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Abstract. Let A denote a square complex matrix and let E be a perturbation matrix. The

purpose of this paper is to investigate the perturbation of the Drazin inverse when B = A + E

satisfies the rank conditions rank Ar = rank Bs = rank ArBs, where r and s denote the indices

of A and B, respectively. We will derive an explicit representation of BD as a function of A and

Bk −Aj , for certain positive integers j, k. We emphasize that the matrix I + (AD)j(Bk −Aj) could

be singular and the perturbation analysis will be carried out by using inner inverses. In addition,

we exhibit inequalities bounding the errors ‖BD − AD‖/‖AD‖ and ‖BBD − AAD‖. Examples will

be given which show that these bounds recover others given in the literature and can be significant

to those cases which can not be bounded using the previous known results. Alternatively, we shall

formulate analogous perturbation results for the perturbed matrix B such that rank Ar = rank Bs =

rank BsAr.
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1. Introduction. Let A denote a square complex matrix and let E be a pertur-

bation matrix. Several authors have considered the perturbation of the Drazin inverse

and exhibited inequalities bounding the relative error ‖(A+E)D −AD‖/‖AD‖, under

specific conditions [4, 6, 7, 11, 12, 14, 15, 16]. Other papers are concerned with the

perturbation of the group inverse, which plays an important role in the theory of

Markov finite chains [5, 10].

We recall that the Drazin inverse AD is the unique matrix X which satisfies the

relations:

XAX = X, AX = XA, Ak+1X = Ak for all k ≥ r,

and the index of A, ind(A), is the smallest non-negative integer k for which the third

equation holds. Alternatively, the index of A may be defined to be the smallest

non-negative integer k such that rank (Ak) = rank (Ak+1).
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If A is nonsingular then ind(A) = 0 and AD = A−1. If ind(A) = 1, then AD is

called the group inverse of A, denoted by A#.

Let ind(A) = r. We will denote by Aπ the spectral projector whose range is

N (Ar) and whose kernel is R(Ar), i.e., Aπ = I − AAD, where as for notation, R(A)

and N (A) denote the range space of A and the null space of A, respectively.

In [2], Campbell and Meyer established that if A + Ej converges to A, then

(A+Ej)
D converges to AD if and only if rank(A+Ej)

rj = rankAr for all sufficiently

large j, where rj = ind(A + Ej).

In [4] the authors investigated perturbations such that B = A + E satisfies the

following conditions:

(Cs) rankAr = rankBs = rankArBsAr,

where ind(B) = s. These rank conditions turn out to be equivalent to the geometrical

conditions R(Bs) ∩N (Ar) = {0} and N (Bs) ∩R(Ar) = {0}.

In our development, we consider perturbations such that B = A + E satisfies the

conditions:

(Bs,1) rankAr = rankBs = rankArBs,

or, equivalently, R(Bs) ∩N (Ar) = {0}.

Alternatively, we shall consider the perturbed matrix B such that:

(Bs,2) rankAr = rankBs = rankBsAr,

or, equivalently, N (Bs) ∩R(Ar) = {0}.

Our objective is to derive an explicit expression for BD as a function of A and

the perturbation matrix Ej,k = Bk − Aj , for certain integers j, k. The fundamental

fact on which perturbation analysis of previous papers was based is that the matrix

I + (AD)jEj,k is nonsingular, for some integers j, k. This happens in particular when

the perturbation is “small enough”, i.e., when ||(AD)jEj,k|| < 1. We are interested

in finding perturbation formulas and bounds for the Drazin inverse in a more general

setting. If B satisfies either condition (Bs,1) or condition (Bs,2), in general, we can’t

guarantee that previous non-singularity condition holds. In theses cases, the {1}-

inverse will play an important role in the perturbation formula for BD. Continuity

properties and perturbation analysis of {1}-inverses can be found in [8, 13].

We recall that a {1}-inverse (or inner inverse) of a given matrix A ∈ C
m×n is

a matrix X ∈ C
n×m such that AXA = A. We will denote by A{1} the set of all

{1}-inverses of A. The symbol A− will be used to designate an arbitrary element of

A{1}.
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A {1, 2}-inverse (or inner and outer inverse) of A is a matrix X such that AXA =

A and XAX = X. We will denote by A{1, 2} the set of all {1, 2}-inverses of A.

The results in this paper are summarized in the following. Section 2 establishes

several characterizations for the perturbed matrix B satisfying condition (Bs,1). We

give a block matrix representation for the perturbed matrix, which will be the main

tool in our further development. On the other hand, we show that we can find

inner inverses of the matrices (AD)jBk, for all integers j and k ≥ s, with prescribed

projectors AAD and BBD. Moreover, we give a formula for the oblique projector

PR(Bs),N (Ar). This section establishes also the reciprocal results for the perturbed

matrix B satisfying condition (Bs,2) and finally shows that under both conditions,

the characterization result for the class (Cs) holds.

In Section 3, first it is shown that certain inner inverses of I + Ej,k(AD)j provide

the key for giving an explicit representation of BD as a function of A and Ej,k. We de-

rive upper bounds for the relative errors ‖BD −AD‖/‖AD‖ and ‖Bπ −Aπ‖. Further,

we establish the analogous results for perturbations satisfying condition (Bs,2). Fi-

nally, we give numerical examples to illustrate our results. In case that I +Ej,k(AD)j

is nonsingular, we compare our bound with the upper bound given recently in [16].

Some basic results are given next. We refer to [1, 3] for properties on generalized

inverses.

Lemma 1.1. Let A ∈ C
n×n with ind(A) = r.

(a) If P is nonsingular, then (PAP−1)D = PADP−1.

(b) (At)D = (AD)t, where At is the transpose conjugate of A.

(c) The matrix A has a unique decomposition

A = CA + NA, ind(CA) = 1, CANA = NACA = 0, Nr
A = 0. (1.1)

Moreover, we have Ak = Ck
A + Nk

A for all integers k ≥ 1, AD = C#
A and

Aπ = Cπ
A.

(d)

(
A B

0 0

)D

=

(
AD (AD)2B

0 0

)
.

(e) Let P and Q be idempotent matrices. Then N (P − Q) = (R(P ) ∩R(Q)) ⊕

(N (P ) ∩N (Q)).

The following results on ranks of matrices are well-known [9].

Lemma 1.2. Let A ∈ C
m×p, B ∈ C

m×k, C ∈ C
n×p, D ∈ C

n×k, G ∈ C
p×k. Then

(i) rank (AG) = rank (G) − dim (R(G) ∩N (A)).

(ii) rank

(
A B

C D

)
= rank(A) + rank

(
0 (Im − AA−)B

C(Ip − A−A) D − CA−B

)
.
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Lemma 1.3. Let R =

(
R11 R12

R21 R22

)
with R11 nonsingular matrix and R22 square

matrix. Then R is nonsingular if and only if Z = R22 − R21R
−1
11 R12 is nonsingular.

In this case

R−1 =

(
R−1

11 + R−1
11 R12Z

−1R21R
−1
11 −R−1

11 R12Z
−1

−Z−1R21R
−1
11 Z−1

)
.

2. Characterization results. From now on, let ind(A) = r > 0. Then there

exists a nonsingular matrix P such that we can write A in the core-nilpotent block

form

A = P

(
A1 0

0 A2

)
P−1, A1 ∈ C

d×d nonsingular, d = rankAr, Ar
2 = 0. (2.1)

We have divided this section into three parts, according to the assumptions on

the perturbed matrix B.

2.1. Condition (Bs,1). First, we give the following result.

Theorem 2.1. Let M ∈ C
n×n in the form M =

(
C(I − TS) CT

SC(I − TS) SCT

)
, where

C ∈ C
d×d is nonsingular. Then

Mk =

(
Ck(I − TS) CkT

SCk(I − TS) SCkT

)
, ∀k ≥ 1, (2.2)

ind(M) = 1, the group inverse of M is

M# =

(
C−1(I − TS) C−1T

SC−1(I − TS) SC−1T

)
, (2.3)

and

Mπ =

(
TS −T

−S(I − TS) I − ST

)
. (2.4)

Proof. The expression for the powers of M can be easily proved by induction on

k. We can write

M =

(
I 0

S I

)(
C CT

0 0

)(
I 0

−S I

)
.
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On account that C is nonsingular, we derive that rankM = rankC = d. Analo-

gously, we see that rank M2 = rankC2 = d. Therefore ind(M) = 1. By Lemma 1.1,

properties (a) and (d), we get

M# =

(
I 0

S I

)(
C−1 C−1T

0 0

)(
I 0

−S I

)
=

(
C−1(I − TS) C−1T

SC−1(I − TS) SC−1T

)
.

Further, the expression (2.4) holds, since Mπ = I − M#M .

We can now state the characterization result.

Theorem 2.2. Let A,B ∈ C
n×n be such that ind(A) = r and ind(B) = s. If

rankBs = rankAr = d, then the following conditions are equivalent:

(a) rankArBs = d.

(b) R(Bs) ∩N (Ar) = {0}.

(c) If CB is the core part in the decomposition of B defined as in (1.1), then,

relative to the form (2.1),

CB = P

(
C(I − TS) CT

SC(I − TS) SCT

)
P−1, C ∈ C

d×d is nonsingular. (2.5)

(d) rank (I − Aπ − Bπ) = n − d + rankBsAr.

Proof. (a) ⇔ (b): By Lemma 1.2, (i),

rankArBs = rankBs − dim(R(Bs) ∩N (Ar)).

Hence it follows that R(Bs) ∩N (Ar) = {0} if and only if rankArBs = rankBs.

(a) ⇒ (c): Firstly, we note that ind(CB) = 1. Then there exists a nonsingular

matrix Q such that

CB = Q

(
B1 0

0 0

)
Q−1, B1 nonsingular.

Condition rankBs = rankAr = d holds if and only if the size of B1 is d × d.

Now, let R = P−1Q =

(
R11 R12

R21 R22

)
where R11 ∈ C

d×d. Then

ArBs = P

(
Ar

1R11B
S
1 0

0 0

)
R−1P−1.

Since rankArBs = d it follows that rankAr
1R11B

s
1 = d and, thus, R11 is nonsingular.

From Lemma 1.3, by denoting Z = R22−R21R
−1
11 R12, it follows that Z is nonsingular
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and

P−1CBP =

(
R11 R12

R21 R22

)(
B1 0

0 0

)(
R−1

11 + R−1
11 R12Z

−1R21R
−1
11 −R−1

11 R12Z
−1

−Z−1R21R
−1
11 Z−1

)

=

(
C(I − TS) CT

SC(I − TS) SCT

)
,

where C = R11B1R
−1
11 , T = −R12Z

−1 and S = R21R
−1
11 . We note that C is a

nonsingular matrix.

(c) ⇒ (d): Since Bπ = Cπ
B , using formula (2.4), we have

I − Aπ − Bπ = P

(
I − TS T

S(I − TS) −(I − ST )

)
P−1.

Taking into account that

(
I − TS T

−S I

)(
I − TS T

S(I − TS) −(I − ST )

)
=

(
I − TS 0

0 −I

)

and, noting that the first matrix on left hand side is nonsingular, we conclude that

rank (I − Aπ − Bπ) = rank (I − TS) + n − d. (2.6)

On the other hand,

BsAr = Cs
BAr = P

(
Cs(I − TS)Ar

1 0

SCs(I − TS)Ar
1 0

)
P−1.

Hence it follows that

rankBsAr = rank (I − TS). (2.7)

From (2.6) and (2.7) we get rank (I − Aπ − Bπ) = rankBsAr + n − d.

(d) ⇒ (b): Using Lemma 1.2, (i), we have

rank (I − Bπ − Aπ) − (n − d) = rankBsAr = rankAr − dim(R(Ar) ∩N (Bs)).

Hence rank (I − Bπ − Aπ) = n − dim(R(Ar) ∩ N (Bs)) and, thus, dimN (I − Bπ −

Aπ) = dim(R(Ar) ∩ N (Bs)). From Lemma 1.1, property (e), it follows that N (I −

Bπ−Aπ) = (N (Ar)∩R(Bs))⊕(R(Ar)∩N (Bs)), Therefore, N (Ar)∩R(Bs) = {0}.

In the remainder of this subsection, we make the assumptions: ind(B) = s and

B satisfies condition (Bs,1).
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From Theorem 2.2, it follows that C
n = R(Bs) ⊕ N (Ar) and, thus, we can

consider the oblique projector PR(Bs),N (Ar). Moreover, applying Theorem 2.2 and

using (2.2), we have

Bk = Ck
B = P

(
Ck(I − TS) CkT

SCk(I − TS) SCkT

)
P−1, k ≥ s. (2.8)

The following result shows that there exists a {1, 2}-inverse of (AD)jBk (j ≥

1, k ≥ s) such that its prescribed projectors are AAD and BBD. Further, it provides

an expression for PR(Bs),N (Ar).

Theorem 2.3. Let A,B ∈ C
n×n be such that ind(A) = r and ind(B) = s. Let us

denote Lj,k = (AD)jBk for arbitrary j ≥ 1 and k ≥ s. If B satisfies condition (Bs,1),

then

(i) There exists a matrix Xj,k ∈ Lj,k{1, 2} satisfying

Lj,kXj,k = AAD, Xj,kLj,k = BBD. (2.9)

(ii) PR(Bs),N (Ar) = BkL−

j,k(AD)j, (the right hand side is independent of the

choice of the {1}-inverse L−

j,k and the subindices j, k). Moreover

Σ := AπPR(Bs),N (Ar) = P

(
0 0

S 0

)
P−1, (2.10)

with respect to the form (2.8).

Proof. (i) We have that Bk has the expression (2.8) and, therefore,

Lj,k = P

(
A−j

1 Ck(I − TS) A−j
1 CkT

0 0

)
P−1.

Now, we consider

Xj,k = P

(
C−kAj

1 0

SC−kAj
1 0

)
P−1. (2.11)

Next, we prove that Xj,k satisfies (2.9). We have

Lj,kXj,k = P

(
I 0

0 0

)
P−1 = AAD, Xj,kLj,k = P

(
I − TS T

S(I − TS) ST

)
P−1 = BBD,

where the last identity is followed by Theorem 2.1, (2.4). It remains to check that

Xj,k is a {1, 2}-inverse of Lj,k, but the proof is straightforward.
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(ii) Since Xj,k defined as (2.11) is a {1}-inverse of Lj,k, then Lj,k{1} = {Xj,k +

H − Xj,kLj,kHLj,kXj,k : H ∈ C
n×n} [3, Theorem 6.3.3]. If we write

H = P

(
H11 H12

H21 H22

)
P−1,

then any {1}-inverse L−

j,k of Lj,k has the form

L−

j,k = P

(
H11 + Ωj,k H12

H21 + SΩj,k H22

)
P−1,

where Ωj,k = C−kAj
1−((I − TS)H11 + TH21) and the submatrices Hi,l, for i, l = 1, 2,

are arbitrary.

Further, we get BkL−

j,k(AD)j = P

(
I 0

S 0

)
P−1. It is clear that this expression is

an idempotent matrix of rank d, and it is independent of the choice of the {1}-inverse

L−

j,k and the subindices j, k with k ≥ s. We also note that R(BkL−

j,k(AD)j) ⊆ R(Bs)

for k ≥ s. Since both subspaces have dimension d we conclude that they are equal.

Analogously, N (Ar) ⊆ N (BkL−

j,k(AD)j) and, since both subspaces have dimension

n − d we get that they are equal. Therefore, PR(Bs),N (Ar) = BkL−

j,k(AD)j . Finally

(2.10) follows.

2.2. Condition (Bs,2). Next, we state the counterparts of preceding theorems.

These results may be proved in much the same way as their analogous results.

Corollary 2.4. Let M̂ =

(
(I − T̂ Ŝ)Ĉ (I − T̂ Ŝ)ĈT̂

ŜĈ ŜĈT̂

)
, Ĉ ∈ C

d×d is nonsin-

gular. Then

M̂k =

(
(I − T̂ Ŝ)Ĉk (I − T̂ Ŝ)ĈkT̂

ŜĈk ŜĈkT̂

)
, ∀k ≥ 1,

ind(M̂) = 1,

M̂# =

(
(I − T̂ Ŝ)Ĉ−1 (I − T̂ Ŝ)Ĉ−1T̂

ŜĈ−1 ŜĈ−1T̂

)
, M̂π =

(
T̂ Ŝ −(I − T̂ Ŝ)T̂

−Ŝ I − ŜT̂

)
.

Corollary 2.5. Let A,B ∈ C
n×n be such that ind(A) = r and ind(B) = s. If

rankBs = rankAr = d, then the following conditions are equivalent:

(a) rankBsAr = d.

(b) N (Bs) ∩R(Ar) = {0}.
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(c) If ĈB is the core part in the decomposition of B defined as in (1.1), then,

relative to the form (2.1),

ĈB = P

(
(I − T̂ Ŝ)Ĉ (I − T̂ Ŝ)ĈT̂

ŜĈ ŜĈT̂

)
P−1, Ĉ ∈ C

d×d is nonsingular.

(d) rank (I − Aπ − Bπ) = n − d + rankArBs.

When B satisfies condition (Bs,2), by Corollary 2.4 we have

Bk = Ĉk
B = P

(
(I − T̂ Ŝ)Ĉk (I − T̂ Ŝ)ĈkT̂

ŜĈk ŜĈkT̂

)
P−1, ∀k ≥ s. (2.12)

Corollary 2.6. Let A,B ∈ C
n×n be such that ind(A) = r, ind(B) = s and B

satisfies condition (Bs,2). Let us denote L̂j,k = Bk(AD)j. Then, for arbitrary j ≥ 1

and k ≥ s,

(i) There exists a matrix X̂j,k ∈ L̂j,k{1, 2} satisfying

X̂j,kL̂j,k = AAD, L̂j,kX̂j,k = BBD.

(ii) PR(Ar),N (Bs) = (AD)jL̂−

j,kBk (the right hand side is independent of the choice

of the {1}-inverse L̂−

j,k and the subindices j, k). Moreover,

Σ̂ := PR(Ar),N (Bs)A
π = P

(
0 T̂

0 0

)
P−1.

2.3. Condition (Bs,1) and (Bs,2). From Theorem 2.2 and Corollary 2.5 we get

the following characterization for a matrix B satisfying condition (Cs), which was

established in [4].

Corollary 2.7. Let A,B ∈ C
n×n be such that ind(A) = r and ind(B) = s. If

rankBs = rankAr = d, then the following conditions are equivalent:

(a) rankArBs = rankBsAr = d.

(b) R(Bs) ∩N (Ar) = {0} and N (Bs) ∩R(Ar) = {0}.

(c) If C̃B is the core part in the decomposition of B defined as in (1.1), then,

relative to the form (2.1),

C̃B = P

(
B̃1 B̃1T̃

S̃B̃1 S̃B̃1T̃

)
P−1, B̃1 ∈ C

d×d is nonsingular. (2.13)

(d) I − Aπ − Bπ is nonsingular.
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Proof. From Theorem 2.2 and Corollary 2.5 it follows that (a) and (b) are equiv-

alent. Now, we prove that (a)⇔(c). We have that CB has the block form (2.5) and,

in view of (2.7), rank(I −TS) = rankBsAr = d. Therefore I −TS is nonsingular. By

denoting B̃1 = C(I − TS), S̃ = S and T̃ = (I − TS)−1T we get (2.13). The converse

part is clear.

Next, we will prove that (a)⇔(d). By Theorem 2.2, equivalence between (a)

and (d) given therein, it follows that rank (I − Aπ − Bπ) = n − d + rankBsAr and,

thus, using that rankBsAr = d, we conclude that I − Aπ − Bπ is nonsingular. Con-

versely, if I −Aπ −Bπ is nonsingular, then condition (d) in Theorem 2.2 implies that

rankBsAr = d and condition (d) in Corollary 2.5 implies rankArBs = d. Conse-

quently (a) holds.

3. Perturbation results. We split this section in three parts. The first sub-

section provides an explicit representation of BD, under condition (Bs,1), and upper

bounds for the relative errors ‖BD − AD‖/‖AD‖ and ‖Bπ − Aπ‖. The second sub-

section establishes the analogous results for perturbations satisfying condition (Bs,2).

Finally, the third subsection gives numerical examples.

3.1. Condition (Bs,1). Throughout this subsection, we assume that B satisfies

condition (Bs,1), and so, the powers of B, Bk = Ck
B for k ≥ s, have the expression

(2.8), and by (2.3),

BD = C#
B = P

(
C−1(I − TS) C−1T

SC−1(I − TS) SC−1T

)
P−1. (3.1)

Set Ej,k = Bk −Aj . The next theorem expresses a link between the oblique projector

PR(Bs),N (Ar), as in Theorem 2.3, and the perturbations I + Ej,k(AD)j .

Theorem 3.1. Let A,B ∈ C
n×n be such that ind(A) = r, ind(B) = s and B

satisfies condition (Bs,1). Let us denote Fj,k = I + Ej,k(AD)j. If R(I − Fj,kF−

j,k) ⊆

R(Bk) then, for arbitrary j ≥ 1 and k ≥ s,

Σ = −Aπ(I + Ej,k(AD)j)−AAD = AπPR(Bs),N (Ar). (3.2)

Proof. Using (2.8) we get

Fj,k = P

(
Ck(I − TS)A−j

1 0

SCk(I − TS)A−j
1 I

)
P−1.
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A {1}-inverse of the above matrix is given by Xj,k = P

(
Aj

1(I − TS)−C−k 0

−S I

)
P−1.

We have

Fj,kXj,k = P

(
∆k 0

S(∆k − I) I

)
P−1, Xj,kFj,k = P

(
Ψj 0

0 I

)
P−1,

where ∆k = Ck(I −TS)(I −TS)−C−k and Ψj = Aj
1(I −TS)−(I −TS)A−j

1 . The set

of all {1}-inverses of Fj,k is Fj,k{1} = {Xj,k + H − Xj,kFj,kHFj,kXj,k : H ∈ C
n×n}.

We write H = P

(
H11 H12

H21 H22

)
P−1. Then for F−

j,k ∈ Fj,k{1} we have

F−

j,k = P

(
Aj

1(I − TS)−C−k + Ωj,k (I − Ψj)H12

−S + (H21 + H22S)(I − ∆k) I

)
P−1,

where Ωj,k = H11 + Ψj(H12S(I − ∆k) − H11∆k). Further,

I − Fj,kF−

j,k = P

(
Φj,k 0

SΦj,k − (H21 + H22S)(I − ∆k) 0

)
P−1,

where Φj,k =
(
I − Ck(I − TS)A−j

1 (H11 + H12S)
)

(I − ∆k). Using (3.1) we obtain

BBD(I − Fj,kF−

j,k) = P

(
Φj,k − T (H21 + H22S)(I − ∆k) 0

S(Φj,k − T (H21 + H22S)(I − ∆k)) 0

)
P−1.

Hence, BBD(I − Fj,kF−

j,k) = I − Fj,kF−

j,k iff (H21 + H22S)(I − ∆k) = 0. Therefore,

for all F−

j,k such that R(I −Fj,kF−

j,k) ⊆ R(Bk), we get (2.10) and, consequently, (3.2)

holds.

Remark 3.2. If B satisfies both condition (Bs,1) and (Bs,2), then I +Ej,k(AD)j

is invertible. In this case

Σ = −Aπ(I + Ej,k(AD)j)−1AAD.

Theorem 3.3. Let A,B ∈ C
n×n be such that ind(A) = r and ind(B) = s. If B

satisfies condition (Bs,1), then, for arbitrary j ≥ 1 and k ≥ s,

BD = (I + Σ)(I + Γj+1,k+1)
−1AD(I + Γj,k)(I − Σ),

Bπ = (I + Σ)(I + Γj,k)−1Aπ(I + Γj,k)(I − Σ),
(3.3)

where Σ is as in Theorem 3.1 and

Γj,k = (AD)jEj,k(I + Σ). (3.4)
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Proof. Using expressions (2.8) and (3.2) we get

I + Γj,k = P

(
A−j

1 Ck A−j
1 CkT

0 I

)
P−1, j ≥ 1, k ≥ s.

Hence,

(I + Γj+1,k+1)
−1 = P

(
A

−(j+1)
1 Ck+1 A

−(j+1)
1 Ck+1T

0 I

)−1

P−1

= P

(
C−(k+1)A

(j+1)
1 −T

0 I

)
P−1.

Further,

(I + Γj+1,k+1)
−1AD(I + Γj,k) = P

(
C−1 C−1T

0 0

)
P−1

and, with the notation ∆ = (I + Σ)(I + Γj+1,k+1)
−1AD(I + Γj,k)(I − Σ),

∆ = P

(
I 0

S I

)(
C−1 C−1T

0 0

)(
I 0

−S I

)
P−1

= P

(
C−1(I − TS) C−1T

SC−1(I − TS) SC−1T

)
P−1.

Hence, in view of (3.1) we conclude BD = C#
B = ∆. In the same manner we can see

that Bπ has the expression given in (3.3).

Remark 3.4. A perturbation formula for Xj,k ∈ Lj,k{1, 2} with prescribed

projectors AAD and BBD, as in Theorem 2.3, is

Xj,k = BkL−

j,k(AD)j(I + Γj,k)−1AAD = (I + Σ)(I + Γj,k)−1AAD,

where Σ and Γj,k as in Theorem 3.3.

In the remainder of this section we consider that || · || is any norm on C
n×n. The

following theorems provide upper bounds for the perturbation of the Drazin inverse

and the perturbation of the projector.

Theorem 3.5. Let A,B ∈ C
n×n be such that ind(A) = r, ind(B) = s and B

satisfies condition (Bs,1). Set Ωj,k = (AD)j+1(Bk − Bk+1(I + Σ)AD) and let Σ and

Γj,k be defined as in Theorem 3.3. Then, for arbitrary j ≥ 1 and k ≥ s,

||BD − AD||

||AD||
≤

||ΣAD||

||AD||
+

||I + Σ||||(I + Γj+1,k+1)
−1||||Ωj,k||

||AD||
. (3.5)
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Furthermore, if ||Γj+1,k+1|| < 1 then

||BD − AD||

||AD||
≤

||ΣAD||

||AD||
+

||I + Σ||||Ωj,k||

(1 − ||Γj+1,k+1||)||AD||
. (3.6)

Proof. By Theorem 3.3, first relation in (3.3), it follows that

BD − (I + Σ)AD(I − Σ) = (I + Σ)(I + Γj+1,k+1)
−1(AD(I + Γj,k)

− (I + Γj+1,k+1)A
D)(I − Σ)

= (I + Σ)(I + Γj+1,k+1)
−1Ωj,k.

Now, on account that (I + Σ)AD(I − Σ) = AD + ΣAD, we have

BD − AD = ΣAD + (I + Σ)(I + Γj+1,k+1)
−1Ωj,k.

Hence, taking norms we get (3.5).

If ||Γj+1,k+1|| < 1 and, in consequence, ||(I+Γj+1,k+1))
−1|| ≤ 1/(1−||Γj+1,k+1||),

then the upper bound (3.6) follows.

Theorem 3.6. Let A,B ∈ C
n×n be such that ind(A) = r, ind(B) = s and B

satisfies condition (Bs,1). Let Σ and Γj,k be defined as in Theorem 3.3. Then, for

arbitrary j ≥ 1 and k ≥ s,

||Bπ − Aπ|| ≤ ‖Σ‖ + (1 + ‖Σ‖)2‖(AD)jEj,kAπ‖‖(I + Γj,k)−1‖. (3.7)

Moreover, if ‖Γj,k‖ < 1, then

||Bπ − Aπ|| ≤ ‖Σ‖ +
(1 + ‖Σ‖)2‖(AD)jEj,kAπ‖

1 − ‖Γj,k‖
. (3.8)

Proof. By Theorem 3.3, second relation in (3.3), it follows that

Bπ − (I + Σ)Aπ(I − Σ) = (I + Σ)(I + Γj,k)−1(AπΓj,k − Γj,kAπ)(I − Σ)

= −(I + Σ)(I + Γj,k)−1(AD)jEj,kAπ(I − Σ).

Now, on account of (I + Σ)Aπ(I − Σ) = Aπ − Σ, we have

Bπ − Aπ = −Σ − (I + Σ)(I + Γj,k)−1(AD)jEj,kAπ(I − Σ).

Taking norms, (3.7) follows. The upper bound (3.8) is clear.
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3.2. Condition (Bs,2). In this subsection, we consider that B satisfies condition

(Bs,2) and, thus, the powers of Bk = Ĉk
B have the expression (2.12), which can be used

to state the reciprocal results of the previous subsection. Their proofs are omitted

but they can be derived easily taking conjugate transpose and applying property (b)

in Lemma 1.1.

Corollary 3.7. Let A,B ∈ C
n×n be such that ind(A) = r, ind(B) = s and

B satisfies condition (Bs,2). Let us denote F̂j,k = I + (AD)jEj,k. If N (Bk) ⊆

N (I − F̂−

j,kF̂j,k) then, for arbitrary j ≥ 1 and k ≥ s,

Σ̂ = −AAD(I + (AD)jEj,k)−Aπ = PR(Ar),N (Bs)A
π. (3.9)

Corollary 3.8. Let A,B ∈ C
n×n be such that ind(A) = r, ind(B) = s and B

satisfies condition (Bs,2). Then, for arbitrary j ≥ 1 and k ≥ s,

BD = (I − Σ̂)(I + Γ̂j+1,k+1)
−1AD(I + Γ̂j,k)(I + Σ̂),

Bπ = (I − Σ̂)(I + Γ̂j,k)−1Aπ(I + Γ̂j,k)(I + Σ̂),

where Σ̂ is as in Corollary 3.7 and

Γ̂j,k = (I + Σ̂)Ej,k(AD)j . (3.10)

Corollary 3.9. Let A,B ∈ C
n×n be such that ind(A) = r, ind(B) = s and B

satisfies condition (Bs,2). Set Ω̂j,k = (Bk − AD(I + Σ̂)Bk+1)(AD)j+1 and let Σ̂ and

Γ̂j,k be defined as in (3.9) and (3.10), respectively. Then, for arbitrary j ≥ 1 and

k ≥ s,

||BD − AD||

||AD||
≤

||ADΣ̂||

||AD||
+

||I + Σ̂||||(I + Γ̂j+1,k+1)
−1||||Ω̂j,k||

||AD||

and

||Bπ − Aπ|| ≤ ‖Σ̂‖ + (1 + ‖Σ̂‖)2‖AπEj,k(AD)j‖‖(I + Γ̂j,k)−1‖.

Further, if ||Γ̂j+1,k+1|| < 1 then

||BD − AD||

||AD||
≤

||ADΣ̂||

||AD||
+

||I + Σ̂||||Ω̂j,k||

(1 − ||Γ̂j+1,k+1||)||AD||
.

Moreover, if ||Γ̂j,k|| < 1 then

||Bπ − Aπ|| ≤ ‖Σ̂‖ +
(1 + ‖Σ̂‖)2‖AπEj,k(AD)j‖

1 − ‖Γ̂j,k‖
.
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3.3. Numerical examples. The first and second examples do not satisfy re-

strictions stated in recent papers where the perturbation was studied [4, 6, 11, 14, 16].

The upper bounds in these examples extend the perturbation analysis to a wide class

of matrices. The third example satisfies conditions in this paper and conditions in

[16], for some cases, and we will make a comparison of the upper bounds associated.

Example 3.10. Let A ∈ R
4×4 be the diagonal matrix defined by

A = diag (10−4, 1, 1, 0), for which A# = diag (104, 1, 1, 0), and let

B =




0 0 0 10−5

0 1 0 0

0 0 1 0

0 0 0 10−5


 , B# =




0 0 0 105

0 1 0 0

0 0 1 0

0 0 0 105


 .

We have ind(A) = ind(B) = 1, rankA = rankB = rankAB = 3 and rankBA =

2. The upper bounds given in [16] are not valid for this case. The block matrices in

the representation of B = CB , given in (2.5), are S =
[

1 0 0
]
, T =

[
1 0 0

]t

and C = diag (10−5, 1, 1).

Let E = B−A. We note that ||E||1 = 10−4, but since I +EA# and I +A#E are

singular matrices we can’t apply the upper bounds given in [4, 14]. Since ‖Γ2,2‖i < 1,

i = 1, 2, where Γj,k is defined as in (3.4), we can apply upper bound in Theorem 3.5

and we obtain the results that appear in Table 3.1.

We recall that Relative error = (upper bound - exact value)/exact value.

Table 3.1

Upper bound for the perturbation of the group inverse in Example 3.10

Exact value Upper bound (3.6 ) Relative error

||B# − A#||1/||A
#||1 20 21 5%

||B# − A#||2/||A#||2 14.1598 17.3436 22%

Example 3.11. Let ǫ ≥ 0 and

A =




1 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0




, Bǫ =




1 0 0 0 0

0 0 1 1 1

0 0 ǫ/2 0 ǫ/2

0 0 0 0 0

0 0 ǫ/2 0 ǫ/2




.

We have ind(A) = 3, ind(Bǫ) = 2, rankA3 = rankB2
ǫ = rankA3B2

ǫ = 2 and

rankB2
ǫ A3 = 1. We will apply upper bounds (3.6) and (3.8) with j = 1 and k = 2.
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In this case, ‖Γ2,3‖1 < 1 and ‖Γ1,2‖1 < 1, where Γj,k is defined as in (3.4). Table

3.2 shows the upper bound for the perturbation of the Drazin inverse, and Table 3.3

shows the upper bound for the perturbation of the projector.

Table 3.2

Upper bound of ||BD
ǫ − AD||1/||AD||1 in Example 3.11

ǫ Exact value Upper bound (3.6) Relative error

0.5 6 6.5 8%

0.1 110 110.1 0.09%

Table 3.3

Upper bound of ||Bπ
ǫ − Aπ ||1 in Example 3.11

ǫ Exact value Upper bound (3.8) Relative error

0.1 11 12.2 11%

0.01 101 102.02 1%

Example 3.12. Let α = 0.1, ǫ ≥ 0 and

Bǫ =




1 0 0

0 1 − 3ǫ + 2ǫ2 αǫ1/2

0 ǫ1/2(1 − 3ǫ + 2ǫ2) αǫ


 ,

B#
ǫ =




1 0 0

0 (1 − 3ǫ + 2ǫ2)/d αǫ1/2/d

0 ǫ1/2(1 − 3ǫ + 2ǫ2)/d αǫ/d


 ,

where d =
(
1 − (3 − α)ǫ + 2ǫ2

)2
. Let us consider A = B0. We have ind(A) =

ind(Bǫ) = 1. Since rankA = rankBǫ = rankABǫ = 2 for all ǫ, then Bǫ satisfies

condition (Bs,1). Moreover, for all ǫ 6= 1, 1
2 we also have rankBǫA = 2, and, thus,

in these cases Bǫ satisfies condition (Cs). In Table 3.4 we compare the upper bound

in Theorem 3.5 with the upper bound for matrices satisfying condition (Cs) given in

[16, Theorem 4.1], taking j = k = 1 in both bounds. In Table 3.5, we analyze the

behavior of the upper bound (3.6), taking j = k = 1, for the values ǫ = 1 and ǫ = 1
2 .

We abbreviate Relative error to RE.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 22, pp. 539-556, May 2011



ELA

An Extension of the Perturbation Analysis for the Drazin Inverse 555

Table 3.4

Upper bound of ||B#
ǫ − A#||1/||A#||1 in case (Cs) in Example 3.12

ǫ Exact value Bound (3.6) RE [16, Bound (4.4)] RE

0.25 2.5156 2.5156 0% 4.5803 82%

0.1 0.7783 0.7783 0% 1.0787 39%

10−3 3.4517 × 10−2 3.4904 × 10−2 1% 3.6012 × 10−2 4%

10−7 3.1651 × 10−4 3.4786 × 10−4 9, 90% 3.4797 × 10−4 9.94%

Table 3.5

Upper bound of ||B#
ǫ − A#||1/||A#||1 in Example 3.12

ǫ Exact value Bound (3.6) RE

1 20 21 5%

1/2 48.2842 48.9914 1%
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