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STRUCTURED QR ALGORITHMS FOR HAMILTONIAN

SYMMETRIC MATRICES∗

A. SALAM† AND D.S. WATKINS‡§

Abstract. Efficient, backward-stable, doubly structure-preserving algorithms for the Hamil-

tonian symmetric and skew-symmetric eigenvalue problems are developed. Numerical experiments

confirm the theoretical properties of the algorithms. Also developed are doubly structure-preserving

Lanczos processes for Hamiltonian symmetric and skew-symmetric matrices.
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1. Introduction. The problem of computing the complete eigensystem of a

Hamiltonian matrix was posed some thirty years ago [16, 18] but still has not been

resolved with complete satisfaction. The objective, to be precise, is to devise an

efficient, backward stable algorithm that fully exploits the Hamiltonian structure and

delivers the eigenvalues (and corresponding eigenvectors or invariant subspaces) in

perfect pairs ±λ or quadruples ±λ, ±λ. Progress toward this objective has been

made in the works [1, 2, 7, 8, 9, 10, 16, 18, 21, 23], among others.

In this paper, we consider the special case in which the Hamiltonian matrix also

possesses additional structure, either symmetric or skew-symmetric. These cases and

others were studied by Bunse-Gerstner, Byers, and Mehrmann [6], who suggested the

use of a quaternion QR algorithm [5] for the symmetric Hamiltonian case. Fassben-

der, Mackey, and Mackey [11] developed Jacobi algorithms for the symmetric and

skew-symmetric cases. Stability questions for these algorithms have been studied by

Tisseur [20]. In this paper we offer block QR algorithms for both the symmetric and

skew-symmetric cases. These use exclusively orthogonal symplectic similarity trans-

formations, so they preserve both structures and are backward stable. They can be

expected to be more efficient than the Jacobi methods, and they are less exotic than

the quaternion QR algorithm, as they use exclusively real arithmetic. We also develop
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structured Lanczos processes for the two cases.

2. Basic facts. We define a matrix J ∈ R
2n×2n by

J =

[
0 I

−I 0

]
.

A matrix H ∈ R
2n×2n is Hamiltonian if JH is symmetric: (JH)T = JH. This means

exactly that H has the form

H =

[
A F

G −AT

]
; F = FT , G = GT .

If v is an eigenvector of the Hamiltonian matrix H with eigenvalue λ, then Jv is an

eigenvector of HT with eigenvalue −λ. Therefore the eigenvalues of H occur in ±λ

pairs. If λ is complex, then ±λ, ±λ form a quadruple of eigenvalues.

A major advantage of preserving structure is that the eigenvalues are always

delivered in exact pairs or quadruples. If there are supposed to be n eigenvalues in

the left half plane, then there always are exactly n. There is no danger of exactly one

eigenvalue or a conjugate pair of complex eigenvalues slipping across the imaginary

axis due to roundoff errors.

A matrix S ∈ R
2n×2n is symplectic if ST JS = J . Symplectic matrices are clearly

nonsingular, and the set of all such matrices is a group under matrix multiplica-

tion, the symplectic group. If H is Hamiltonian and S is symplectic, then S−1HS

is also easily seen to be Hamiltonian. Thus the Hamiltonian structure is preserved

under similarity transformations by symplectic matrices. Our method of preserving

Hamiltonian structure will be to devise methods that use only symplectic similarity

transformations.

In the interest of maintaining backward stability, it is desirable to use similarity

transformations that are also orthogonal. The works [1, 2, 9, 10, 23] all use symplectic,

orthogonal similarity transformations. However, there have also been some methods

proposed in which orthogonality was sacrificed in the interest of efficiency [7, 8, 19].

In our present study we consider Hamiltonian matrices that also possess symmetry

or skew-symmetry. Since these additional structures are preserved by orthogonal

similarity transformations, we will use exclusively orthogonal, symplectic similarity

transformations in this paper. In this way the two structures will be preserved, and

we will achieve backward stability as well.

Let S =
[

U V
]
∈ R

2n×2n, where U , V ∈ R
2n×n. Then S is orthogonal and

symplectic if and only if UT U = I, UT JU = 0, and V = JT U . As a special case, if
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Q ∈ R
n×n is orthogonal, then

S =

[
Q 0

0 Q

]
(2.1)

is orthogonal and symplectic. Our algorithms will use two types of orthogonal, sym-

plectic similarity transforms. The first is the double reflector, a matrix of the form

(2.1), where Q is an elementary reflector (Householder transformation) [25]. The sec-

ond is the symplectic rotator. A symplectic rotator in the (i, n + i) plane is a matrix

of the form

S =

[
Γ −Σ

Σ Γ

]
,

where Γ = diag{1, . . . , 1, c, 1, . . . , 1}, Σ = diag{0, . . . , 0, s, 0, . . . , 0}, c and s lie in the

ith position on the main diagonal, and c2 + s2 = 1. This is a special type of Givens

rotation that also happens to be symplectic.

3. Reduction to condensed form. We consider first the symmetric case. If

H is Hamiltonian and symmetric, then

H =

[
A G

G −A

]
; A = AT , G = GT .

By orthogonal symplectic similarity transformations we are able to transform H to a

form

H̃ =

[
T D

D −T

]
,(3.1)

where T is symmetric and tridiagonal, and D is diagonal. For example, in the case

n = 4 we have

H̃ =





a1 b1 c1

b1 a2 b2 c2

b2 a3 b3 c3

b3 a4 c4

c1 −a1 −b1

c2 −b1 −a2 −b2

c3 −b2 −a3 −b3

c4 −b3 −a4





.(3.2)

We describe the first step of the reduction, all other steps following the same

pattern. First we use a symplectic double reflector to introduce zeros in the first

column of G in positions g31, . . . , gn1. This reflector acts on rows and columns 2
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through n of both A and G. The next transformation is a symplectic rotator in the

(2, n + 2) plane that transforms g21 to zero. Finally, a symplectic double reflector

acting on rows and columns 2 through n of both A and G creates zeros in the first

column of A in positions a32, . . . , an2. This completes the first step, which, taking

preservation of symmetry of A and G into account, leaves the matrix in the form





∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗





.

The second step acts similarly on the second column of A and G. After n − 1 such

steps, the matrix is reduced to the form (3.2).

This is actually just a special case of the Paige-Van Loan form [18]. For general

Hamiltonian matrices this form is not particularly useful, but for the special case of

symmetric Hamiltonian matrices it is. The flop count for the reduction is much less

than for the general Paige-Van Loan reduction, as we just need to work with a single

copy each of A and G, and these are both symmetric. Indeed the cost is approximately

twice that of reducing a single n × n symmetric matrix to tridiagonal form. This is

about 8

3
n3 flops if the symplectic, orthogonal transforming matrix is not accumulated

and 20

3
n3 if it is accumulated. Notice that the flop count for reducing a full symmetric

2n× 2n matrix to tridiagonal form, ignoring the Hamiltonian structure, is four times

as great.

3.1. The skew-symmetric case. If H is Hamiltonian and skew-symmetric, it

has the form

H =

[
A −G

G A

]
; AT = −A, GT = G.

As in the symmetric case, we are able to transform H to a form

H̃ =

[
T −D

D T

]
,
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where T is tridiagonal and D is diagonal. In this case, T is skew-symmetric. For

example, in the case n = 4 we have

H̃ =





0 −b1 −c1

b1 0 −b2 −c2

b2 0 −b3 −c3

b3 0 −c4

c1 0 −b1

c2 b1 0 −b2

c3 b2 0 −b3

c4 b3 0





.(3.3)

This is another special case of the reduction to Paige-Van Loan form. The flop

count is slightly less than but asymptotically the same as that of the symmetric case.

This reduction is the precise analogue of the symmetric reduction given above. A

different reduction (for the skew-symmetric case only), which might be preferable to

this one, was given in [6]: Reduce H to the form
[

0 −T

T 0

]
,

where T is symmetric and tridiagonal. Then the complete eigensystem of H can be

found by applying the symmetric QR algorithm (or any of several other methods [25,

§ 7.2]) to T .

4. Structured Lanczos processes. Each of the reductions of the previous sec-

tion has a structured Lanczos process associated with it. We briefly develop these

processes, starting with the symmetric case. Let S =
[

U V
]

denote the orthogo-

nal, symplectic transforming matrix that maps the symmetric, Hamiltonian H to H̃

of the form (3.1). Then HS = SH̃, which we can write in block form as

H
[

U V
]

=
[

U V
] [

T D

D −T

]
.(4.1)

The first block equation from (4.1) is HU = UT +V D, and the second is HV = UD+

V (−T ). The second is redundant; it can be obtained from the first by multiplying by

JT and using the properties V = JT U and JT H = HJ . Thus we will focus on the

first block equation, which we can write as

HU = UT + JT UD.

Writing out the jth column of this equation, letting u1, . . . , un denote the columns

of U , we obtain

Huj = uj−1bj−1 + ujaj + uj+1bj + JT ujcj
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or

uj+1bj = Huj − ujaj − uj−1bj−1 − JT ujcj ,(4.2)

which gives us a structured Lanczos process, provided that we can come up with

formulas for the coefficients. Multiplying (4.2) on the left by uT
j and using the fact that

the vectors are columns of an orthogonal, symplectic matrix, we find that aj = uT
j Huj .

Similarly, multiplying by uT
j J , we find that cj = uT

j JHuj . In practice we would

compute

ũj+1 = Huj − ujaj − uj−1bj−1 − JT ujcj

and then compute bj = ‖ ũj+1 ‖2, which will get used as bj−1 on the following step,

and uj+1 = ũj+1/bj . We summarize these findings as an algorithm.

Algorithm 1. Hamiltonian symmetric Lanczos process. Start with u0 = 0,

b0 = 0, and u1 = a vector satisfying ‖u1 ‖2 = 1.

for j = 1, . . . , n− 1



w ← Huj

aj ← uT
j w

cj ← uT
j Jw

uj+1 ← w − ujaj − uj−1bj−1 − JT ujcj

bj = ‖uj+1 ‖2
if bj = 0[

stop (invariant subspace found)

else[
uj+1 = uj+1/bj

If run to completion, this algorithm gives, in principle, the reduction to the con-

densed form (3.1). Of course we prefer the backward stable algorithm sketched in

Section 3 for this purpose. The structured Lanczos algorithm can be used to detect

eigenvalues and invariant subspaces of large, sparse matrices. In that context it is not

run to completion.

4.1. The skew-symmetric case. Proceeding as in the symmetric case, we have

H
[

U V
]

=
[

U V
] [

T −D

D T

]
,

where the form of T and D is illustrated in (3.3). The first block equation is HU =

UT + V D, and the second block equation is equivalent to the first. Rewriting the
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first block equation as

HU = UT + JT UD

and writing out the jth column of this equation, we obtain

Huj = −uj−1bj−1 + uj+1bj + JT ujcj

or

uj+1bj = Huj + uj−1bj−1 − JT ujcj .(4.3)

Multiplying (4.3) on the left by uT
j J , we find that cj = uT

j JHuj . In practice we

would compute

ũj+1 = Huj + uj−1bj−1 − JT ujcj

and then compute bj = ‖ ũj+1 ‖2, which will get used as bj−1 on the following step,

and uj+1 = ũj+1/bj . These considerations yield the following algorithm.

Algorithm 2. Hamiltonian skew-symmetric Lanczos process. Start with u0 = 0,

b0 = 0, and u1 = a vector satisfying ‖u1 ‖2 = 1.

for j = 1, . . . , n− 1



w ← Huj

cj ← uT
j Jw

uj+1 ← w + uj−1bj−1 − JT ujcj

bj = ‖uj+1 ‖2
if bj = 0[

stop (invariant subspace found)

else[
uj+1 = uj+1/bj

5. Implicitly-shifted block QR iterations. Again we consider the symmetric

case first. Suppose the Hamiltonian symmetric matrix H has been reduced to the

condensed form exemplified by the matrix H̃ in (3.2). We now drop the tilde and

refer to the condensed matrix as H. If a perfect shuffle permutation is applied to H,
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the result is

Hs =





a1 c1 b1

c1 −a1 −b1

b1 a2 c2 b2

−b1 c2 −a2 −b2

b2 a3 c3 b3

−b2 c3 −a3 −b3

b3 a4 c4

−b3 c4 −a4





,

which is seen to be block tridiagonal with block size k = 2. It follows that we will be

able to apply a block QR algorithm [17] to this structure. The block QR algorithm

has not become popular because it is inefficient in general. If the block size is k, the

cost in flops of applying one shift is about k times the cost of applying a single shift

in the standard case. In our current situation we have k = 2, so the inefficiency is

only a factor of 2. Moreover, because the matrix is Hamiltonian, it turns out that the

operations are redundant by a factor of 2; only half of them have to be done. Thus

there is no loss of efficiency here.

The eigenvalues of a symmetric Hamiltonian matrix are real and occur in ±λ

pairs. The block QR algorithm that we will develop will be an implicitly-shifted

bulge-chasing algorithm. In order to preserve Hamiltonian structure, we will need

to extract the eigenvalues in ±λ pairs. To this end we will employ a double-shift

algorithm with shifts taken in pairs ±ρ. Each QR iteration will take the form

Ĥs = Q−1
s HsQs,

where Qs is the orthogonal factor in the block QR decomposition [24, p. 157]

(Hs − ρI)(Hs + ρI) = QsRs.

The factor Rs is block triangular with 2× 2 blocks. Of course we do not perform this

QR decomposition explicitly, nor do we compute the product (Hs − ρI)(Hs + ρI) =

H2
s − ρ2I. We build the transformation Qs bit by bit via a bulge-chasing process, for

which we just need the first two columns of H2
s − ρ2I.

We prefer to describe the process in terms of the original unshuffled coordinate

system (3.2), so we will work instead with H2 − ρ2I, from which we need columns 1
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and n + 1. An easy computation shows that these are p and JT p, respectively, where

p =





a2
1 + b2

1 + c2
1 − ρ2

b1(a1 + a2)

b2b1

0

0

(c2 − c1)b1

0

0





.

The iteration is set in motion by an orthogonal symplectic transformation Q1 such that

QT
1 p = αe1. This can be built as a product of a symplectic rotator and a symplectic

double reflector. First a symplectic rotator acting on entries 2 and n + 2 transforms

the n + 2 entry (c2 − c1)b1 to zero. Then a symplectic double reflector acting on

entries 1, 2, and 3 (and n+1, n+2, and n+3) finishes the job. Notice that since the

resulting Q1 is orthogonal and symplectic, we have JQ1 = Q1J . Thus QT
1 (JT p) =

JT QT
1 p = αJT e1 = αen+1, so the elimination in JT p takes place automatically.

A similarity transformation by Q1 yields a Hamiltonian symmetric matrix

H1 = Q−1
1 HQ1

that no longer has the form (3.2) but has bulges in both the T and D parts. In the

case n = 7, H1 has the form





∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗





.

The rest of the block QR step consists of returning this matrix to the block tridiagonal

form as in the reduction described in Section 3. This amounts to a bulge chase. Since
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all of the transforming matrices are unitary and symplectic, the Hamiltonian and

symmetric structures are preserved.

Once the matrix has been reduced to block tridiagonal form, it can be stored in

the form of 3n− 2 parameters a1, . . . , an, b1, . . . , bn−1, and c1, . . . , cn. During the

bulge chase an additional six storage spaces are needed for the bulge entries, and a few

extra scratch spaces are needed, but the total memory requirement is clearly O(n).

Moreover, the cost in flops per step is also O(n), as the the number of transforming

matrices is O(n), and each transforming matrix acts on O(1) entries.

If, as in many applications, we need to update the transforming matrix as we

go, the cost of this is O(n) per transformation, hence O(n2) per iteration, as usual.

Because the matrix that is being updated has the form
[

U JT U
]
, a factor of 2 is

saved in the flop count.

The iterations tend to drive the entries bi to zero. Once all the bi have become

small enough to be considered to be zeros, the matrix has the form

H =





a1 c1

a2 c2

a3 c3

a4 c4

c1 −a1

c2 −a2

c3 −a3

c4 −a4





.

Each submatrix of the form

[
ai ci

ci −ai

]

houses a pair of eigenvalues ±
√

a2
i + c2

i . Letting âi =
√

a2
i + c2

i , we can diagonalize

this matrix to the form

[
âi 0

0 −âi

]

by a single rotator.

We coded the algorithm in MATLAB and tried it out with two different shifting

strategies. The simplest is to take the eigenvalues of

[
an cn

cn −an

]
,
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which are ±
√

a2
n + c2

n, as the shifts. This generalized Rayleigh quotient shift strategy

has local cubic convergence [26] and usually works well, but we found that occasionally

it gets stuck and takes many iterations to find a pair of eigenvalues. We also tried a

generalized Wilkinson shift strategy, in which we find the eigenvalues of





an−1 cn−1 bn−1

cn−1 −an−1 −bn−1

bn−1 an cn

−bn−1 cn −an




,

and take the pair that is closer to ±
√

a2
n + c2

n as shifts. This cured the problem of

getting stuck. We observed cubic convergence, and we conjecture that this strategy

is globally convergent.

For larger problems aggressive early deflation [4] and its associated shift strat-

egy can be used to decrease the total number of iterations. In problems for which

eigenvectors are needed, so that the transforming matrix needs to be accumulated,

BLAS 3 speed [13] can be achieved by chasing bulges in bunches, as suggested in

[3, 15]. Parallelism can be achieved as well [12, 14, 22]. In short, all of the meth-

ods that have been devised for speeding up the general (symmetric or unsymmetric)

implicitly-shifted QR algorithm can also be employed here.

Since the algorithm preserves the structures, it delivers perfect ±λ pairs of real

eigenvalues, and the corresponding eigenvectors are delivered in exact v, Jv pairs.

5.1. The skew-symmetric case. In this case the condensed form is (3.3). After

a perfect shuffle of the rows and columns, we have the block tridiagonal form

Hs =





−c1 −b1

c1 −b1

b1 −c2 −b2

b1 c2 −b2

b2 −c3 −b3

b2 c3 −b3

b3 −c4

b3 c4





.

The eigenvalues of a skew-symmetric Hamiltonian matrix are purely imaginary

complex conjugate pairs ±iµ, so we use shifts ±iρ with ρ real. To start the block

double QR step, we need the first and (n + 1)st columns of (H − iρI)(H + iρI) =
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H2 + ρ2I. These are are p and JT p, respectively, where

p =





−b2
1 − c2

1 + ρ2

0

b2b1

0

0

(c2 − c1)b1

0

0





.

A transformation Q1 such that QT
1 p = αe1 and QT

1 JT p = αen+1 can be built just as

in the symmetric case. A similarity transformation by Q1 yields a matrix Q−1
1 AQ1

with a bulge in the block triangular form. The bulge is then chased to complete

the block QR iteration. The details are slightly simpler than in the symmetric case

because of the extra zeros in the skew-symmetric form. We coded this algorithm, ran

it, and obtained results similar to the symmetric case.

6. Conclusions. We have developed simple, robust, and backward stable algo-

rithms for the real Hamiltonian symmetric and anti-symmetric eigenvalue problems.

The methods preserve both structures and deliver eigenvalues in exact ±λ pairs.
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