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A NOTE ON THE REVERSE ORDER LAWS FOR {1, 2, 3}- AND

{1, 2, 4}-INVERSES OF MULTIPLE MATRIX PRODUCTS∗

XIFU LIU† AND HU YANG†

Abstract. Motivated by the equivalent conditions for the inclusions

An{1, 2, i} · · ·A2{1, 2, i}A1{1, 2, i} ⊆ (A1A2 · · ·An){1, 2, i} (i = 3, 4)

presented in [B. Zheng and Z. Xiong. The reverse order laws for {1,2,3}- and {1,2,4}-inverses of

multiple matrix products. Linear Multilinear Algebra, 58:765–782, 2010.], we show that for i ∈ {3, 4},

An{1, 2, i} · · ·A2{1, 2, i}A1{1, 2, i} = (A1A2 · · ·An){1, 2, i}

is equivalent to

An{1, 2, i} · · ·A2{1, 2, i}A1{1, 2, i} ⊆ (A1A2 · · ·An){1, 2, i}.

Key words. Reverse order law, Maximal and minimal ranks, Generalized inverse, Generalized

Schur complement.
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1. Introduction. Throughout this paper, we let C
m×n denote the set of all

m × n matrices over the complex field C. For A ∈ C
m×n, its rank and conjugate

transpose are denoted by r(A) and A∗, respectively. The identity matrix of order n

is denoted by In.

For convenience, the following notations will be used in this paper. For Ai ∈

C
li×li+1 and Xi ∈ C

li+1×li (i = 1, 2, . . . , n), we set

A
j
i = AiAi+1 · · ·Aj , X

j
i = X∗

i X∗
i+1 · · ·X

∗
j , 1 ≤ i ≤ j ≤ n,(1.1)

and

X
n

n+1 = Iln+1
and X

0
1 = Il1 .

Recall that the Moore-Penrose inverse A† of a matrix A ∈ C
m×n is defined to be

the unique solution of the four Penrose equations (see, for example, [1])

(1) AXA = A, (2) XAX = X, (3) (AX)∗ = AX, (4) (XA)∗ = XA.(1.2)
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Let (∅ 6=) η ⊆ {1, 2, 3, 4}. Then Aη denotes the set of all matrices X which satisfy

property (i) in (1.2) for each i ∈ η. Any matrix X ∈ Aη is called an η-inverse of A.

One usually denotes any {1}-inverse of A as A−. Any {1, 2, 3}-inverse of A is denoted

by A(1,2,3), and any {1, 2, 4}-inverse of A is denoted by A(1,2,4). Set EA = I − AA†

and FA = I − A†A.

As we know, for nonsingular matrices Ai ∈ C
n×n, (A1A2 · · ·An)−1 = A−1

n · · ·A−1
2

A−1
1 . However, this so-called reverse order law is not necessarily true for the general-

ized inverses. The reverse order law for the generalized inverses of the multiple-matrix

products yields a class of interesting problems that are fundamental in the theory of

generalized inverses of matrices, and statistics. They have attracted considerable at-

tention since the mid 1960s, and many interesting results have been studied. There

are three important relations with which we are concerned in the study of the reverse

order law for any η-inverse of the multiple-matrix products A1A2 · · ·An. These are

Anη · · ·A2ηA1η ⊆ (A1A2 · · ·An)η,

Anη · · ·A2ηA1η ⊇ (A1A2 · · ·An)η,

Anη · · ·A2ηA1η = (A1A2 · · ·An)η.

Since the Moore-Penrose inverse of a matrix is unique, for Moore-Penrose inverse

(A1A2 · · ·An)†, the above three relations reduce to one, namely (A1A2 · · ·An)† =

A†
n · · ·A†

2A
†
1. In [5] Tian derived equivalent conditions for the equality to hold.

For {1}-inverse and {1, 2}-inverse, using Product Singular Value Decomposition (P-

SVD), in [6] Wei presented the equivalent conditions for An{1} · · ·A2{1}A1{1} ⊆

(A1A2 · · ·An){1} and An{1, 2} · · ·A2{1, 2}A1{1, 2} = (A1A2 · · ·An){1, 2}, and in [8]

Zheng and Xiong obtained conditions on the ranks of the known matrices satisfying

An{1} · · · A2{1} A1{1} ⊆ (A1A2 · · ·An){1} by using the maximal rank of the gen-

eralized Schur complement, but the cases An{1} · · ·A2{1}A1{1} ⊇ (A1A2 · · ·An){1}

and An{1} · · · A2{1} A1{1} = (A1A2 · · ·An){1} are still open. For the {1, 3}-inverse,

by using P-SVD, in [7] Liu and Wei gave the necessary and sufficient conditions for

the reverse order law

An{1, 3} · · ·A2{1, 3}A1{1, 3} ⊆ (⊇)(A1A2 · · ·An){1, 3},

but these results require information about the sub-block produced by P-SVD.

For {1,2,3}- and {1,2,4}-inverses, in [9] Xiong and Zheng presented necessary

and sufficient conditions for B{1, 2, i}A{1, 2, i} ⊆ (AB){1, 2, i} (i = 3, 4) to hold.

Recently, by applying the maximal and minimal ranks of generalized Schur comple-

ments, in [2] Zheng and Xiong derived equivalent conditions for one side inclusion

relations of η-inverses

An{1, 2, i} · · ·A2{1, 2, i}A1{1, 2, i} ⊆ (A1A2 · · ·An){1, 2, i} (i = 3, 4),

and the other two relations remain open. We restate these results below.
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Theorem 1.1. Let Ai ∈ C
li×li+1 , i = 1, 2, . . . , n, and A

j
i , 1 ≤ i ≤ j ≤ n be as

in (1.1). Then the following statements are equivalent:

1. An{1, 2, 3} · · ·A2{1, 2, 3}A1{1, 2, 3} ⊆ (A1A2 · · ·An){1, 2, 3};

2. r
([

(A n
1 )∗A n−1

1 EAn
(A n

1 )∗A n−2
1 EAn−1

· · · (A n
1 )∗A 1

1 EA2

])

= 0 and

r(A1A2 · · ·An) = min {r(A1), r(A2), . . . , r(An)}

=

n
∑

i=1

r(Ai) − r

































A∗
2 0 · · · 0

0 A∗
3 · · · 0

...
...

. . .
...

0 0 · · · A∗
n

A 1
1 A 2

1 · · · A
n−1
1

































.

Theorem 1.2. Let Ai ∈ C
li×li+1 , i = 1, 2, . . . , n, and A

j
i , 1 ≤ i ≤ j ≤ n be as

in (1.1). Then the following statements are equivalent:

1. An{1, 2, 4} · · ·A2{1, 2, 4}A1{1, 2, 4} ⊆ (A1A2 · · ·An){1, 2, 4};

2. r





















FA1
A n

2 (A n
1 )∗

FA2
A n

3 (A n
1 )∗

...

FAn−1
A n

n (A n
1 )∗





















= 0 and

r(A1A2 · · ·An) = min {r(A1), r(A2), . . . , r(An)}

=

n
∑

i=1

r(Ai) − r





















A∗
n−1 0 · · · 0 A n

n

0 A∗
n−2 · · · 0 A n

n−1
...

...
. . .

...
...

0 0 · · · A∗
1 A n

2





















.

We remark that since EA = FA∗ and EA∗ = FA, we use the EA and FA instead

of EA∗ = FA and EA = FA∗ as in [2].

It is not easy to establish equivalent conditions of the inclusions

An{1, 2, i} · · ·A2{1, 2, i}A1{1, 2, i} ⊇ (A1A2 · · ·An){1, 2, i}, (i = 3, 4),

since these involve complicated extreme ranks operations. In [2] the authors present

equivalent conditions of the inclusion

An{1, 2, i} · · ·A2{1, 2, i}A1{1, 2, i} ⊆ (A1A2 · · ·An){1, 2, i}.

In this paper, by applying the extremal ranks of generalized Schur complements, we

prove that for i ∈ {3, 4},

An{1, 2, i} · · ·A2{1, 2, i}A1{1, 2, i} = (A1A2 · · ·An){1, 2, i}
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is actually equivalent to

An{1, 2, i} · · ·A2{1, 2, i}A1{1, 2, i} ⊆ (A1A2 · · ·An){1, 2, i}.

For the theory of generalized inverses, we refer the reader to [1]. In the following

proposition, we have compiled some basic facts about the {1, 2, 3}- and {1, 2, 4}-

inverses, which will be used throughout the paper.

Proposition 1.3. Let A ∈ C
m×n. Then

1. r(A(1,2,3)) = r(A(1,2,4)) = r(A);

2. A(1,2,3)AA† = A(1,2,3) and A†AA(1,2,4) = A(1,2,4).

In our development we will need the following lemmas.

Lemma 1.4. [4] Let X1 and X2 be a pair of outer inverses of a matrix A, that

is, X1AX1 = X1 and X2AX2 = X2. Then

r(X1 − X2) = r

([

X1

X2

])

+ r
([

X1 X2

])

− r(X1) − r(X2).

Lemma 1.5. [3] Let A ∈ C
m×n, B ∈ C

m×k, C ∈ C
l×n and D ∈ C

l×k. Then

r(D − CA†B) = r

([

A∗AA∗ A∗B

CA∗ D

])

− r(A),

max
A(1,2,3)

r(D − CA(1,2,3)B) = min

{

r

([

A∗A A∗B

C D

])

− r(A), r

([

A∗B

D

])}

,

min
A(1,2,3)

r(D − CA(1,2,3)B)(1.3)

= r

([

A∗A A∗B

C D

])

+ r

([

A∗B

D

])

− r









A 0

0 A∗B

C D







 ,

max
A(1,2,4)

r(D − CA(1,2,4)B) = min

{

r
([

CA∗ D
])

, r

([

AA∗ B

CA∗ D

])

− r(A)

}

,

min
A(1,2,4)

r(D − CA(1,2,4)B) = r
([

CA∗ D
])

+ r

([

AA∗ B

CA∗ D

])

−r

([

A 0 B

0 CA∗ D

])

.
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Lemma 1.6. [3] Let A ∈ C
m×n, B ∈ C

m×k and C ∈ C
l×n. Then

r
([

A B
])

= r(A) + r[(I − AA†)B], and

r

([

A

C

])

= r(A) + r[C(I − A†A)].

2. Main results. In this section, we will prove that for i = 3, 4,

An{1, 2, i} · · ·A2{1, 2, i}A1{1, 2, i} = (A1A2 · · ·An){1, 2, i}

is equivalent to

An{1, 2, i} · · ·A2{1, 2, i}A1{1, 2, i} ⊆ (A1A2 · · ·An){1, 2, i}.

Before giving the main results, we first prove some auxiliary ones.

Lemma 2.1. Let Ai ∈ C
li×li+1 , Xi ∈ Ai{1, 2, 3}, i = 1, 2, . . . , n, and A

j
i , X

j
i ,

1 ≤ i ≤ j ≤ n be as in (1.1). Then

min
X1,X2,...,Xn

r
([

(X n
1 )∗ (A n

1 )(1,2,3)
])

(2.1)

= r(A1) + r(A n
1 ) − r

([

A 1
1 EA2

· · · A
n−1
1 EAn

A n
1

])

.

Proof. Formula (1.3) gives

min
Xn

r
([

(X n
1 )∗ (A n

1 )(1,2,3)
])

(2.2)

= min
Xn

r
([

−(X n
1 )∗ (A n

1 )(1,2,3)
])

= min
Xn

r
([

0 (A n
1 )(1,2,3)

]

− Xn

[

(X n−1
1 )∗ 0

])

= r

([

A∗
nAn A∗

n(X n−1
1 )∗ 0

Iln+1
0 (A n

1 )(1,2,3)

])

+ r

([

A∗
n(X n−1

1 )∗ 0

0 (A n
1 )(1,2,3)

])

− r









An 0 0

0 A∗
n(X n−1

1 )∗ 0

Iln+1
0 (A n

1 )(1,2,3)









= r
([

A∗
n(X n−1

1 )∗ A∗
nAn(A n

1 )(1,2,3)
])

+ r[(A n
1 )(1,2,3)] − r[An(A n

1 )(1,2,3)]

= r
([

A∗
n(X n−1

1 )∗ A∗
nAn(A n

1 )(1,2,3)
])
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Applying (1.3) to (2.2), we have

min
Xn−1,Xn

r
([

(X n
1 )∗ (A n

1 )(1,2,3)
])

= min
Xn−1

r
([

A∗
n(X n−1

1 )∗ A∗
nAn(A n

1 )(1,2,3)
])

= r

([

A∗
n−1An−1 A∗

n−1(X
n−2
1 )∗ 0

A∗
n 0 A∗

nAn(A n
1 )(1,2,3)

])

+ r

([

A∗
n−1(X

n−2
1 )∗ 0

0 A∗
nAn(A n

1 )(1,2,3)

])

−r









An−1 0 0

0 A∗
n−1(X

n−2
1 )∗ 0

A∗
n 0 A∗

nAn(A n
1 )(1,2,3)









= r
([

A∗
n−1(X

n−2
1 )∗ A∗

n−1An−1EAn
A∗

n−1A
n
n−1(A

n
1 )(1,2,3)

])

+ r[A∗
nAn(A n

1 )(1,2,3)]

−r
([

An−1EAn
A n

n−1(A
n
1 )(1,2,3)

])

= r
([

A∗
n−1(X

n−2
1 )∗ A∗

n−1An−1EAn
A∗

n−1A
n
n−1(A

n
1 )(1,2,3)

])

+ r(A n
1 )

−r
([

An−1EAn
A n

n−1(A
n
1 )(1,2,3)

])

.

Furthermore,

min
Xn−2,Xn−1,Xn

r
([

(X n
1 )∗ (A n

1 )(1,2,3)
])

= min
Xn−2

r
([

A∗
n−1(X

n−2
1 )∗ A∗

n−1An−1EAn
A∗

n−1A
n
n−1(A

n
1 )(1,2,3)

])

+ r[A∗
nAn(A n

1 )(1,2,3)]

−r
([

An−1EAn
A n

n−1(A
n
1 )(1,2,3)

])

= r

([

A∗
n−2An−2 A∗

n−2(X
n−3
1 )∗ 0 0

A∗
n−1 0 A∗

n−1An−1EAn
A∗

n−1A
n
n−1(A

n
1 )(1,2,3)

])

+r

([

A∗
n−2(X

n−3
1 )∗ 0 0

0 A∗
n−1An−1EAn

A∗
n−1A

n
n−1(A

n
1 )(1,2,3)

])

−r









An−2 0 0 0

0 A∗
n−2(X

n−3
1 )∗ 0 0

A∗
n−1 0 A∗

n−1An−1EAn
A∗

n−1A
n
n−1(A

n
1 )(1,2,3)









+r[A∗
nAn(A n

1 )(1,2,3)] − r
([

An−1EAn
A n

n−1(A
n
1 )(1,2,3)

])

= r
([

A∗
n−2(X

n−3
1 )∗ A∗

n−2A
n−2
n−2 EAn−1

A∗
n−2A

n−1
n−2 EAn

A∗
n−2A

n
n−2(A

n
1 )(1,2,3)

])

+r
([

A∗
n−1An−1EAn

A∗
n−1A

n
n−1(A

n
1 )(1,2,3)

])

−r
([

A
n−2
n−2 EAn−1

A
n−1
n−2 EAn

A n
n−2(A

n
1 )(1,2,3)

])

+r(A n
1 ) − r

([

An−1EAn
A n

n−1(A
n
1 )(1,2,3)

])

= r
([

A∗
n−2(X

n−3
1 )∗ A∗

n−2A
n−2
n−2 EAn−1

A∗
n−2A

n−1
n−2 EAn

A∗
n−2A

n
n−2(A

n
1 )(1,2,3)

])

+r(A n
1 ) − r

([

A
n−2
n−2 EAn−1

A
n−1
n−2 EAn

A n
n−2(A

n
1 )(1,2,3)

])

.

In general, for 1 ≤ i ≤ n − 1, we have

min
Xn−i,Xn−i+1,...,Xn

r
([

(X n
1 )∗ (A n

1 )(1,2,3)
])

(2.3)
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= r
([

A∗
n−i(X

n−i−1
1 )∗ A∗

n−iA
n−i
n−i EAn−i+1

· · · A∗
n−iA

n−1
n−i EAn

A∗
n−iA

n
n−i(A

n
1 )(1,2,3)

])

+r(A n
1 ) − r

([

A
n−i
n−i EAn−i+1

· · · A
n−1
n−i EAn

A n
n−i(A

n
1 )(1,2,3)

])

.

Notice that, for i = 1 or 2, the rank identity (2.3) has been proved. Assume that the

statement (2.3) is true for i − 1 (i ≥ 2), i.e.,

min
Xn−i+1,...,Xn

r
([

(X n
1 )∗ (A n

1 )(1,2,3)
])

= r
([

A∗
n−i+1(X

n−i
1 )∗ A∗

n−i+1A
n−i+1
n−i+1 EAn−i+1

· · · A∗
n−i+1A

n
n−i+1(A

n
1 )(1,2,3)

])

+ r(A n
1 ) − r

([

A
n−i+1
n−i+1 EAn−i+1

· · · A
n−1
n−i+1EAn

A n
n−i+1(A

n
1 )(1,2,3)

])

.

Substituting (1.3) into above equation yields

min
Xn−i,Xn−i+1,...,Xn

r
([

(X n
1 )∗ (A n

1 )(1,2,3)
])

= r

([

A∗
n−iAn−i A∗

n−i(X
n−i−1
1 )∗ 0 · · · 0

A∗
n−i+1 0 A∗

n−i+1A
n−i+1
n−i+1 EAn−i+1

· · · A∗
n−i+1A

n
n−i+1(A

n
1 )(1,2,3)

])

+r

([

A∗
n−i(X

n−i−1
1 )∗ 0 · · · 0

0 A∗
n−i+1A

n−i+1
n−i+1 EAn−i+1

· · · A∗
n−i+1A

n
n−i+1(A

n
1 )(1,2,3)

])

−r









A∗
n−iAn−i 0 0 · · · 0

0 A∗
n−i(X

n−i−1
1 )∗ 0 · · · 0

A∗
n−i+1 0 A∗

n−i+1A
n−1
n−i+1EAn

· · · A∗
n−i+1A

n
n−i+1(A

n
1 )(1,2,3)









+r(A n
1 ) − r

([

A
n−i+1
n−i+1 EAn−i+1

· · · A
n−1
n−i+1EAn

A n
n−i+1(A

n
1 )(1,2,3)

])

= r
([

A∗
n−i(X

n−i−1
1 )∗ A∗

n−iA
n−i
n−i EAn−i+1

· · · A∗
n−iA

n−1
n−i EAn

A∗
n−iA

n
n−i(A

n
1 )(1,2,3)

])

+r(A n
1 ) − r

([

A
n−i
n−i EAn−i+1

· · · A
n−1
n−i EAn

A n
n−i(A

n
1 )(1,2,3)

])

.

That is to say the statement (2.3) is also true for i.

In particular, we take i = n − 1, then

min
X1,X2,...,Xn

r
([

(X n
1 )∗ (A n

1 )(1,2,3)
])

= r
([

A∗
1(X

0
1 )∗ A∗

1A
1
1 EA2

· · · A∗
1A

n−1
1 EAn

A∗
1A

n
1 (A n

1 )(1,2,3)
])

+r(A n
1 ) − r

([

A 1
1 EA2

· · · A
n−1
1 EAn

A n
1 (A n

1 )(1,2,3)
])

= r(A1) + r(A n
1 ) − r

([

A 1
1 EA2

· · · A
n−1
1 EAn

A n
1

])

and the proof is complete.

Lemma 2.2. Let Ai ∈ C
li×li+1 , Xi ∈ Ai{1, 2, 3}, i = 1, 2, . . . , n, and A

j
i , X

j
i ,

1 ≤ i ≤ j ≤ n be as in (1.1). If An{1, 2, 3} · · ·A2{1, 2, 3}A1{1, 2, 3} ⊆ (A1A2 · · ·An){

1, 2, 3}, then, for each (A n
1 )(1,2,3) and (X n

1 )∗, we have

r

([

(A n
1 )(1,2,3)

(X n
1 )∗

])

= r(A n
1 ).(2.4)
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Proof. Because An{1, 2, 3} · · ·A2{1, 2, 3}A1{1, 2, 3} ⊆ (A1A2 · · ·An){1, 2, 3}, for

each (X n
1 )∗, there exists a (A n

1 )(1,2,3)′ such that (A n
1 )(1,2,3)′ = (X n

1 )∗. Thus

r

([

(A n
1 )(1,2,3)

(X n
1 )∗

])

= r

([

(A n
1 )(1,2,3)

(A n
1 )(1,2,3)′

])

.

The formula r(AB) ≤ min {r(A), r(B)} together with the fact that

[

(A n
1 )∗A n

1 0

0 (A n
1 )∗A n

1

]

[

(A n
1 )(1,2,3)

(A n
1 )(1,2,3)′

]

=

[

(A n
1 )∗

(A n
1 )∗

]

,

and
[

(A n
1 )(1,2,3)((A n

1 )†)∗ 0

0 (A n
1 )(1,2,3)′((A n

1 )†)∗

]

[

(A n
1 )∗

(A n
1 )∗

]

=

[

(A n
1 )(1,2,3)

(A n
1 )(1,2,3)′

]

,

means that

r

([

(A n
1 )(1,2,3)

(A n
1 )(1,2,3)′

])

= r

([

(A n
1 )∗

(A n
1 )∗

])

= r(A n
1 ).

Now the statement (2.4) readily follows.

Based on the above auxiliary conclusions, in the following, we present the equiv-

alent conditions for An{1, 2, 3} · · ·A2{1, 2, 3}A1{1, 2, 3} = (A1A2 · · ·An){1, 2, 3}.

Theorem 2.3. Let Ai ∈ C
li×li+1 for i = 1, 2, . . . , n, and A

j
i (1 ≤ i ≤ j ≤ n) be

as in (1.1). Then the following statements are equivalent:

1. An{1, 2, 3} · · ·A2{1, 2, 3}A1{1, 2, 3} ⊆ (A1A2 · · ·An){1, 2, 3};

2. An{1, 2, 3} · · ·A2{1, 2, 3}A1{1, 2, 3} = (A1A2 · · ·An){1, 2, 3};

3. r
([

(A n
1 )∗A n−1

1 EAn
(A n

1 )∗A n−2
1 EAn−1

· · · (A n
1 )∗A 1

1 EA2

])

= 0 and

r(A1A2 · · ·An) = min {r(A1), r(A2), . . . , r(An)}

=

n
∑

i=1

r(Ai) − r

































A∗
2 0 · · · 0

0 A∗
3 · · · 0

...
...

. . .
...

0 0 · · · A∗
n

A 1
1 A 2

1 · · · A
n−1
1

































.

Proof. Since (1) and (3) are equivalent, (2)⇒(1) and (2)⇒(3) are obvious, there-

fore, we only need to prove that (1)⇒(2).
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We remark that An{1, 2, 3} · · ·A2{1, 2, 3}A1{1, 2, 3} = (A1A2 · · ·An){1, 2, 3} is

equivalent to

An{1, 2, 3} · · ·A2{1, 2, 3}A1{1, 2, 3} ⊆ (A1A2 · · ·An){1, 2, 3},

and

An{1, 2, 3} · · ·A2{1, 2, 3}A1{1, 2, 3} ⊇ (A1A2 · · ·An){1, 2, 3}.

Here, we only need to prove that the latter inclusion holds under the conditions of

part (1) or (3). The second side inclusion relation is equivelent to

max
(A n

1 )(1,2,3)
min

X1,X2,...,Xn

r[(A n
1 )(1,2,3) − (X n

1 )∗] = 0.(2.5)

If part (1) holds, then (A n
1 )(1,2,3) and (X n

1 )∗ are a pair of outer inverses of matrix

A n
1 . Using Lemma 1.4 and Lemma 2.2, we have

r[(A n
1 )(1,2,3) − (X n

1 )∗](2.6)

= r

([

(A n
1 )(1,2,3)

(X n
1 )∗

])

+ r
([

(A n
1 )(1,2,3) (X n

1 )∗
])

− r((A n
1 )(1,2,3)) − r((X n

1 )∗)

= r
([

(A n
1 )(1,2,3) (X n

1 )∗
])

− r((X n
1 )∗)

= r
([

(A n
1 )(1,2,3) (X n

1 )∗
])

− r(A n
1 ).

Combining (2.6) with (2.1), we have

max
(A n

1 )(1,2,3)
min

X1,X2,...,Xn

r[(A n
1 )(1,2,3) − (X n

1 )∗](2.7)

= max
(A n

1 )(1,2,3)
min

X1,X2,...,Xn

r
([

(A n
1 )(1,2,3) (X n

1 )∗
])

− r(A n
1 )

= r(A1) − r
([

A 1
1 EA2

· · · A
n−1
1 EAn

A n
1

])

.

Note that if P ∗Q = 0, then r
([

P Q
])

= r(P )+r(Q). From part (3), (2.7) reduces

to

max
(A n

1 )(1,2,3)
min

X1,X2,...,Xn

r[(A n
1 )(1,2,3) − (X n

1 )∗](2.8)

= r(A1) − r
([

A 1
1 EA2

· · · A
n−1
1 EAn

])

− r(A n
1 )

=

n
∑

i=1

r(Ai) − r

































A∗
2 0 · · · 0

0 A∗
3 · · · 0

...
...

. . .
...

0 0 · · · A∗
n

A 1
1 A 2

1 · · · A
n−1
1

































− r(A n
1 ).

According to part (3), we know that the right-hand side of (2.8) is equal to zero.
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For the reverse order law for {1, 2, 4}-inverse of multiple matrix products we have

a similar result. Here, we present it below without proof.

Theorem 2.4. Let Ai ∈ C
li×li+1 , i = 1, 2, . . . , n, and A

j
i , 1 ≤ i ≤ j ≤ n be as

in (1.1). Then the following statements are equivalent:

1. An{1, 2, 4} · · ·A2{1, 2, 4}A1{1, 2, 4} ⊆ (A1A2 · · ·An){1, 2, 4};

2. An{1, 2, 4} · · ·A2{1, 2, 4}A1{1, 2, 4} = (A1A2 · · ·An){1, 2, 4};

3. r





















FA1
A n

2 (A n
1 )∗

FA2
A n

3 (A n
1 )∗

...

FAn−1
A n

n (A n
1 )∗





















= 0 and

r(A1A2 · · ·An) = min {r(A1), r(A2), . . . , r(An)}

=

n
∑

i=1

r(Ai) − r





















A∗
n−1 0 · · · 0 A n

n

0 A∗
n−2 · · · 0 A n

n−1
...

...
. . .

...
...

0 0 · · · A∗
1 A n

2





















.

Acknowledgements. The authors would like to thank the anonymous referees

for constructive comments that improved the contents and presentation of this paper.

REFERENCES

[1] A. Ben-Israel and T.N.E. Greville. Generalized Inverses: Theory and Applications, 2nd edition.

Springer, New York, 2003.

[2] B. Zheng and Z. Xiong. The reverse order laws for {1,2,3}- and {1,2,4}-inverses of multiple

matrix products. Linear Multilinear Algebra, 58:765–782, 2010.

[3] Y. Tian. More on maximal and minimal ranks of Schur complements with applications. Appl.

Math. Comput., 152:675–692, 2004.

[4] Y. Tian. Rank equalities related to outer inverses of matrices and applications. Linear Multilinear

Algebra, 49:269–288, 2002.

[5] Y. Tian. Reverse order laws for the generalized inverses of multiple matrix products. Linear

Algebra Appl., 211:85–100, 1994.

[6] M. Wei. Reverse order laws for generalized inverses of multiple matrix products. Linear Algebra

Appl., 293:273–288, 1999.

[7] Q. Liu and M. Wei. Reverse order law for least squares g-inverses of multiple matrix products.

Linear Multilinear Algebra, 56:491–506, 2008.

[8] B. Zheng and Z. Xiong. A new equivalent condition of the reverse order law for g-inverses of

multiple matrix products. Electron. J. Linear Algebra, 17:1–8, 2008.

[9] Z. Xiong and B. Zheng. The reverse order laws for {1,2,3}- and {1,2,4}-inverses of a two-matrix

product. Appl. Math. Lett., 21:649–655, 2008.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 22, pp. 620-629, June 2011


