1 is positive). By actual

calculation, U(A) = 1

a31

(a32a21 + a34a41) = 1.7 > 1. Hence, A + sI is IM for all

s ≥ 0.7 according to Theorem 3 of [6].

However, ε = max{0, (U(A)−u(A))}=0.325. So according to Theorem 2.7 A+s′I

is an IM-matrix for all s′ ≥ 0.375 . (In fact, A + s′I is an IM-matrix if and only

s′ ≥ 0.18.)

Remark 2.9. If U(A) = u(A), then Theorem 2.7 is the same as Theorem 3 of

[6].

Similar to [6, Theorem 4], we have:

Theorem 2.10. Let A = (aij) be a normalized SPP matrix of order n, n ≥ 3.

Then A + s′I is an IM-matrix for all s′ ≥ |n − 3 − ε|.

Proof. The result follows from Lemma 2.2 (ii) of [6] and Theorem 2.7.

A consequence of Theorem 2.10 is as follows.
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Corollary 2.11. Let A = (aij) be an n × n nonnegative matrix with positive

diagonal entries and let D and E be positive diagonal matrices such that DE =

|n − 3 − ε|[diag(A)]−1. Then, if DAE − |n − 3 − ε|I is an SPP-matrix, A is an

IM-matrix.

Following [6], the Hadamard dual of the IM-matrices, denoted by IMD, is defined

to be the set of all matrices B such that A ◦B is an IM-matrix for all IM-matrices A.

We may obtain the following results which are similar to those in [6].

Lemma 2.12. Let A = (aij) be a normalized IM-matrix of order n. Then A +

|n − 3 − ε|I ∈ IMD.

Theorem 2.13. Let A = (aij) be an IM-matrix of order n and let D and E be

positive diagonal matrices such that A1 = DAE is normalized. Then

A + |n − 3 − ε|D−1E−1 ∈ IMD.

A real n × n matrix A is called a P-matrix if the principal minors of A are all

positive. Obviously, IM-matrices are P-matrices. SPP-matrices are not necessarily

P-matrices for n ≥ 6, but for n ≤ 3 they are [7]. Here we will answer the question

whether a 4 × 4 SPP-matrix is a P-matrix or not. We need the following lemma [2,

Lemma 2.3].

Lemma 2.14. Let A = (aij) be an IM-matrix of order n, whose columns are

denoted by α1, α2, . . . , αn. Then for any x = (x1, x2, . . . , xn)T , the functions

f(x) = det(α1, α2, . . . , αn−1, x) and g(x) = det(x, α2, . . . , αn−1, αn)

have the following properties:

1) If x = (x1, x2, . . . , xn)T ≤ y = (y1, y2, . . . , yn)T and xn = yn, then it holds

that f(x) ≥ f(y);

2) If x = (x1, x2, . . . , xn)T ≤ y = (y1, y2, . . . , yn)T and x1 = y1, then it holds

that g(x) ≥ g(y).

Theorem 2.15. Let A = (aij) be a 4 × 4 SPP matrix. Then A is a P-matrix.

Proof. Recall that a P-matrix is a real n×n matrix whose principal minors are all

positive. From Lemma 2.1 and Lemma 2.2, we know that all 2×2 and 3×3 principal

minors of A are positive. It suffices to prove that det A > 0.
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Set α = {2, 3} = N \ {1, 4}, and let A be partitioned as

A =





a11 A[1, α] a14

A[α, 1] A[α] A[α, 4]

a41 A[4, α] a44



 .

We have

b14 = (−1)4+1 det

[

A[1, α] a14

A[α] A[α, 4]

]

= −det

[

a14 A[1, α]

A[α, 4] A[α]

]

,

b41 = (−1)4+1 det

[

A[α, 1] A[α]

a41 A[4, α]

]

= −det

[

A[α] A[α, 1]

A[4, α] a41

]

.

If b14b41 ≤ 0, then from (1.5) of [8] and detA[α] > 0, we have detA > 0. If b14b41 ≥ 0,

since ai1a14 ≤ a11ai4, ai4a41 ≤ a44ai1 (∀ i ∈ α), we obtain

a14A[α, 1] ≤ a11A[α, 4], a41A[α, 4] ≤ a44A[α, 1].

From Lemma 2.2, we observe that each principal submatrix A of order 3 is an inverse

M-matrix. According to Lemma 2.14, we deduce that

a14 det

[

a11 A[1, α]

A[α, 1] A[α]

]

= det

[

a11a14 A[1, α]

a14A[α, 1] A[α]

]

≥ det

[

a11a14 A[1, α]

a11A[α, 4] A[α]

]

= a11 det

[

a14 A[1, α]

A[α, 4] A[α]

]

.

Similarly,

a41 det

[

A[α] A[α, 4]

A[4, α] a44

]

= det

[

A[α] a41A[α, 4]

A[4, α] a41a44

]

≥ det

[

A[α] a44A[α, 1]

A[4, α] a41a44

]

= a44 det

[

A[α] A[α, 1]

A[4, α] a41

]

.

By the above inequalities, we have

det

[

A[1, α] a14

A[α] A[α, 4]

]

det

[

A[α, 1] A[α]

a41 A[4, α]

]

= (−1)n−2 det

[

a14 A[1, α]

A[α, 4] A[α]

]

(−1)n−2 det

[

A[α] A[α, 1]

A[4, α] a41

]

= 1

a11a44

a11 det

[

a14 A[1, α]

A[α, 4] A[α]

]

a44 det

[

A[α] A[α, 1]

A[4, α] a41

]

≤ a14a41

a11a44

det

[

a11 A[1, α]

A[α, 1] A[α]

]

det

[

A[α] A[α, 4]

A[4, α] a44

]

.
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Applying (1.5) of [8], it follows that

det Adet A[α] = det

[

a11 A[1, α]

A[α, 1] A[α]

]

det

[

A[α] A[α, 4]

A[4, α] a44

]

−det

[

A[1, α] a14

A[α] A[α, 4]

]

det

[

A[α, 1] A[α]

a41 A[4, α]

]

≥
(

1 − a14a41

a11a44

)

det

[

a11 A[1, α]

A[α, 1] A[α]

]

det

[

A[α] A[α, 4]

A[4, α] a44

]

> 0.

Consequently, detA > 0, all 2 × 2 and 3 × 3 principal minors of A are positive, so A

is P-matrix.
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