SOME NEW LOWER BOUNDS FOR THE MINIMUM EIGENVALUE OF THE HADAMARD PRODUCT OF AN M-MATRIX AND ITS INVERSE*

YAOTANG LI^{\dagger}, XIN LIU ${ }^{\dagger}$, XIAOYING YANG ${ }^{\dagger}$, AND CHAOQIAN LI ${ }^{\dagger}$

Abstract

For the Hadamard product $A \circ A^{-1}$ of an M-matrix A and its inverse A^{-1}, some new lower bounds for the minimum eigenvalue of $A \circ A^{-1}$ are given. These bounds improve the results of [H.B. Li, T.Z. Huang, S.Q. Shen, and H. Li. Lower bounds for the minimum eigenvalue of Hadamard product of an M-matrix and its inverse. Linear Algebra Appl., 420:235-247, 2007] and [Y.T. Li, F.B. Chen, and D.F. Wang. New lower bounds on eigenvalue of the Hadamard product of an M-matrix and its inverse. Linear Algebra Appl., 430:1423-1431, 2009].

Key words. Hadamard product, M-matrix, Inverse, Minimum eigenvalue, Lower bounds.

AMS subject classifications. 15A06, 15A15, 15A48.

1. Introduction. For a positive integer n, N denotes the set $\{1,2, \ldots, n\}$. For $A=\left[a_{i j}\right] \in \mathbb{R}^{n \times n}$, we write $A \geq 0(A>0)$ if $a_{i j} \geq 0\left(a_{i j}>0\right)$ for all $i, j \in N$. If $A \geq 0$, we say A is a nonnegative matrix, and if $A>0$, we say A is a positive matrix. The Perron eigenvalue of an $n \times n$ nonnegative matrix P is denoted by $\rho(P)$.

A matrix $A=\left[a_{i j}\right] \in \mathbb{R}^{n \times n}$ is called an M-matrix if there exists a nonnegative matrix B and a nonnegative real number λ, such that $A=\lambda I-B$ with $\lambda \geq \rho(B)$, where I is the identity matrix. If $\lambda>\rho(B)$ (resp., $\lambda=\rho(B)$), then the M-matrix A is nonsingular (resp., singular); see [1].

For $A=\left[a_{i j}\right] \in \mathbb{R}^{n \times n}$, define $\tau(A)=\min \{|\lambda|: \lambda \in \sigma(A)\}$, where $\sigma(A)$ denotes the spectrum of A.

The Hadamard product of two matrices $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ in $\mathbb{R}^{n \times n}$ is the matrix $A \circ B=\left[a_{i j} b_{i j}\right] \in \mathbb{R}^{n \times n}$. If A and B are M-matrices, then it was proved in [5] that $A \circ B^{-1}$ is also an M-matrix. For an M-matrix A, Fiedler et al. showed in [4] that $0<\tau\left(A \circ A^{-1}\right) \leq 1$. In [5], Fiedler and Markham gave a lower bound on

[^0]$\tau\left(A \circ A^{-1}\right)$,
\[

$$
\begin{equation*}
\tau\left(A \circ A^{-1}\right) \geq \frac{1}{n} \tag{1.1}
\end{equation*}
$$

\]

and proposed the following conjecture:

$$
\begin{equation*}
\tau\left(A \circ A^{-1}\right) \geq \frac{2}{n} \tag{1.2}
\end{equation*}
$$

This conjecture has been proved by Yong ([13, 14]), Song ([10]) and Chen ([3]) independently.

In [12], Xiang used the spectral radius of the Jacobi iterative matrix of an $n \times n$ M-matrix A, and proved that

$$
\begin{equation*}
\tau\left(A \circ A^{-1}\right) \geq 1-\rho\left(J_{A}\right)^{2} \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau\left(A \circ A^{-1}\right) \geq \frac{1+\rho\left(J_{A}\right)^{\frac{1}{n+2}}}{1+(n-1) \rho\left(J_{A}\right)^{\frac{1}{n+2}}} \tag{1.4}
\end{equation*}
$$

where $\rho\left(J_{A}\right)$ denotes the spectral radius of the Jacobi iterative matrix of A.
Obviously, the lower bounds (1.1) and (1.2) are simple, but they are not accurate enough. For the lower bounds (1.3) and (1.4), it is difficult to calculate the lower bound of $\tau\left(A \circ A^{-1}\right)$ by using these formulas, since it is difficult to calculate $\rho\left(J_{A}\right)$ when the order of A is large.

In [7], Li obtained the following result:

$$
\begin{equation*}
\tau\left(A \circ A^{-1}\right) \geq \min _{i}\left\{\frac{a_{i i}-s_{i} R_{i}}{1+\sum_{j \neq i} s_{j i}}\right\} \tag{1.5}
\end{equation*}
$$

which only depends on the entries of $A=\left[a_{i j}\right]$, where $R_{i}=\sum_{k \neq i}\left|a_{i k}\right|, d_{i}=\frac{R_{i}}{\left|a_{i i}\right|}, i \in N$; $s_{j i}=\frac{\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right| d_{k}}{\left|a_{j j}\right|}, j \neq i, j \in N ; s_{i}=\max _{j \neq i}\left\{s_{i j}\right\}, i \in N$. In [8], Li improved the bound (1.5) in some cases, and obtained the following result:

$$
\begin{equation*}
\tau\left(A \circ A^{-1}\right) \geq \min _{i}\left\{\frac{a_{i i}-m_{i} R_{i}}{1+\sum_{j \neq i} m_{j i}}\right\} \tag{1.6}
\end{equation*}
$$

where $r_{l i}=\frac{\left|a_{l i}\right|}{\left|a_{l l}\right|-\sum_{k \neq l, i}\left|a_{l k}\right|}, l \neq i ; r_{i}=\max _{l \neq i}\left\{r_{l i}\right\}, i \in N ; m_{j i}=\frac{\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right| r_{i}}{\left|a_{j j}\right|}, j \neq i$; $m_{i}=\max _{j \neq i}\left\{m_{i j}\right\}, i \in N$.

Recently, in [9], Li has proved the following bound:

$$
\tau\left(B \circ A^{-1}\right) \geq \min _{i}\left\{\frac{b_{i i}-n_{i} \sum_{j \neq i}\left|b_{j i}\right|}{a_{i i}}\right\}
$$

where $r_{l i}=\frac{\left|a_{l i}\right|}{\left|a_{l l}\right|-\sum_{k \neq l, i}\left|a_{l k}\right|}, l \neq i ; r_{i}=\max _{l \neq i}\left\{r_{l i}\right\}, i \in N ; n_{j i}=\frac{\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right| r_{k}}{\left|a_{j j}\right|}, j \neq i$; $n_{i}=\max _{j \neq i}\left\{n_{i j}\right\}, i \in N$. When $B=A$, the bound gives a lower bound of $\tau\left(A \circ A^{-1}\right)$:

$$
\begin{equation*}
\tau\left(A \circ A^{-1}\right) \geq \min _{i}\left\{\frac{a_{i i}-n_{i} R_{i}}{1+\sum_{j \neq i} n_{j i}}\right\} \tag{1.7}
\end{equation*}
$$

In this paper, we present some new lower bounds on $\tau\left(A \circ A^{-1}\right)$. The bounds improve the results in $[7,8]$.
2. Preliminaries and notation. In this section, we give some lemmas which give bounds on the entries of the inverse matrix A^{-1} of a nonsingular matrix A. The following is the list of notations that we use throughout: For $i, j, k, l \in N$,

$$
\begin{gathered}
R_{i}=\sum_{k \neq i}\left|a_{i k}\right|, C_{i}=\sum_{k \neq i}\left|a_{k i}\right|, d_{i}=\frac{R_{i}}{\left|a_{i i}\right|}, \hat{c}_{i}=\frac{C_{i}}{\left|a_{i i}\right|} ; \\
r_{l i}=\frac{\left|a_{l i}\right|}{\left|a_{l l}\right|-\sum_{k \neq l, i}\left|a_{l k}\right|}, l \neq i ; r_{i}=\max _{l \neq i}\left\{r_{l i}\right\}, i \in N ; \\
c_{i l}=\frac{\left|a_{i l}\right|}{\left|a_{l l}\right|-\sum_{k \neq l, i}\left|a_{k l}\right|}, l \neq i ; c_{i}=\max _{l \neq i}\left\{r_{i l}\right\}, i \in N ; \\
m_{j i}=\frac{\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right| r_{i}}{\left|a_{j j}\right|}, j \neq i ; m_{i}=\max _{j \neq i}\left\{m_{i j}\right\}, i \in N ; \\
n_{j i}=\frac{\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right| r_{k}}{\left|a_{j j}\right|}, j \neq i ; n_{i}=\max _{j \neq i}\left\{n_{i j}\right\}, i \in N ; \\
s_{j i}=\frac{\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right| d_{k}}{\left|a_{j j}\right|}, j \neq i, j \in N ; s_{i}=\max _{j \neq i}\left\{s_{i j}\right\}, i \in N ;
\end{gathered}
$$

ELA

Some New Lower Bounds for the Minimum Eigenvalue of the Hadamard Product

$$
T_{j i}=\min \left\{m_{j i}, n_{j i}\right\}, j \neq i ; T_{i}=\max _{j \neq i}\left\{T_{i j}\right\}, \quad i \in N
$$

Lemma 2.1. [8, Lemma 2.2] Let A be an $n \times n$ real matrix.
(a) If $A=\left[a_{i j}\right]$ is a strictly row diagonally dominant M-matrix, then $A^{-1}=\left[b_{i j}\right]$ satisfies

$$
b_{j i} \leq \frac{\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right| r_{i}}{a_{j j}} b_{i i}, i, j \in N, i \neq j .
$$

(b) If $A=\left[a_{i j}\right]$ is a strictly column diagonally dominant M-matrix, then $A^{-1}=$ [$b_{i j}$] satisfies

$$
b_{i j} \leq \frac{\left|a_{i j}\right|+\sum_{k \neq j, i}\left|a_{k j}\right| c_{i}}{a_{j j}} b_{i i}, i, j \in N, i \neq j
$$

Lemma 2.2. [9, Lemma 2.2] Let A be an $n \times n$ real matrix.
(a) If $A=\left[a_{i j}\right]$ is a strictly row diagonally dominant M-matrix, then $A^{-1}=\left[b_{i j}\right]$ satisfies

$$
b_{j i} \leq \frac{\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right| r_{k}}{a_{j j}} b_{i i}, i, j \in N, i \neq j .
$$

(b) If $A=\left[a_{i j}\right]$ is a strictly column diagonally dominant M-matrix, then $A^{-1}=$ $\left[b_{i j}\right]$ satisfies

$$
b_{i j} \leq \frac{\left|a_{i j}\right|+\sum_{k \neq j, i}\left|a_{k j}\right| c_{k}}{a_{j j}} b_{i i}, i, j \in N, i \neq j
$$

Lemma 2.3. If $A=\left[a_{i j}\right] \in \mathbb{R}^{n \times n}$ is a strictly row diagonally dominant M-matrix, then $A^{-1}=\left[b_{i j}\right]$ satisfies

$$
b_{j i} \leq T_{j i} b_{i i}, \quad i, j \in N, i \neq j
$$

Proof. By Lemma 2.1 (a) and Lemma 2.2 (a), we have

$$
b_{j i} \leq n_{j i} b_{i i}, b_{j i} \leq m_{j i} b_{i i}, i, j \in N, i \neq j
$$

From $T_{j i}=\min \left\{m_{j i}, n_{j i}\right\}$, we get

$$
b_{j i} \leq T_{j i} b_{i i}, i, j \in N, i \neq j
$$

Lemma 2.4. [8, Theorem 3.1] If $A=\left[a_{i j}\right] \in \mathbb{R}^{n \times n}$ is an M-matrix and $A^{-1}=$ $\left[b_{i j}\right]$ is a doubly stochastic matrix, then

$$
b_{i i} \geq \frac{1}{1+\sum_{j \neq i} m_{j i}}, i \in N
$$

Lemma 2.5. [7, Theorem 2.1] Let A be an $n \times n$ real matrix.
(a) If $A=\left[a_{i j}\right]$ is a strictly row diagonally dominant matrix, then $A^{-1}=\left[b_{i j}\right]$ satisfies

$$
\left|b_{j i}\right| \leq \frac{\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right| d_{k}}{\left|a_{j j}\right|}\left|b_{i i}\right|, i, j \in N, i \neq j
$$

(b) If $A=\left[a_{i j}\right]$ is a strictly column diagonally dominant matrix, then $A^{-1}=\left[b_{i j}\right]$ satisfies

$$
\left|b_{i j}\right| \leq \frac{\left|a_{i j}\right|+\sum_{k \neq j, i}\left|a_{k j}\right| \hat{c}_{k}}{\left|a_{j j}\right|}\left|b_{i i}\right|, i, j \in N, i \neq j
$$

Lemma 2.6. [7, Theorem 2.3] If $A=\left[a_{i j}\right] \in \mathbb{R}^{n \times n}$ is a strictly row diagonally dominant M-matrix, then $A^{-1}=\left[b_{i j}\right]$ satisfies

$$
b_{i i} \geq \frac{1}{a_{i i}}, i \in N
$$

Lemma 2.7. [14, Lemma 2.3] If A^{-1} is a doubly stochastic matrix, then $A e=e$, $A^{T} e=e$, where $e=[1,1, \ldots, 1]^{T}$.

Lemma 2.8. [11, P. 719] Let $A=\left[a_{i j}\right]$ be an $n \times n$ complex matrix and x_{1}, x_{2}, \ldots, x_{n} be positive real numbers. Then all the eigenvalues of A lie in the region

$$
\bigcup_{i}\left\{z \in \mathbb{C}:\left|z-a_{i i}\right| \leq x_{i} \sum_{j \neq i} \frac{1}{x_{j}}\left|a_{j i}\right|, i \in N\right\}
$$

Lemma 2.9. [14, Lemma 2.1] If P is an irreducible M-matrix, and $P z \geq k z$ for a nonnegative nonzero vector z, then $\tau(P) \geq k$.

The following result can be found in [2].
Lemma 2.10. If $A=\left[a_{i j}\right] \in \mathbb{R}^{n \times n}$ is an M-matrix, then there exists a diagonal matrix D with positive diagonal entries such that $D^{-1} A D$ is a strictly row diagonally dominant M-matrix.

ELA

Lemma 2.11. [6, Lemma 5.1.2] Let $A, B \in \mathbb{R}^{n \times n}$, and suppose that $D \in \mathbb{R}^{n \times n}$ and $E \in \mathbb{R}^{n \times n}$ are diagonal matrices. Then

$$
D(A \circ B) E=(D A E) \circ B=(D A) \circ(B E)=(A E) \circ(D B)=A \circ(D B E)
$$

3. Main results. In this section, we present some new lower bounds for $\tau(A \circ$ $\left.A^{-1}\right)$.

Theorem 3.1. If $A=\left[a_{i j}\right] \in \mathbb{R}^{n \times n}$ is an M-matrix, and $A^{-1}=\left[b_{i j}\right]$ is a doubly stochastic matrix, then

$$
b_{i i} \geq \frac{1}{1+\sum_{j \neq i} n_{j i}}, i \in N ; \text { and } b_{i i} \geq \frac{1}{1+\sum_{j \neq i} T_{j i}}, i \in N
$$

Proof. We first prove $b_{i i} \geq \frac{1}{1+\sum_{j \neq i} n_{j i}}, i \in N$. Since A^{-1} is doubly stochastic, by Lemma 2.7, we know that $A e=e$, so A is a strictly diagonally dominant matrix by row. By Lemma 2.2 (a), for $i \in N$,

$$
\begin{aligned}
1 & =b_{i i}+\sum_{j \neq i}\left|b_{j i}\right| \\
& \leq b_{i i}+\sum_{j \neq i} \frac{\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right| r_{k}}{\left|a_{j j}\right|} b_{i i} \\
& =\left(1+\sum_{j \neq i} \frac{\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right| r_{k}}{\left|a_{j j}\right|}\right) b_{i i} \\
& =\left(1+\sum_{j \neq i} n_{j i}\right) b_{i i}
\end{aligned}
$$

i.e.,

$$
b_{i i} \geq \frac{1}{1+\sum_{j \neq i} n_{j i}}, i \in N
$$

Similarly, we can prove $b_{i i} \geq \frac{1}{1+\sum_{j \neq i} T_{j i}}, i \in N$.
Theorem 3.2. Let $A=\left[a_{i j}\right] \in \mathbb{R}^{n \times n}$ be an irreducible M-matrix, and let $A^{-1}=$ $\left[b_{i j}\right]$ be a doubly stochastic matrix. Then

$$
\tau\left(A \circ A^{-1}\right) \geq \min _{i}\left\{\frac{a_{i i}-T_{i} R_{i}}{1+\sum_{j \neq i} T_{j i}}\right\}
$$

Proof. Since A is irreducible, from Lemma 2.7, we know that $A e=e$, so A is a strictly diagonally dominant matrix by row. Therefore, $0<T_{i}<1, i=1,2, \ldots, n$.

Let $\tau\left(A \circ A^{-1}\right)=\lambda$. By Lemma 2.8, there exists $i_{0} \in N$, such that

$$
\left|\lambda-a_{i_{0} i_{0}} b_{i_{0} i_{0}}\right| \leq T_{i_{0}} \sum_{j \neq i_{0}} \frac{1}{T_{j}}\left|a_{j i_{0}} b_{j i_{0}}\right| .
$$

Hence,

$$
\begin{aligned}
|\lambda| & \geq a_{i_{0} i_{0}} b_{i_{0} i_{0}}-T_{i_{0}} \sum_{j \neq i_{0}} \frac{1}{T_{j}}\left|a_{j i_{0}} b_{j i_{0}}\right| \\
& \geq a_{i_{0} i_{0}} b_{i_{0} i_{0}}-T_{i_{0}} \sum_{j \neq i_{0}} \frac{1}{T_{j}}\left|a_{j i_{0}}\right| T_{j i_{0}} b_{i_{0} i_{0}}(\text { by Lemma } 2.3) \\
& \geq\left(a_{i_{0} i_{0}}-T_{i_{0}} R_{i_{0}}\right) b_{i_{0} i_{0}} \\
& \geq \frac{a_{i_{0} i_{0}}-T_{i_{0}} R_{i_{0}}}{1+\sum_{j \neq i_{0}} T_{j i_{0}}}(\text { by Theorem 3.1) } \\
& \geq \min _{i}\left\{\frac{a_{i i}-T_{i} R_{i}}{1+\sum_{j \neq i} T_{j i}}\right\} .
\end{aligned}
$$

Remark 3.3. If A is reducible, without loss of generality, we can assume that A is a block upper triangular matrix of the form

$$
A=\left[\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{1 k} \\
& A_{22} & \cdots & A_{2 k} \\
& & \ddots & \cdots \\
& & & A_{k k}
\end{array}\right]
$$

with irreducible diagonal blocks $A_{i i}, i \in K=\{1,2, \ldots, k\}$. Then $\tau\left(A \circ A^{-1}\right)=$ $\min _{i \in K} \tau\left(A_{i i} \circ A_{i i}^{-1}\right)$. Thus, the problem of the reducible matrix A is reduced to those of irreducible diagonal blocks $A_{i i}, i \in K$. The result of Theorem 3.2 also holds.

Theorem 3.4. Let $A=\left[a_{i j}\right] \in \mathbb{R}^{n \times n}$ be an irreducible strictly row diagonally dominant M-matrix. Then

$$
\tau\left(A \circ A^{-1}\right) \geq \min _{i}\left\{1-\frac{1}{a_{i i}} \sum_{j \neq i}\left|a_{j i}\right| T_{j i}\right\} .
$$

ELA

Proof. Since A is irreducible, then $A^{-1}=\left[b_{i j}\right]>0$, and $A \circ A^{-1}$ is again irreducible. Note that

$$
\left.\tau\left(A \circ A^{-1}\right)=\tau\left(\left(A \circ A^{-1}\right)^{T}\right)=\tau\left(A^{T} \circ\left(A^{T}\right)^{-1}\right)\right)
$$

Let

$$
\left(A^{T} \circ\left(A^{T}\right)^{-1}\right) e=\left[g_{1}, g_{2}, \ldots, g_{n}\right]^{T}
$$

where $e=[1,1, \ldots, 1]^{T}$. Without loss of generality, we may assume that $g_{1}=\min _{i}\left\{g_{i}\right\}$, by Lemma 2.3 , we have

$$
\begin{aligned}
g_{1} & =\sum_{j=1}^{n}\left|a_{j 1} b_{j 1}\right| \\
& =a_{11} b_{11}-\sum_{j \neq 1}\left|a_{j 1} b_{j 1}\right| \\
& \geq a_{11} b_{11}-\sum_{j \neq 1}\left|a_{j 1}\right| T_{j 1} b_{11} \quad(\text { by Lemma } 2.3) \\
& =\left(a_{11}-\sum_{j \neq 1}\left|a_{j 1}\right| T_{j 1}\right) b_{11} \\
& \geq \frac{a_{11}-\sum_{j \neq 1}\left|a_{j 1}\right| T_{j 1}}{a_{11}}(\text { by Lemma } 2.6) \\
& \geq 1-\frac{1}{a_{11}} \sum_{j \neq 1}\left|a_{j 1}\right| T_{j 1}
\end{aligned}
$$

Therefore, $\left(A^{T} \circ\left(A^{T}\right)^{-1}\right) e \geq\left(1-\frac{1}{a_{11}} \sum_{j \neq 1}\left|a_{j 1}\right| T_{j 1}\right) e$. From Lemma 2.9, we have

$$
\tau\left(A \circ A^{-1}\right)=\tau\left(A^{T} \circ\left(A^{T}\right)^{-1}\right) \geq \min _{i}\left\{1-\frac{1}{a_{i i}} \sum_{j \neq i}\left|a_{j i}\right| T_{j i}\right\}
$$

Remark 3.5. If A is an M-matrix, then by Lemma 2.10 , we know that there exists a diagonal matrix D with positive diagonal entries such that $D^{-1} A D$ is a strictly row diagonally dominant M-matrix. So the result of Theorem 3.4 also holds for a general M-matrix.

Theorem 3.6. Let $A=\left[a_{i j}\right] \in \mathbb{R}^{n \times n}$ be an M-matrix, and let $A^{-1}=\left[b_{i j}\right]$ be a doubly stochastic matrix. Then

$$
\min _{i}\left\{\frac{a_{i i}-T_{i} R_{i}}{1+\sum_{j \neq i} T_{j i}}\right\} \geq \min _{i}\left\{\frac{a_{i i}-m_{i} R_{i}}{1+\sum_{j \neq i} m_{j i}}\right\}
$$

Proof. Since $T_{j i}=\min \left\{m_{j i}, n_{j i}\right\}$,

$$
T_{j i} \leq m_{j i}, j \neq i, j \in N ; T_{i} \leq m_{i}, i \in N
$$

Hence,

$$
a_{i i}-T_{i} R_{i} \geq a_{i i}-m_{i} R_{i}, \frac{1}{1+\sum_{j \neq i} T_{j i}} \geq \frac{1}{1+\sum_{j \neq i} m_{j i}}
$$

Therefore,

$$
\min _{i}\left\{\frac{a_{i i}-T_{i} R_{i}}{1+\sum_{j \neq i} T_{j i}}\right\} \geq \min _{i}\left\{\frac{a_{i i}-m_{i} R_{i}}{1+\sum_{j \neq i} m_{j i}}\right\}
$$

Remark 3.7. Theorem 3.6 shows that the result of Theorem 3.2 is better than that of Theorem 3.2 in [10].

Theorem 3.8. Let $A=\left[a_{i j}\right] \in \mathbb{R}^{n \times n}$ be an M-matrix. Then

$$
\min _{i}\left\{1-\frac{1}{a_{i i}} \sum_{j \neq i}\left|a_{j i}\right| T_{j i}\right\} \geq \min _{i}\left\{1-\frac{1}{a_{i i}} \sum_{j \neq i}\left|a_{j i}\right| m_{j i}\right\}
$$

Proof. By the proof of Theorem 3.6, we have

$$
T_{j i} \leq m_{j i}, j \neq i
$$

So

$$
1-\frac{1}{a_{i i}} \sum_{j \neq i}\left|a_{j i}\right| T_{j i} \geq 1-\frac{1}{a_{i i}} \sum_{j \neq i}\left|a_{j i}\right| m_{j i}
$$

Thus,

$$
\min _{i}\left\{1-\frac{1}{a_{i i}} \sum_{j \neq i}\left|a_{j i}\right| T_{j i}\right\} \geq \min _{i}\left\{1-\frac{1}{a_{i i}} \sum_{j \neq i}\left|a_{j i}\right| m_{j i}\right\}
$$

Remark 3.9. Theorem 3.8 shows that the result of Theorem 3.4 is better than that of Theorem 3.4 in [10].

ELA

Some New Lower Bounds for the Minimum Eigenvalue of the Hadamard Product
Theorem 3.10. Let $A=\left[a_{i j}\right] \in \mathbb{R}^{n \times n}$ be an irreducible M-matrix, and let $A^{-1}=\left[b_{i j}\right]$ be a doubly stochastic matrix. Then

$$
\tau\left(A \circ A^{-1}\right) \geq \min _{i}\left\{\frac{a_{i i}-s_{i} \sum_{j \neq i} \frac{\left|a_{j i}\right| n_{j i}}{s_{j}}}{1+\sum_{j \neq i} m_{j i}}\right\}
$$

Proof. Since A^{-1} is doubly stochastic, by Lemma 2.7, we have $A e=e, A^{T} e=e$, so A is a strictly diagonally dominant M-matrix, and

$$
a_{i i}=\sum_{k \neq i}\left|a_{i k}\right|+1=\sum_{k \neq i}\left|a_{k i}\right|+1, a_{i i}>1
$$

and

$$
d_{i}=\frac{\sum_{k \neq i}\left|a_{i k}\right|}{\left|a_{i i}\right|}<1, i \in N
$$

For convenience, we denote

$$
\tilde{R}_{j}=\sum_{k \neq j}\left|a_{j k}\right| d_{k}, j \in N
$$

Then, for any $j \in N$ with $j \neq i$, we have

$$
\tilde{R}_{j} \leq\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right| d_{k} \leq R_{j}=\sum_{k \neq j}\left|a_{j k}\right| \leq a_{j j}
$$

Therefore, there exists a real number $\alpha_{j i}\left(0 \leq \alpha_{j i} \leq 1\right)$, such that

$$
\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right| d_{k} \mid=\alpha_{j i} R_{j}+\left(1-\alpha_{j i}\right) \tilde{R}_{j} .
$$

Let $\alpha_{j}=\max _{i \neq j}\left\{\alpha_{j i}\right\}$. Then $0<\alpha_{j} \leq 1$, (if $\alpha_{j}=0$, then A is reducible, which is a contradiction). So, from the definition of $s_{i j}$, we have

$$
s_{j}=\max _{i \neq j}\left\{s_{j i}\right\}=\frac{\alpha_{j} R_{j}+\left(1-\alpha_{j}\right) \tilde{R}_{j}}{a_{j j}}, j \in N .
$$

Since $0<\alpha_{j} \leq 1$, we get $0<s_{j} \leq 1$.
Let $\tau\left(A \circ A^{-1}\right)=\lambda$. By Lemma 2.8, there exists $i_{0} \in N$, such that

$$
\left|\lambda-a_{i_{0} i_{0}} b_{i_{0} i_{0}}\right| \leq s_{i_{0}} \sum_{j \neq i_{0}} \frac{1}{s_{j}}\left|a_{j i_{0}} b_{j i_{0}}\right| .
$$

Hence,

$$
\begin{aligned}
|\lambda| & \geq a_{i_{0} i_{0}} b_{i_{0} i_{0}}-s_{i_{0}} \sum_{j \neq i_{0}} \frac{1}{s_{j}}\left|a_{j i_{0}} b_{j i_{0}}\right| \\
& \geq a_{i_{0} i_{0}} b_{i_{0} i_{0}}-s_{i_{0}} \sum_{j \neq i_{0}} \frac{1}{s_{j}}\left|a_{j i_{0}}\right| \frac{\left|a_{j i_{0}}\right|+\sum_{k \neq j, i_{0}}\left|a_{j k}\right| r_{k}}{a_{j j}} b_{i_{0} i_{0}} \quad(\text { by Lemma } 2.2 \quad \text { (a)) } \\
& =\left(a_{i_{0} i_{0}}-s_{i_{0}} \sum_{j \neq i_{0}} \frac{1}{s_{j}}\left|a_{j i_{0}}\right| n_{j i_{0}}\right) b_{i_{0} i_{0}} \\
& \geq \frac{a_{i_{0} i_{0}}-s_{i_{0}} \sum_{j \neq i_{0}} \frac{1}{s_{j}}\left|a_{j i_{0}}\right| n_{j i_{0}}}{1+\sum_{j \neq i_{0}} m_{j i_{0}}}(\text { by Lemma 2.4) } \\
& \geq \min _{i}\left\{\frac{a_{i i}-s_{i} \sum_{j \neq i} \frac{\left|a_{j i}\right| n_{j i}}{s_{j}}}{1+\sum_{j \neq i} m_{j i}}\right\} .
\end{aligned}
$$

Remark 3.11. When A is reducible, without loss of generality, we can assume that A is a block upper triangular matrix of the form

$$
A=\left[\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{1 k} \\
& A_{22} & \cdots & A_{2 k} \\
& & \ddots & \cdots \\
& & & A_{k k}
\end{array}\right]
$$

with irreducible diagonal blocks $A_{i i}, i \in K$. Then $\tau\left(A \circ A^{-1}\right)=\min _{i \in K} \tau\left(A_{i i} \circ A_{i i}^{-1}\right)$. Thus, the problem of the reducible matrix A is reduced to those of irreducible diagonal blocks $A_{i i}, i \in K$. The result of Theorem 3.10 also holds.

By using Lemma 2.6, Lemma 2.10 and Theorem 3.10, we can get the following corollary.

Corollary 3.12. Let $A=\left[a_{i j}\right] \in \mathbb{R}^{n \times n}$ be an M-matrix. Then

$$
\tau\left(A \circ A^{-1}\right) \geq \min _{i}\left\{\frac{a_{i i}-s_{i} \sum_{j \neq i} \frac{\left|a_{j i}\right| n_{j i}}{s_{j}}}{a_{i i}}\right\}
$$

4. Examples.

Example 4.1. (See also Example 3.1 in [9]) Let

$$
A=\left[\begin{array}{rrrr}
4 & -1 & -1 & -1 \\
-2 & 5 & -1 & -1 \\
0 & -2 & 4 & -1 \\
-1 & -1 & -1 & 4
\end{array}\right]
$$

By $A e=e$ and $A^{T} e=e$, we know that A^{-1} is a doubly stochastic matrix. By calculating with Matlab 7.0, we have

$$
A^{-1}=\left[\begin{array}{cccc}
0.4 & 0.2 & 0.2 & 0.2 \\
0.2333 & 0.3667 & 0.2 & 0.2 \\
0.1667 & 0.2333 & 0.4 & 0.2 \\
0.2 & 0.2 & 0.2 & 4
\end{array}\right]
$$

If we apply the conjecture of Fiedler and Markham, we have

$$
\tau\left(A \circ A^{-1}\right) \geq \frac{2}{n}=0.5
$$

if we apply Theorem 3.1 of [9], we have

$$
\tau\left(A \circ A^{-1}\right) \geq 0.6624
$$

if we apply Theorem 3.2 of [10], we have

$$
\tau\left(A \circ A^{-1}\right) \geq 0.7999
$$

But, if we apply Theorem 3.2, we have

$$
\tau\left(A \circ A^{-1}\right) \geq 0.85
$$

if we apply Theorem 3.10, we have

$$
\tau\left(A \circ A^{-1}\right) \geq 0.8602
$$

In fact, $\tau\left(A \circ A^{-1}\right)=0.9755$.
Example 4.2. Let

$$
A=\left[\begin{array}{rrrr}
5 & -1 & -2 & -1 \\
-1 & 12 & -7 & -2 \\
-1 & -1 & 15 & -4 \\
-2 & -3 & 0 & 10
\end{array}\right]
$$

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 22, pp. 630-643, June 2011

By calculating with Matlab 7.0, we have

$$
A^{-1}=\left[\begin{array}{llll}
0.2372 & 0.0364 & 0.0486 & 0.0505 \\
0.0512 & 0.1043 & 0.0555 & 0.0482 \\
0.0360 & 0.0197 & 0.0806 & 0.0398 \\
0.0628 & 0.0386 & 0.0264 & 0.1245
\end{array}\right]
$$

Therefore, A is a nonsingular M-matrix.
If we apply the conjecture of Fiedler and Markham, we have

$$
\tau\left(A \circ A^{-1}\right) \geq \frac{2}{n}=0.5
$$

if we apply Theorem 3.5 of [9], we have

$$
\tau\left(A \circ A^{-1}\right) \geq 0.5689
$$

if we apply Theorem 3.4 of [10], we have

$$
\tau\left(A \circ A^{-1}\right) \geq 0.5422
$$

But, if we apply Theorem 3.4, we have

$$
\tau\left(A \circ A^{-1}\right) \geq 0.5959
$$

if we apply Corollary 3.12 , we have

$$
\tau\left(A \circ A^{-1}\right) \geq 0.6021
$$

In fact, $\tau\left(A \circ A^{-1}\right)=0.9548$.
Remark 4.3. The numerical examples show that in these cases the bounds of Theorem 3.2 and Theorem 3.10 are sharper than Theorem 3.1 in [9] and Theorem 3.2 in [10]; the bounds in Theorem 3.4 and Corollary 3.12 are sharper than Theorem 3.5 in [9] and Theorem 3.4 in [10].

REFERENCES

[1] A. Berman and R.J. Plemmons. Nonnegative Matrices in the Mathematical Sciences. Academic Press, New York, 1979.
[2] J.L. Chen. Special Matrix. Tsinghua University Press, Beijing, 2000.
[3] S.C. Chen. A lower bound for the minimum eigenvalue of the Hadamard product of matrices. Linear Algebra Appl., 378:159-166, 2004.
[4] M. Fiedler, C.R. Johnson, T. Markham, and M. Neumann. A trace inequality for M-matrices and the symmetrizability of a real matrix by a positive diagonal matrix. Linear Algebra Appl., 71:81-94, 1985.
[5] M. Fiedler and T. Markham. An inequality for the Hadamard product of an M-matrix and inverse M-matrix. Linear Algebra Appl., 101:1-8, 1988.
[6] R.A. Horn and C.R. Johnson. Topics in Matrix Analysis. Cambridge University Press, 1991.
[7] H.B. Li, T.Z. Huang, S.Q. Shen, and H. Li. Lower bounds for the minimum eigenvalue of Hadamard product of an M-matrix and its inverse. Linear Algebra Appl., 420:235-247, 2007.
[8] Y.T. Li, F.B. Chen, and D.F. Wang. New lower bounds on eigenvalue of the Hadamard product of an M-matrix and its inverse. Linear Algebra Appl., 430:1423-1431, 2009.
[9] Y.T. Li, Y.Y. Li, R.W. Wang, and Y.Q. Wang. Some new bounds on eigenvalues of the Hadamard product and the Fan product of matrices. Linear Algebra Appl., 432:536-545, 2010.
[10] Y.Z. Song. On an inequality for the Hadamard product of an M-matrix and its inverse. Linear Algebra Appl., 305:99-105, 2000.
[11] R.S. Varga. Minimal Gerschgorin sets. Pacific J. Math., 15(2):719-729, 1965.
[12] S.H. Xiang. On an inequality for the Hadamard product of an M-matrix or an H-matrix and its inverse. Linear Algebra Appl., 367:17-27, 2003.
[13] X.R. Yong. Proof of a conjecture of Fiedler and Markham. Linear Algebra Appl., 320:167-171, 2000.
[14] X.R. Yong and Z. Wang. On a conjecture of Fiedler and Markham. Linear Algebra Appl., 288:259-267, 1999.

[^0]: *Received by the editors on December 10, 2009. Accepted for publication on May 20, 2011. Handling Editor: Miroslav Fiedler.
 ${ }^{\dagger}$ School of Mathematics and Statistics, Yunnan University, Kunming, Yunnan, 650091, PR China (liyaotang@ynu.edu.cn, liuxin01668@163.com, yangxiaoying134@163.com, lichaoqian05@163.com). Supported by National Natural Science Foundations of China (No. 10961027, No. 30770500) and the Natural Science Foundation of Yunnan Province (No. 2009CD011).

