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ALMOST DISJOINT FAMILIES:
AN APPLICATION TO LINEAR ALGEBRA*
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Abstract. Suppose that k is an infinite cardinal, V' is a k-dimensional vector space over a field
F, and A is a family of subspaces of V' which is maximal with respect to the property: whenever U
and W are distinct members of A, then U N W has dimension less than x. What is the cardinality
of A? This expository paper explains how questions about the possible cardinality of A for vector
spaces of infinite dimension over countable fields are independent of the axioms of ordinary set theory
(ZFC).
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1. Introduction. The questions studied in this expository paper have the fol-
lowing form. Suppose that & is an infinite cardinal, V' is a k-dimensional vector space
over a field F, and A is a family of k-dimensional subspaces of V' which is maximal
with respect to the property:

(AD) whenever U and W are distinct members of A, then U NW has dimen-
sion less than k.

What is the cardinality of A? For example, is the cardinality of A always 2%7
Simple applications of combinatorial set theory give comprehensive answers to this
problem. New phenomena appear in the case of uncountably infinite-dimensional
vector spaces. It emerges that these natural linear algebraic questions cannot be
settled using the axioms of ordinary set theory (which for the sake of definiteness we
specify as Zermelo-Fraenkel set theory with the axiom of choice (ZFC)).

Let us say that a family A of k-dimensional subspaces of V' which has the property
(AD) is an almost disjoint packing. The family A is a mazimal almost disjoint packing
if whenever B is an almost disjoint packing containing A, then B = A. This is
equivalent to saying that whenever M is a k-dimensional subspace of V, then for
some U in A, U N M has dimension k. In geometric terms, a maximal almost disjoint
packing of subspaces is a densest possible packing of big subspaces into V' in which one
allows a relatively small amount of interpenetration (or squashing) between distinct
pairs of subspaces.

Recall that the Hebrew letters 8o, N; and N, stand for the first, second and third
infinite cardinals respectively, while N, is the N;-th infinite cardinal.

The main results of the paper are:

THEOREM 1.1. Suppose that V' is a vector space of countably infinite dimension
over a countable field F. Then,

1. The vector space V has a mazimal almost disjoint packing of cardinality 2%°.
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2. The Continuum Hypothesis CH (2% = Ny) or Martin’s Aziom MA [15] imply
that every mazimal almost disjoint packing of subspaces of V' has cardinality
%o,

3. There is a model of ZFC + 280 = Ry in which every mazimal almost disjoint
packing of subspaces of V has cardinality 2%°.

4. There is a model of ZFC + 280 = N, in which every vector space of count-
ably infinite dimension over a countable field has a mazimal almost disjoint
packing of size V1.

In particular, ordinary set theory (ZFC), and even ZFC + 2% > X;, cannot
resolve whether every almost disjoint packing of size N; of subspaces of a countably
infinite-dimensional vector space fails to be maximal.

THEOREM 1.2. Suppose that V is a vector space of dimension Ny over a countable
field F. Then,

1. The Generalised Continuum Hypothesis GCH implies that every mazimal al-
most disjoint packing of subspaces of V has cardinality 2% .

2. Assume that 2%° < 251 qnd 2% < N,,,. ThenV has a mazimal almost disjoint
packing of 2% subspaces.

3. There is a model of ZFC in which 2%t = V3 (or as large as desired), and
every mazimal almost disjoint packing of subspaces of V' has size Ry.

There is a striking difference between Theorem 1.1 and Theorem 1.2. Theorem
1.1.1 says that if dim V' is countably infinite, then there is always a maximal almost
disjoint packing of subspaces of V of size 24™ Y However, this can fail in the case
where V' has uncountable dimension over a countable field: Theorem 1.2.3 shows that
it is consistent with ordinary set theory for every maximal almost disjoint packing of
subspaces of V to have size Ny < 24imV

In the proofs of Theorems 1.1 and 1.2, the concepts of almost disjoint families
and cardinal functions, whose provenance lies outside algebra, in the domains of set
theory and set-theoretic topology, play a role. Since the 1970’s and Shelah’s resolution
of the Whitehead problem [18], cardinal functions allied with set-theoretic methods
have continued their advances into algebra, beyond infinite Abelian group theory,
reaching recently into Boolean algebra [5], [16], [17] and even into linear algebra [3],
[23], [26], [27]. To mention just one example from quadratic form theory, in [27],
Shelah and Spinas prove that the existence of Gross spaces over finite or countable
fields is independent of the axioms of ZFC. A Gross space is a vector space V over a
field F equipped with a symmetric bilinear form ® from V x V into F, and possessing
the property that for every subspace U of V' of infinite dimension, dim U+ < dimV,
where U~ is the orthogonal complement of U in V. The Shelah-Spinas theorems
say that the existence of Gross spaces can be neither refuted nor proven using the
intuitive principles of everyday mathematics. Another of their results shows that the
dimension of a Gross space over F is bounded by the cardinal |F|¥, and so by pcf
theory, if 2% < R, then every Gross space over a field F of cardinality at most ®,, has
dimension less than X,,. The propositions of the present article are very elementary
in comparison with these achievements. I hope they illustrate some straightforward
applications of contemporary set theory in linear algebra.
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The paper contains four sections and an introduction. In section 2, the main
definitions, including in particular the concept of almost disjointness with respect to a
cardinal function (or family of cardinal functions), are introduced and related to con-
cepts in the literature, and some background history is briefly given (mainly through
references). In sections 3 and 4, these ideas are applied to resolve the vector space
problems stated in the opening of this paper. There is an immediate transposition of
these solutions to infinite Abelian p-groups, and in the final section some extensions to
the torsion-free Abelian groups are noted. The algebraic and set-theoretic notations
used throughout the paper are standard and follow the references [1], [6], [7], [9], [12],
[14]. A recap of the main set-theoretic notation follows. Ordinals are denoted by the
initial letters of the Greek alphabet: a, 8, v, ..., , ...; every infinite cardinal is a
limit ordinal, and for these we use x, K, A, ,.... Designated ordinals are w (the first
infinite ordinal) and w; (the first uncountable ordinal). The cardinality of a set X is
|X|, and 2* is the cardinality of the power set of k. The continuum (the cardinality
of the power set of the natural numbers) is 2%¢. The set of u-element subsets of X is
denoted [A]#; the set of finite sequences of elements of X is written <*X or X <.

2. Almost disjointness with respect to a cardinal function. A cardinal
function is a map ® into the class Card of cardinal numbers such that if A and B
are isomorphic members of the domain dom(®), then ®(A4) = ®(B). In module and
infinite Abelian group theory, cardinal functions are often called (cardinal) invariants
[6]. It saves some unnecessary notation if one allows partially defined maps. Simple
examples of cardinal functions are the cardinality function, |A|, giving the cardinality
of a set A, the dimension dimg (V') a vector space V over a field F, and the various
ranks of infinite Abelian groups [7]. Cardinal functions also abound naturally in set-
theoretic topology and Boolean algebra, and have proved influential in shaping recent
expositions of these areas [5], [11], [13], [16], [17], [27].

The second main idea central to this paper is that of an almost disjoint family of
sets. A family A of subsets of a cardinal & is almost disjoint if for every a € A, |a| = &,
andif a # b € A, then |[aNb| < k. Suppose that £ < u < A < x are infinite cardinals.
We use the notation A(x, A, 4, k) to abbreviate the assertion that there exists a subset
P C [A]* of cardinality x such that [X #Y € P= | X NY| < &].

Almost disjoint families of sets were studied by Tarski and Sierpinski in the late
1920’s [25], [28], [29] and they established most of what one could prove using just the
resources of ordinary set theory (ZFC). Under the Generalised Continuum Hypothesis
(GCH), their work resolved many of the interesting questions about the sizes of almost
disjoint families. The post-Cohen era of set theory in the 1970’s witnessed renewed in-
terest in almost disjointness. Martin and Solovay’s discovery of Martin’s Axiom (MA)
[15] and the development of increasingly sophisticated iterated forcing techniques [24]
provided a principle and methods that could handle the set-theoretic independence
of assertions concerning the size and existence of maximal almost disjoint families of
subsets of the natural numbers w. Baumgartner [2] proved independence results for
almost disjoint families of subsets of the first uncountable cardinal wy and many other
regular uncountable cardinals. The main results relating to almost disjoint families
of sets can be summarised in the following theorems [2], [9], [10], [12].
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THEOREM 2.1.

1. Suppose X is a countably infinite set. There is an almost disjoint family A
of subsets of X of cardinality 2%°. So A(2%, Ry, Vo, o) holds.

2. Assume the Continuum Hypothesis CH (280 = X;) or Martin’s Aziom MA.
Suppose X is a countably infinite set. Every maximal almost disjoint family
of subsets of X has cardinality continuum 2%°.

3. There is a model of ZFC + 2% > Xy in which every countably infinite set X
has a mazimal almost disjoint family of size N;.

Part 1 of this theorem is of course very easy to prove: for each real number
r, let Q(r) be an infinite sequence of distinct rationals which converges to r; now
{Q(r) : r € R} is an almost disjoint family of subsets of the rationals which has
cardinality 2%0. The other parts are slightly more difficult.

THEOREM 2.2.

1. Assume 2<F = k. Then there is an almost disjoint family A of subsets of k

of size 2%.

If 2% < 281 gnd 280 < R, then A(2%,R;,N1,N) holds.

It is consistent with ZFC that 2 is large and ~A(R3, Ry, Ry, N;).

Suppose that N1 < XA < 281, It is consistent with ZFC + CH + 2%t > X, that
every almost disjoint family of X subsets of Ny fails to be maximal.

5. Suppose that 1 < A < 281, It is consistent with ZFC + CH + 2%t > R, that
there exists a mazimal almost disjoint family of A subsets of N;.

The following theorem of Shelah [22] will also make a fleeting appearance.

THEOREM 2.3. Suppose that X > &8¢ and k > Ng. Under pcf conditions, there
exists a family A of AT subsets of \, each of cardinality , such that the intersection
of any pair is finite.

Although not central to the results of this paper, it is worth mentioning some sim-
ple examples of applications of pcf theory to infinite Abelian group theory. Suppose
that A is an infinite Abelian group. One of the most important invariants associated
with A is the Ulm-Kaplansky sequence and the Ulm factors (4, : a < 7) of A where
7 is the Ulm length of A [7]. The following examples are immediate consequences
of the cardinal arithmetic bounds coming from pcf theory [20]-[22] and well-known
inequalities for |A| in terms of sizes of its Ulm factors.

THEOREM 2.4. Suppose that 2% < X,. Let A be a reduced Abelian group.

1. If |Ag| < X, then |[A] < N,,.

2. If A is a p-group, B is a basic subgroup of A and |B| <X,,, then |A| < X,,.

3. If there exists n < w, N1 < |4p| < Ry, and for allm < n, |[Ap| <R,,, and
w <7, then |A| <Xy,

4. If F is the Frattini subgroup of A and |A/F| <X, then |A| < N,.

5. If A has a subgroup B of cardinality at most R,,, and |A/B| is divisible, then
|A| < N,.

Sophisticated uses of pcf theory in Abelian group theory can be found in [4].

A natural strategy for proving results about almost disjoint families of vector
subspaces is to try to apply results about almost disjoint families of sets to the index
set of a fixed basis of the vector space. The most convenient way of putting this
plan into effect is to define a general concept of almost disjointness with respect to a
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cardinal function. Suppose that @ is a cardinal function and e is a symmetric binary
operation defined on dom(®). Let us write @ for the cardinal function pair (®,e).
If ®(A) = ®(B) and ¢(A e B) < ®(A), then A and B are ®-almost disjoint. A
collection A is ®-almost disjoint if every pair of members of A is. A subfamily B of
A is mazimal ®-almost disjoint in A if B is ®-almost disjoint and whenever C' is a
subfamily of A containing B, then B = C. Wherever no confusion is likely to arise,
® and A are omitted.

The first observation about almost disjoint families is a trivial application of
Zorn’s Lemma.

PROPOSITION 2.5. Suppose that ® = (D, e) is a cardinal function pair. Every ®-
almost disjoint non-empty subfamily B of A can be extended to a maximal ®-almost
disjoint family in A.

Proof. Apply Zorn’s Lemma to the collection of (@, e)-almost disjoint families
containing the family A, partially ordered by inclusion. O

Returning to concrete examples for a moment, if one considers the cardinality
function | | and the binary operation of intersection N defined on the power set of a
set X, then a (| |,N)-almost disjoint family is just an almost disjoint family of subsets
of X.

If one considers the class of vector spaces and takes ® = (dim( ), ﬂ), then one
obtains the linear algebraic analogues of almost disjoint sets, i.e. almost disjoint
vector spaces in the sense we first defined: a non-empty family A = {V; : i € I} of
subspaces of a vector space V over a field F' is an almost disjoint packing if (1) for every
i€, dimpV; = dimg V, and (2) for distinct ¢ and j € I, dimp(V;NV;) < dimp V.
This is not so interesting for finite-dimensional vector spaces, since every almost
disjoint non-empty packing has exactly one member. What is surprising however
is that the analogous infinite-dimensional problems cannot be solved using just the
resources of ordinary set theory, and that the answers are quite different according
to whether the dimension of the vector space V is countably infinite or uncountably
infinite.

The general question which will form the object of sections 3 and 4 is the fol-
lowing: for a given ® and family A, what are the cardinalities of maximal ®-almost
disjoint families B in A7 Theorems 2.1 and 2.2 answer these questions in the case of
almost disjoint families of sets. The goal is to prove similar results for other types of
(maximal) ®-almost disjoint families.

REMARK 2.6. Suppose that dimV = X > cf(A) > k > Ng. Then there is a
mazimal almost disjoint packing of subspaces of V of cardinality k.

[Why? Well, if {z, : @ < A} is a basis of V, let A = Uy« Ay be a disjoint
union of x subsets of A each of cardinality A, and put V, = (z¢ : £ € 4,). Obviously
{Va : @ < Kk} is almost disjoint. If U is any subspace of V' of dimension A, then for
some a < k, dim(U NV,) = A, since k < c¢f(A).] For a regular cardinal A, it is easy
to improve this result (Proposition 4.1).

COROLLARY 2.7. Every almost disjoint packing A of subspaces of a vector space
V over a field F' can be extended to a mazimal almost disjoint packing.

Suppose that A is a packing of subspaces of an infinite-dimensional vector space,
and for every W in A, dimW = dim V. We say that A is large invariant subspace
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pair free (lisp-free) if whenever ¢ is a linear homomorphism between distinct members
U and W of A, then Fix(p) = UN range(y) has dimension less than dim V. In other
words, no linear operator between distinct members of A has an invariant subspace
of “large” dimension.

Lisp-free families and almost disjoint packings are related in the following simple
way.

PROPOSITION 2.8. Suppose that U and W are subspaces of the vector space V of
dimension X over the field F'. The following are equivalent.

1. dm(UNW) < \;
2. whenever ¢ is a homomorphism from U to W, then dim(Fix ) < A, where
Fix ¢ = range(¢) N U.

Proof. The forward direction is trivial since Fix ¢ C UNW. If, on the other hand,
dim(U N W) = A, then there is a basis {z; : i < A} of U N W, and one can expand
this to a basis {z;,u; : i < A, j < a} of U. Now define ¢ from {z;,u; : i < A, j < a}
to W by ¢(z;) = zi, ¢(u;) =0, and extend to a homomorphism from U into W by
linearity. Since Fix ¢ D {z; : i < A}, dim(Fix ) > A. O

So by Proposition 2.8, a packing of infinite-dimensional vector spaces is (maximal)
lisp-free if and only if it is (maximal) almost disjoint.

3. Vector spaces of countably infinite dimension. We begin with a very
simple fact. Countable almost disjoint packings of subspaces of an infinite-dimensional
vector space are never maximal:

PROPOSITION 3.1. Suppose that V is a vector space of countably infinite dimen-
sion over a field F', and A = {V,, : n € w} is an almost disjoint packing. Then A is
not mazimal.

Proof. Let {z, : n € w} be a basis of V over F. Define {u,, : m € w} by
induction as follows. Let ug be any non-zero element of V. Given wug, ..., %, note
that dim (Vipy1 — (Vo ® Vi @ ... @ Vi) = w, since dim(Vp41) = w and A is almost
disjoint. So one can find U1 € Vg1 — (Vo @ V1 @ ... 8 Vi), Ums1 = D, ¢;x; where
x; & {zn : T, appears in the basis representation of ug,...,um}. Put U = {uy, :m €
w}. By construction, dimU = w, and dim(U NV,) < w. O

THEOREM 3.2. Suppose that dimV = w. Then there exists an almost disjoint
packing of subspaces of V of cardinality 2%°.

Proof. Let A be as in Theorem 2.1.1, and let {x,, : n € w} be a basis of V over F.
For a € A, let V, = span{z,, : n € a}. Easily the packing {V, : a € A} is as required,
since dim(V, NV3) =|aNb| < w. O

The following immediate corollary establishes Theorem 1.1.1.

COROLLARY 3.3. FEwvery countably infinite dimensional vector space has a maxi-
mal almost disjoint packing of subspaces of cardinality 2%°.

Proof. Apply Corollary 2.7 to the almost disjoint packing of Theorem 3.2. O

COROLLARY 3.4. The Continuum Hypothesis CH (2% = ;) implies that every
mazimal almost disjoint packing of subspaces of a countably infinite dimensional vector
space has power 2%0.

Proof. By Proposition 3.1. 00

Now let us consider what happens if the Continuum Hypothesis fails. In other
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words, let us consider the question (*) if 2% > X;, does every almost disjoint packing
of size N; of subspaces of a countably infinite-dimensional vector space fail to be
maximal? The next results show that the answer to this question is independent of
ZFC + - CH.

THEOREM 3.5. Assume Martin’s Aziom MA. If dimV = w, then every mazimal
almost disjoint packing of subspaces of V has cardinality 2%°.

Proof. The Solovay partial order (for proving Theorem 2.1.2), slightly modified,
works. Suppose that A = {U; : i € I} is almost disjoint and |I| = k < 2%¢. Let
{zn, : n € w} be a basis of V. Let P = (P,<) be the following partial order.
P = {(h,a) : h and a are finite subsets of I and w respectively}, and (h,a) < (k,b)
it hCk, aCh,and (*) (z, :n € (b—a)) N (®;cpU;) = {0}. Note that P is a c.c.c.
partial order, i.e., every antichain (family of pairwise incompatible elements) in P is
at most countable.

For i € I and n € w, the sets D; = {(h,a) : i € h} and E,, = {(k,b) : |b| > n} are
dense in P, so by MA there is a generic filter G intersecting all of them non-trivially.

Now W = (z, : n € U{a : (3h)((h,a) € G)}) is a subspace of V having dimension
w and almost disjoint from each U;. O

Theorem 3.5 completes the proof of Theorem 1.1.2, and Theorem 1.1.3 is the next
corollary.

COROLLARY 3.6. There is a model of ZFC + 280 > R, in which every mazimal
almost disjoint packing of subspaces of V has cardinality 2%°.

Proof. By Theorem 3.5, any model of ZFC + MA + (2% = ,) will work. O

Thus a positive answer to the question (*) is consistent with ordinary set theory.
However, using a forcing argument, it is possible to show that a negative answer is
also consistent, finishing the proof of Theorem 1.1.4.

THEOREM 3.7. There is a model of ZFC + 280 = N, in which every vector space
V' of countably infinite dimension over a countable field F' has a mazximal almost
disjoint packing of size Np.

Proof. We give just a sketch of the forcing argument. Start from a model M of
ZFC + CH, and, as in Theorem VII.2.3 in [12], force with the partial order for adding
Ny Cohen reals. In the generic extension M[G] there is a maximal almost disjoint
packing of size Ry, but 2% = R,. [I

These results complete the proof of Theorem 1.1. The main points to emerge are
the following. Suppose that V is a countably infinite-dimensional vector space over a
countable field F'. Then,

1. there is always a maximal almost disjoint packing of subspaces of V' of size 2%0;
2. Martin’s Axiom implies that every maximal almost disjoint packing has size 2%¢;
3. it is consistent that there is a maximal almost disjoint packing of subspaces of size
Ny < ALK

In particular, neither ordinary set theory (ZFC) nor ZFC + 2% =, is a strong
enough axiomatic system to determine the cardinality of a maximal almost disjoint
packing of subspaces of V.

4. Vector spaces of uncountably infinite dimension. It is not surprising
that, just as the Continuum Hypothesis determines completely the cardinality of
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maximal almost disjoint packings of subspaces of countably infinite dimensional vector
spaces, so instances of the Generalised Continuum Hypothesis (GCH: (Vk)(2% = k¥))
are equally powerful in resolving higher dimensional questions.

First it is useful to write down the appropriate version of Proposition 3.1.

PROPOSITION 4.1. Suppose that dimV = k where k is a regular cardinal. If A
is an almost disjoint packing of size k, then A is not maximal.

Proof. Like Proposition 3.1. Use the regularity of x to prolong the construction.
a

THEOREM 4.2. Assume GCH. Suppose that k is a reqular infinite cardinal. Every
k-dimensional vector space V' has an almost disjoint packing of 2% subspaces.

Proof. By Proposition 4.1, like Theorem 3.2. O

COROLLARY 4.3. GCH implies that every mazimal almost disjoint packing of
subspaces of a k-dimensional vector space V has cardinality 2%.

Proof. By Proposition 4.1. O

The reader interested only in the proof of Theorem 1.2 should now skip forward
to Theorem 4.10. Corollaries 4.8 and 4.9 are minor strengthenings of Corollary 4.3.

DEFINITION 4.4. Suppose that {z, : o < A} is a basis of V. A subset U of V is
stationary in {z4 : & < A} if the set S(U) = {a : o € U} is a stationary subset of
A

REMARK 4.5. Suppose that dimV = X > cf(A) > k > No, and {z4 : @ < A} is
a basis of V. Then there is a mazimal almost disjoint packing of k subspaces of V,
each of which is stationary in the basis.

Why? By Solovay’s theorem (see [12]), one can write A = Uy<x Ay as a disjoint
union of k stationary subsets of A; put V,, = (z¢ : £ € Ay). Obviously {V, : a < k}
is almost disjoint. If U is any subspace of V of dimension A, then for some a <
k, dim(UNV,) = A, since k < cf(N).

The next result appeals to a well-known combinatorial principle $, called dia-
mond on k; see for example any one of [9], [12], [14] for introductory explanations.
This principle asserts the existence of a sequence (S, : @ < k) such that:

(Va < k)(Se Ca) and (VX C k)({8 < k: X N B = Sp} is a stationary subset of k).

Diamond ¢ is just diamond on N;. The intuition behind diamond on ¥; is that
if one views the sets S, as guesses for the initial segments of an arbitrary subset X of
w1, then these guesses are right a large (stationary) number of times. Diamond on ¥
implies CH, since every subset of w must turn up as an S, for some (in fact stationarily
many) a < wi, so that the sequence (S, : @ < w1) contains a complete listing of all
the subsets of w, and hence 2% = R;. For convenience, recall the following result.

LEMMA 4.6. Assume .. Then there exists an almost disjoint family of 2*
stationary subsets of k.

Proof. For X C k,let Ax = {a: X Na=S5,}, where {S, : a < k} is a diamond
sequence. Now {Ax : X C k} works. O

THEOREM 4.7. Assume (. Then every k-dimensional vector space V with basis
B = {z, : a < k} has an almost disjoint packing V' of 2" subspaces such that every
member U of V is stationary in the basis B.

Proof. Just like Theorem 3.2 but using the family from Lemma 4.6. O
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COROLLARY 4.8. GCH implies that for every regular cardinal Kk > Ny, every
k-dimensional vector space V with basis B = {z, : @ < k} has an almost disjoint
packing V' of 2" subspaces such that every member U of V is stationary in the basis
B.

Proof. 1t is well-known that GCH implies  [8], [19]. O

COROLLARY 4.9. Assume . Then every Xi-dimensional vector space V with
basis B = {z, : @ < N1} has an almost disjoint packing V of 2%1 subspaces such that
every member U of V is stationary in the basis B.

Proof. Theorem 4.7 for k =¥;. 0

THEOREM 4.10. Assume that 2% < 2% gnd 2% < Ny, Then every Ni-
dimensional vector space V has an almost disjoint packing V of 2% subspaces.

Proof. Like 3.2, using Theorem 2.2.2 on almost disjoint families of subsets of N;
2], [20] . O

THEOREM 4.11. There is a model of ZFC in which 2% = N3 (or as large as
desired), and whenever V is an X;-dimensional vector space over a countable field F',
then every mazimal almost disjoint packing of subspaces of V has size Ns.

Proof By Theorem 2.2.3, there is a model M of ZFC + 2% = N3, and in
which every almost disjoint family of subsets of w; has cardinality at most N2. Since
|<“w;| = Ny, one may assume that every almost disjoint family of subsets of <“w;
has cardinality at most N,. We shall use the pigeonhole principle twice to obtain
a contradiction. Suppose that dimpV = 8; and V = {V,, : @ < w3} is an almost
disjoint packing of subspaces of V. Let {z4 : @ < w1} be a basis of V over F, and
for a < ws, let {vq,, : ¢ < w1} be a basis of V,, over F. Fix « for the moment. For
every i, there exist ¢a,.,; € F, n(a,t) < w, and £(¢,1) < £(1,2) < ... < &(t,na, 1))
such that vy, = E?LO{’L) Qori,j e, ;- Since |w x < F| < Ny, there exist n(a), ¢a,; and
I, such that |Io| = Ny, and for every ¢ € I, n(a,t) = n(a) and ¢q,,,j = Ga,; (for all
j <n(a)).

Let Ay = {{£(1,1),...,&(s,;n(a))} 1 ¢ € I, }. Note that A, is uncountable, since
for ¢ € I, the v,,, are distinct and uncountable.

Unfix . There exist n, ¢;, and ¥ C ws such that |Y| = X3 and for every
a €Y, n(a) =n and ¢, ; = g; (for all j <n). Now consider A = {4, :a €Y} Itis
easy to check that A is an almost disjoint family of subsets of cardinality N3, since if
v € I, N Ig, then v,, = vg, and hence if [A, N Ag| = Ny, then |I, NIg| = Ny, and so
dimg(V, NVg) = Ny - a contradiction. O

The difference from the case of the countably infinite dimensional vector spaces
is striking: by Theorem 4.11, it is consistent with ZFC that every maximal almost
disjoint packing of subspaces of an N;-dimensional vector space over a countable field
has size less than 2%1. By Corollary 3.3, the parallel result is false for No-dimensional
vector spaces. However, like Corollary 3.6 and Theorem 3.7, the question whether
every almost disjoint packing of A subspaces (for (R < A < 2%1)) fails to be maximal
is independent of ZFC + CH + 2% > R, (appeal to Theorem 2.2.4 and 2.2.5).

This completes the proof of Theorem 1.2.

5. Cardinal functions and rank-almost disjoint Abelian groups. Suppose
that A is an infinite Abelian group. The rank r(A) of A is the cardinality of a maximal
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independent subset containing only elements of infinite and prime power orders. The
torsion-free rank ro(A) is the cardinality of a maximal independent subset of elements
of infinite order; the p-rank r,(A) is the cardinality of a maximal independent subset
of elements whose orders are a power of the prime p. These ranks are all invariants
of the group A; see [7].

If A is a p-group, then its socle S(A), the set of elements of square-free order,
equals A[p] = {a € A : pa = 0}, and is a vector space over the finite field Fy of p
elements; moreover, r(4) = r(S(A)) = dimg, (S(A)). It follows that the results of
sections 3 and 4 apply directly to p-groups of infinite rank, where one considers the
family of subgroups of A, ®(G) is r(G), and G e H is (G N H)*, the pure closure
of GN H in A. In this case, a non-empty family G = {G; : ¢ € I} of subgroups
of A is rank-almost disjoint if for every i € I, r(G;) = r(A), and for distinct ¢ and
jelI, r(Gin GJ) < r(A).

THEOREM 5.1.

1. Suppose that A is an Abelian p-group of rank k = cf(k) > Rg, and G = {G, :
a € k} is rank-almost disjoint. Then G is not mazimal.

2. Every Abelian p-group of countably infinite rank has a mazimal rank-almost
disjoint family of subgroups of cardinality 2%°.

3. Assume Martin’s Aziom MA. If A is an Abelian p-group of countably infinite
rank, then every mazimal rank-almost disjoint family of subgroups of A has
cardinality 2%°.

4. There is a model of ZFC + 2% > XNy in which every mazimal rank-almost
disjoint family of subgroups of an Abelian p-group A of countably infinite rank
has cardinality 2%°.

5. There is a model of ZFC + 2% > X, in which every Abelian p-group A of
countably infinite rank has a mazimal rank-almost disjoint family of size N1.

THEOREM 5.2.

1. Assume GCH. Suppose that k is o regular infinite cardinal. FEvery Abelian
p-group A of rank k has a rank-almost disjoint family of 2% subgroups.

2. GCH implies that every mazimal rank-almost disjoint family of subgroups of
a Abelian p-group A of rank k has cardinality 2°.

THEOREM 5.3.

1. Assume that 2% < 28t and 2% < N, . Then every Abelian p-group A of
rank N1 has a rank-almost disjoint family of 2%t subgroups.

2. There is a model of ZFC in which 2% = X3 (or as large as prescribed), and
whenever A is an Abelian p-group of rank Ny, then every mazimal rank-almost
disjoint family of subgroups of A has size N,.

Indeed, a moment’s reflection reveals that the proofs in sections 3 and 4 use rela-
tively little information about vector spaces, and could be generalised to an abstract
dependency relation: the infinitary combinatorics dominates the linear algebra. In
the case of infinite torsion-free Abelian groups, one obtains results of the following
kind as routine elaborations.

Let A be a torsion-free infinite Abelian group and consider the family of subgroups
of A; take the cardinal function ®(G) = rko(QG), the torsion-free rank of G, and let
G e H={GNH)*, the pure closure of GN H in A. In this case, a non-empty family
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G = {G, : i € I} of subgroups of A is rank-almost disjoint if for every i € I, rko(G;) =
rko(A), and for distinct ¢ and j € I, rko(Gi N G;) < rko(A).
THEOREM 5.4.

1. Suppose that A is a torsion-free Abelian group of rank k = cf(k) > Vo, and
G ={G, : a € K} is rank-almost disjoint. Then G is not mazimal.

2. Every torsion-free Abelian group of countably infinite rank has a mazimal
rank-almost disjoint family of pure subgroups of cardinality 2%°.

3. Assume Martin’s Axiom MA. If A is a torsion-free Abelian group of countably
infinite rank, then every mazximal rank-almost disjoint family of subgroups of
A has cardinality 2%0.

4. There is a model of ZFC +2%° > N, in which every mazimal rank-almost
disjoint family of subgroups of a torsion-free Abelian group A of countably
infinite rank has cardinality 2%°.

5. There is a model of ZFC +2%° > Ny in which every torsion-free Abelian group
A of countably infinite rank has a mazimal rank-almost disjoint family of pure
subgroups of size N1.

THEOREM 5.5.

1. Assume GCH. Suppose that k is a regular infinite cardinal. FEvery torsion-
free Abelian group A of rank k has a rank-almost disjoint family of 2% pure
subgroups.

2. GCH implies that every mazimal rank-almost disjoint family of subgroups of
a torsion-free Abelian group A of rank k has cardinality 2.

THEOREM 5.6.

1. Assume that 2%° < 2%t and 280 < X, . Then every torsion-free Abelian group
A of rank Ny has a rank-almost disjoint family of 2% pure subgroups.

2. There is a model of ZFC in which 2%t = X3 (or as large as prescribed), and
whenever A is a torsion-free Abelian group of rank Ny, then every mazimal
rank-almost disjoint family of subgroups of A has size N,.

Appealing to pcf theory [22] (see Theorem 2.3 above) characterising the exis-
tence of strongly almost disjoint families of sets, i.e., such that every pair has finite
intersection, one obtains some parallel facts, and, for N;-free groups, the pairwise
intersections are free by Pontryagin’s criterion [7]:

THEOREM 5.7. Suppose that A > k™° and k > Ng. Under pcf conditions, every
torsion-free (N1-free) Abelian group of rank A has a rank-almost disjoint family A of
At pure subgroups, each of cardinality k such that the intersection of any pair is of
finite rank (free).
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