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Abstract. In this paper, we study the Moore-Penrose inverse of a symmetric rank-one perturbed

matrix from which a finite method is proposed for the minimum-norm least-squares solution to the

system of linear equations Ax = b. This method is guaranteed to produce the required result.
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1. Introduction. Throughout this paper we shall use the standard notations

in [2, 14]. C
n and C

m×n stand for the n-dimensional complex vector space and the

set of m × n matrices over complex field C, respectively. For a matrix A ∈ C
m×n

we denote R(A), N(A), A∗, and A† the range, null space, conjugate transpose, and

Moore-Penrose generalized inverse of A, respectively. It is well known that A† = A−1

for any nonsingular matrix A.

Let A ∈ C
m×n and b ∈ C

m. We consider the solution to the following system of

linear equations

Ax = b.(1.1)

When A is nonsingular, the system of linear equations (1.1) has a unique solution

A−1b. In general, the system may not have a unique solution or there may be no

solution at all. We are interested in those x, called the “least-squares” solutions,

which minimize

‖b − Ax‖2.

Among all the least-squares solutions, there is a unique x∗ such that ‖x∗‖2 < ‖x‖2 for

any other least-squares solution x. The x∗ is called the minimum-norm least-squares

(MNLS) solution to (1.1). It is shown [2, Theorem 2.1.1] that A†b is the the MNLS

solution to (1.1).
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For a nonsingular matrix B, B + cd∗ is also nonsingular if 1 + d∗B−1c 6= 0 for

vectors c and d. Moreover, we have

(B + cd∗)−1 = B−1 −
B−1cd∗B−1

1 + d∗B−1c
.(1.2)

The identity in (1.2) is the well-known Sherman-Morrison formula for the inverse of

rank-one perturbed matrix and was later generalized to the case of rank-k perturba-

tion. The Moore-Penrose inverse of rank-one modified matrix B + cd∗ for a general

matrix B is also obtained in literature [2, Theorem 3.1.3]. More generalizations can

be found in [3], [12] and [13].

Based on Sherman-Morrison formula, a recursive iterative scheme for the solution

to the system of linear equations Ax = b with a nonsingular A was recently developed

by Maponi [10]. Unfortunately, his algorithm breaks down even for a very simple

problem (see Example 2 of Section 4) and a modification based on pivoting techniques

has to be introduced to avoid the failure. In this paper, following the same idea of

using rank-one updates employed by Maponi, we will develop a finite method which

is guaranteed to carry out all the steps until the required solution is reached.

Our approach is to construct a sequence of linear systems in such a way that

the coefficient matrix of any linear system in the sequence is just a symmetric rank-

one modification of that of its previous system. By employing the rank-one update

formula for generalized inverse, the MNLS solutions to all systems of linear equations

in the sequence can be successively computed. Like the algorithms in [9, 11], there

is no need to compute the generalized inverses of all the intermediate matrices in the

procedure.

The proposed algorithm is different from the classic Greville finite algorithm [6]

and its variant [15] in several aspects. One difference is that the algorithm in this

paper is not “streamlined” while the other two algorithms are. However, the major

difference, which makes our algorithm better than the algorithm in [15], lies in the

way of handling the intermediate matrix sequences durng the iteration. We observe

that the intermediate sequence Pl of [15] for the MNLS solution is indeed A†
l , where

Al is defined as in (2.4). Unlike the algorithm by Zhou et al. in which both Pi

and Qi of [15, Theorem 2.2] must be updated and matrix multiplication must be

performed at each iteration, the sequence {A†
l } in our notations is never computed

explicitly even though the Sherman-Morrison type of formula for {A†
l } is used in

the derivation. Thus, our algorithm utilizes less required memory locations and has a

lower computational complexity than the classic Greville algorithm and the algorithm

by Zhou et al. [15]. The strategy of symmetric rank-one updating is also adopted in

the online and real-time kernel recursive least-squares algorithm of [4].

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 22, pp. 480-489, May 2011



ELA

482 Xuzhou Chen and Jun Ji

The rest of the paper is organized as follows. The existing results on Moore-

Penrose inverse of symmetric rank-one perturbed matrix will be summarized in Sec-

tion 2. An effective finite method for computing the MNLS solution of a general

linear system will be proposed in Section 3. Some examples will also be included in

Section 4.

2. Symmetric rank-one update and its M-P inverse. Notice that the gen-

eral linear system (1.1) is equivalent to the normal equation

A∗Ax = A∗b(2.1)

so far as the MNLS solution is concerned.

Let ai ∈ C
n be the ith column of the matrix A∗. Thus, we have

A∗ = (a1|a2| · · · |am) .(2.2)

Therefore, we can rewrite the normal equation (2.1) as the following equivalent linear

system

(

m
∑

i=1

aia
∗
i

)

x = A∗b.(2.3)

Obviously, the problem of obtaining the MNLS solution of linear system (1.1) becomes

that of obtaining the Minimum-norm solution of linear system (2.3) whose coefficient

matrix is the sum of m rank-one matrices.

Define

b̂ = A∗b, A0 = 0, and Al =

l
∑

i=1

aia
∗
i for l = 1, . . . ,m.(2.4)

Our approach is to construct a finite sequence

xl = A†
l b̂, l = 0, 1, 2, . . . ,m,(2.5)

where xl is the MNLS solution of Alx = b̂ (l = 0, 1, 2, . . . ,m). However, we will not

construct the sequence (2.5) by directly obtaining the MNLS solution for each linear

system from cold-start. Note that Al = Al−1 + ala
∗
l is the rank-one modification of

Al−1, we would compute xl in terms of xl−1 starting from x0 = A†
0b̂. We hope that

the calculation of x0 should be an easy one. In fact, the first linear system A0x = b̂ of

the sequence has a trivial MNLS solution x0 = A†
0b̂ = 0. Consequently, the sequence

{xl}
m
l=0 can be constructed recursively and effectively. After m iterations, xm = A†

mb̂

will be finally reached. We note that the linear system (2.1) is the same as Amx = b̂.
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Therefore,

xm = A†
mb̂ =

(

m
∑

i=1

aia
∗
i

)†

A∗b = (A∗A)†A∗b = A†b,

which is the MNLS solution of (1.1).

Observe that Al = Al−1 + ala
∗
l . We have xl = A†

l b̂ = (Al−1 + ala
∗
l )

†
b̂. By

utilizing the existing results of Moore-Penrose inverse of rank-one modified matrix Al

and exploring its special structure, we will propose an effective method for computing

the MNLS solution of the linear system Alx = b̂ from that of Al−1x = b̂ in the next

section. To this end, we need to establish a relation between (Al−1 + ala
∗
l )

†
and A†

l−1.

For each l = 1, 2, . . . ,m, define

kl = A†
l−1al, hl = a∗

l A
†
l−1, ul = (I − Al−1A

†
l−1)al,

vl = a∗
l (I − A†

l−1Al−1), and βl = 1 + a∗
l A

†
l−1al.

Theorem 2.1. Let Al (l = 0, 1, 2, . . . ,m) be defined as in (2.4), A be partitioned

as in (2.2), and βl = 1 + a∗
l A

†
l−1al. Then βl ≥ 1 for each l.

Proof. Obviously, β1 = 1 + a∗
1A

†
0a1 = 1. We now only need to prove the result

for 2 ≤ l ≤ m. Observe that Al =
∑l

i=1 aia
∗
i is positive semidefinite for 1 ≤ l ≤ m.

Let r be the rank of Al−1. Then Al−1 is unitarily similar to a diagonal matrix, i.e.,

Al−1 = UDU∗,

where U is a unitary matrix and D = diag(σ1, σ2, . . . , σr, 0, . . . , 0) with σ1 ≥ σ2 ≥

· · · ≥ σr > 0. We can write A†
l−1 = UD†U∗ which is also positive semidefinite

due to the fact that D† = diag(1/σ1, 1/σ2, . . . , 1/σr, 0, . . . , 0). Hence, we have βl =

1 + a∗
l A

†
l−1al ≥ 1.

The general result for the Moore-Penrose inverse of a rank-one modified matrix

can be found in [2, Theorem 3.1.3]. For general A ∈ C
m×n, c ∈ C

m, d ∈ C
n,

the Moore-Penrose inverse of A + cd∗ can be expressed in terms of A†, c, and d

with six distinguished cases. Due to the six distinct conditions and expressions,

it is extremely difficult, if not impossible to apply the result for a general matrix

directly to construct a recursive scheme for solving the MNLS solution of a linear

system. However, when applied to our specially structured sequence (2.5), in view

of Theorem 2.1, βl is real and nonzero which eliminates three cases. Due to the fact

that
(

A†
l−1

)∗

=
(

A∗
l−1

)†
= A†

l−1, we also have hl = k∗
l and vl = u∗

l from which two of
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three other cases can be combined into one. Thus, the six cases of [2, Theorem 3.1.3]

are reduced to only two cases.

Theorem 2.2. Let Al = Al−1 + ala
∗
l be defined as in (2.4).

1. If ul 6= 0, then

(Al−1 + ala
∗
l )(Al−1 + ala

∗
l )

† = (Al−1 + ala
∗
l )

†(Al−1 + ala
∗
l )

= Al−1A
†
l−1 + ulu

†
l(2.6)

and

(Al−1 + ala
∗
l )

† = A†
l−1 − klu

†
l − u∗†

l k∗
l + βlu

∗†
l u†

l .

2. If ul = 0, then

(Al−1 + ala
∗
l )(Al−1 + alal

∗)† = (Al−1 + ala
∗
l )

†(Al−1 + ala
∗
l )

= Al−1A
†
l−1 = A†

l−1Al−1(2.7)

and

(Al−1 + ala
∗
l )

† = A†
l−1 −

1

βl

klk
∗
l .

Proof. The result follows directly from [2, Theorem 3.1.3] and its proof. Details

are omitted.

3. The finite method for the MNLS solution. Though the rank-one modi-

fied formulas stated in Theorem 2.2 involve the Moore-Penrose inverses of matrices,

our method to be proposed will generate a sequence of vectors x1, x2, . . . , xm recur-

sively without explicitly computing the Moore-Penrose generalized inverses of all the

intermediate matrices Al (l = 1, . . . ,m). To establish the iterative scheme from xl−1

to xl, we first need to define two auxiliary sequences of vectors ys,t = A†
sat and

ỹs,t = Asys,t = AsA
†
sat. It is easily seen from

A†
sAs =

(

A†
sAs

)∗
= A∗

s

(

A†
s

)∗
= As (A∗

s)
†

= AsA
†
s

that ys,t and ỹs,t are the MNLS solutions of the following two auxiliary linear systems

respectively

Asy = at, Asỹ = Asat.

In what follows, we will frequently employ the fact that a† = a∗/||a||2 for any non-zero

column vector a. We will distinguish two cases in our analysis in view of Theorem 2.2.

Case 1 (ul 6= 0). It is easily seen from Theorem 2.2 that

xl = (Al−1 + ala
∗
l )

†b̂ = xl−1 − klul
†b̂ − ul

∗†k∗
l b̂ + βlul

∗†ul
†b̂.(3.1)
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Note that

klul
†b̂ = A†

l−1al[(I − Al−1A
†
l−1)al]

†b̂

=
A

†

l−1
al(a

∗
l −ỹ∗

l−1,l)b̂

a∗
l (al−Al−1A

†

l−1
al)

=
yl−1,l(a

∗
l b̂−ỹ∗

l−1,lb̂)

a∗
l
(al−ỹl−1,l)

.

(3.2)

Similarly, we have

ul
∗†k∗

l b̂ =
a∗

l xl−1 (al − ỹl−1,l)

a∗
l (al − ỹl−1,l)

,

and

βlul
∗†ul

†b̂ = (1 + a∗
l A

†
l−1al)

(al−ỹl−1,l)(a
∗
l −ỹ∗

l−1,l)b̂

[a∗
l
(al−ỹl−1,l)]

2

=
(1+a∗

l yl−1,l)(a
∗
l −ỹ∗

l−1,l)b̂

[a∗
l
(al−ỹl−1,l)]

2 (al − ỹl−1,l) .

(3.3)

Combining (3.1) through (3.3), we have

xl = xl−1 −
yl−1,l(a

∗
l b̂−ỹ∗

l−1,lb̂)

a∗
l
(al−ỹl−1,l)

−
a∗

l xl−1(al−ỹl−1,l)
a∗

l
(al−ỹl−1,l)

+
(1+a∗

l yl−1,l)(al−ỹl−1,l)
∗b̂

[a∗
l
(al−ỹl−1,l)]

2 (al − ỹl−1,l) .
(3.4)

Following the same lines as in (3.2)–(3.3), we can write

klul
†at =

yl−1,la
∗
l (at − ỹl−1,t)

a∗
l (al − ỹl−1,l)

,

ul
∗†k∗

l at =
(al − ỹl−1,l)a

∗
l yl−1,t

a∗
l (al − ỹl−1,l)

,

βlul
∗†ul

†at =
(1 + a∗

l yl−1,l)

[a∗
l (al − ỹl−1,l)]

2 (al − ỹl−1,l)a
∗
l (at − ỹl−1,t).

It is seen from Theorem 2.2 that

yl,t = A†
l at = (Al−1 + ala

∗
l )

†at = (A†
l−1 − klul

† − ul
∗†k∗

l + βlul
∗†ul

†)at.

Thus, we have an iterative scheme for yl,t:

yl,t = yl−1,t −
yl−1,la

∗
l (at−ỹl−1,t)

a∗
l
(al−ỹl−1,l)

−
(al−ỹl−1,l)a

∗
l yl−1,t

a∗
l
(al−ỹl−1,l)

+
(1+a∗

l yl−1,l)

[a∗
l
(al−ỹl−1,l)]

2 (al − ỹl−1,l)a
∗
l (at − ỹl−1,t).

(3.5)
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For the auxiliary sequence ỹl,t = Alyl,t, we could multiply Al on both sides of

(3.5) and then simplify the resulted expression. However, in our derivation we employ

(2.6) instead:

ỹl,t = AlA
†
l at =

(

Al−1A
†
l−1 + ulu

†
l

)

at

= ỹl−1,t + ulu
†
l at

= ỹl−1,t +
(I−Al−1A

†

l−1
)ala

∗
l (I−Al−1A

†

l−1
)at

a∗
l (I−Al−1A

†

l−1
)al

.

Therefore, we have

ỹl,t = ỹl−1,t +
(al − ỹl−1,l) a∗

l (at − ỹl−1,t)

a∗
l (al − ỹl−1,l)

.(3.6)

Case 2 (ul = 0). Observe that

βl = 1 + a∗
l A

†
l−1al = 1 + a∗

l yl−1,l(3.7)

and

klk
∗
l b̂ = yl−1,la

∗
l xl−1.(3.8)

It is seen from Theorem 2.2 that

xl = (Al−1 + ala
∗
l )

†b̂ =

(

A†
l−1 −

1

βl

klk
∗
l

)

b̂ = xl−1 −
1

βl

klk
∗
l b̂,

which, together with (3.7) and (3.8), implies

xl = xl−1 −
1

1 + a∗
l yl−1,l

yl−1,la
∗
l xl−1.(3.9)

By following the same token, we can develop an iterative scheme for yl,t:

yl,t = yl−1,t −
1

1 + a∗
l yl−1,l

yl−1,la
∗
l yl−1,t.(3.10)

For ỹl,t, in view of (2.7), we have

ỹl,t = ỹl−1,t.(3.11)

Finally, since A0 = 0, we have x0 = 0, y0,t = 0, and ỹ0,t = 0 (t = 1, 2, . . . ,m) from

which we can compute the MNLS solution xm by applying (3.4) or (3.9) repeatedly

with the help of auxiliary sequences yl,t and ỹl,t (t = l + 1, l + 2, . . . ,m and l < m).

We summarize this procedure as follows.
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Procedure for the MNLS solution of Ax = b.

Step 0 Input: b and A. Let ai be the ith column of A∗;

Step 1 Initialization: compute b̂ = A∗b. Set x0 = 0, y0,t = 0 and ỹ0,t = 0 for all

t = 1, . . . ,m;

Step 2 For l = 1, 2, . . . ,m,

(a) if al − ỹl−1,l 6= 0, then

compute xl using (3.4); compute yl,t and ỹl,t using (3.5) and (3.6) re-

spectively for all t = l + 1, l + 2, . . . ,m and l < m;

(b) if al − ỹl−1,l = 0, then

compute xl using (3.9); compute yl,t and ỹl,t using (3.10) and (3.11)

respectively for all t = l + 1, l + 2, . . . ,m and l < m;

Step 3 Output: the minimum-norm least squares solution xm.

Let us analyze two cases in our method further. If ul = 0 for some l, then we

have

al = Al−1A
†
l−1al =

(

l−1
∑

i=1

aia
∗
i

)

A†
l−1al =

l−1
∑

i=1

(a∗
i A

†
l−1al)ai.

This means that if ul = 0 for some l, al is a linear combination of {ai : i = 1, 2, . . . , l−

1}. Now, we end up this section with the following interesting result which shows that

the opposite is also true.

Theorem 3.1. Let ui and ai (i = 1, 2, . . . ,m) be defined as before. Then, ul = 0

if and only if al is a linear combination of {a1, a2, . . . , al−1}.

Proof. The definition of ul = (I −Al−1A
†
l−1)al indicates that ul = 0 is equivalent

to al ∈ N(I − Al−1A
†
l−1). Let Âl−1 = [a1|a2| · · · |al−1]. Obviously, we have Al−1 =

Âl−1Â
∗
l−1. It is easily seen that

R(Âl−1) = R(Âl−1Â
∗
l−1) = R(Al−1) = R(Al−1A

†
l−1) = N(I − Al−1A

†
l−1).

Therefore, ul = 0 is equivalent to al ∈ R(Âl−1), i.e., al is a linear combination of

{a1, a2, . . . , al−1}.

As a consequence of Theorem 3.1, if A has full row rank, then A∗ has full column

rank which implies that {a1, a2, . . . , al} is linearly independent for all l. Thus ul 6= 0

for all l in this case.

Although the procedure for the MNLS solution does not impose any restriction

on the rows of matrix A, we believe that it will be better off if we could first prune

linearly dependent rows of A as was discussed in [7] and then apply the procedure.

By doing so we will actually remove the cases of ul = 0 and thus will be able to reduce

computational error and possibly storage as well as computational complexities.
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4. Some examples. From the derivation of our method, we see that we have

never formed the Al explicitly. Also, this method is free of matrix multiplication.

One major advantage of this recursive method is that it will always carry out a result

successfully. The method provides an alternative way for directly finding MNLS

solution to a system of linear equations.

We illustrate our method with three examples.

Example 1. Let

A =

[

1 2 3

4 5 6

]

and b =

[

1

1

]

.(4.1)

By using our method, we generate a sequence of vectors

x0 =





0

0

0



 , x1 =





23/98

23/49

69/98



 , x2 =





−1/2

0

1/2



 .

x2 is the minimum-norm solution to the system of linear equations (4.1).

Example 2. Let

A =





1 1 −1

1 1 0

−1 0 −1



 and b =





1

1

1



 .(4.2)

This time, we have

x0 =





0

0

0



 , x1 =





5/9

5/9

−5/9



 , x2 =





−1/4

−1/4

5/2



 , x3 =





−1

2

0



 .

x3 is the solution to the system of linear equations (4.2). Note this is a nonsingular

matrix which is taken from [10]. As was pointed out by the author, Algorithm 1 in [10]

breaks down and a modification based on pivoting techniques has to be introduced

to avoid the failure. However, as we can see, our method solves it easily.

In either Examples 1 or 2, A has full row rank. The sequence {xi} is indeed

constructed by our method without calling Step 2(b) which confirms Theorem 3.1.

In the following example, both Step 2(a) and Step 2(b) are called up.

Example 3. Let

A =





1 2

3 4

5 6



 and b =





1

1

1



 .(4.3)
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By using our method, we generate a sequence of vectors

x0 =

[

0

0

]

, x1 =

[

33/25

66/25

]

, x2 =

[

3

−3/2

]

, x3 =

[

−1

1

]

.

x3 is the MNLS solution to the system of linear equations (4.3). In this example, we

do observe that u1 6= 0, u2 6= 0 but u3 = 0, i.e., x3 is computed in Step 2(b).
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